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Abstract: This work analyzes the response of the electricity market to varied renewable and nonre-
newable installed capacity scenarios while taking into account the variability of renewables due to
seasonality and El Niño-Southern Oscillation (ENSO) episodes. A hybrid system dynamics/dynamic
systems (SD/DS) model was developed by first deriving an SD hypothesis and stock-flow structure
from the Colombian electricity supply and demand dynamics. The model’s dynamic behavior was
then transformed into a Simulink model and analyzed using the DS tools of bifurcation and control
theory to provide deeper insights into the system, both from a Colombian perspective and from
the perspective of other market scenarios. Applying the developed hybrid model to the Colombian
electricity market provided a detailed description of its dynamics under a broad range of permanent
(fossil fuel) and variable (renewable) installed capacity scenarios, including a number of counterintu-
itive insights. Greater shares of permanent capacity were found to guarantee the security of supply
and system robustness in the short-term (2021–2029), whereas greater shares of variable capacity
make the system more vulnerable to increased prices and blackouts, especially in the long-term
(2040–2050). These critical situations can be avoided only if additional capacity from either conven-
tional or non-conventional generation is quickly installed. Overall, the methodology proposed for
building the hybrid SD/DS model was found to provide deeper insights and a broader spectrum of
analysis than traditional SD model analysis, and thus can be exploited by policy makers to suggest
improvements in their respective market structures.

Keywords: system dynamics; dynamic systems; bifurcations; renewable scenarios; ENSO phe-
nomenon

1. Introduction

System dynamics (SD) modeling has been used extensively to study electricity mar-
kets and is considered an appropriate modeling technique for the analysis of complex
systems [1,2]. Researchers’ analyses of the security of supply [3,4], energy efficiency [5,6], mar-
ket reforms [7,8], and greenhouse gases [9,10] thus reflect both the importance of modeling
electricity markets and the necessity of developing more detailed and accurate models.

Many researchers have recently aimed to investigate a variety of schemes of elec-
tricity markets using an SD approach [1,2,11]. In fact, the SD methodology has been
applied successfully and many important works have been developed accordingly [12].
As the SD technique efficiently captures the complex structure of real systems under a
holistic overview, even researchers unfamiliar with mathematical models can find in the
SD approach an easy way to represent their problems. In this sense, complex system
models of electricity markets have evolved from simple stock and flow diagrams to large
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hybrid models, involving engineering optimization, genetic algorithms, decision tree ap-
proaches, and agent-based modeling [12]. Combining SD modeling with other strategies
seeks to enhance the overall analysis, provide deeper insights, and cover more variables
and/or scenarios. Overall, SD has shown a suitable compatibility with other modeling
techniques [1,2,13,14].

Nevertheless, in both electricity sector modeling and other disciplines, efforts to com-
bine the SD modeling technique with different tools provided by the dynamic systems (DS)
methodology, and thus extend the reduced routes of analysis of SD models to a broader
spectrum of possibilities, have been limited. In 1980, Javier Aracil [15] introduced the
stability concept for SD models from the DS perspective. This combined approach was
then used to find instabilities and chaos in different corporate environments [16,17]. John
Sterman [18] investigated deterministic chaos in economic models and described how
the decision-making processes of agents can lead to chaotic dynamics [18]. Subsequently,
the importance of studying the qualitative behavior of SD models through their mathemat-
ical properties to provide a solid foundation to SD analysis was discussed by [19]; however,
few researchers have since returned to this topic. Only recently have some researchers
revisited Aracil’s affirmations. For example, the dynamics of a small electricity market
models were described analytically in MATLAB® to investigate the bifurcation regimes in
electricity markets using the DS perspective [20,21]. The resulting set of dynamic equa-
tions was studied; however, their proposed models were not adequately representative
of the real system and numerical DS tools were not exploited. Although possible and
able to work directly with the system equations (if the system equations cannot be solved,
numerical methods can be applied to approximate a solution), most models, including
electricity market models, have a high level of complexity and involve several feedback
relationships, state variables, and delays. As this makes analytical studies near impossible
and the application of numerical methods through any software package cumbersome, it
likely accounts for the lack of interest by the SD community. Although prior researchers
have used Simulink to represent the stock-flow structure of an SD model, they did not
implement their complete model in Simulink, or consider DS tools such as bifurcations and
input–output relationship diagrams [22]. Accordingly, this work proposes a methodology
to combine the SD and DS perspectives in a simpler way, such that SD modelers can feel
more comfortable working with DS tools.

Additionally, researchers have mostly aimed to address scenarios using 100% renew-
able electricity generation [8,23]; in general, electricity sectors will need complementary
sources of generation, electricity storage, and special policy regimes to support variable
(renewable) generation. This thus requires variable/permanent (V/P) installed capacity
scenarios (i.e., mixed renewable and fossil capacity scenarios) to be investigated. Further-
more, models developed with consideration of the El Niño–Southern Oscillation (ENSO)
phenomenon have not been documented, according to a detailed literature search. Addi-
tionally, the demand response against different market conditions has been investigated
recently [24], but this is out of the scope of the present work.

This work therefore aims to extend our earlier work [13,14] by studying how the
supply and demand components of the electricity markets are affected by the variability of
renewable generation, the ENSO phenomenon, and different V/P scenarios by combining
SD and DS model methodology. The proposed methodology will thus help decision makers
develop new strategies or policies to mitigate or eliminate undesired behaviors. As a case
study, the Colombian power market is analyzed; however, the proposed methodology and
lessons from the Colombian case will be applicable to other market situations as well, due
to the generality of our model and the wide spectrum of V/P scenarios simulated.

In line with these objectives, block diagrams analogous to the classic SD stock-flow
structures are proposed in MATLAB® based on the DS tool bifurcation theory [25], and the
input–output relationship diagram commonly used in control theory [26]. This work thus
aims to demonstrate the ease of combining SD and DS methodologies using the appropriate
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tools and software packages, thereby allowing for deeper insights and expanded sensitivity
analysis.

In the case study on the Colombian electricity market, two important issues were
analyzed: (i) how the variability of hydro generation affects grid performance and (ii) what
decision makers must consider under different V/P scenarios. Investigating combined
renewable and fossil-based electricity generation scenarios was intended to provide a more
realistic spectrum to be used by decision makers, such as policy makers and energy in-
vestors.

In summary, our research investigate the Colombian electricity market dynamics by
applying and analyzing several factors and scenarios simultaneously, thanks to the SD/DS
hybrid approach that we proposed [13,14]. First, the ENSO phenomenon was considered;
second, a broad spectrum of V/P scenarios was assessed; and third, bifurcation and
control theory tools were used to not only deeply investigate the dynamics of the system,
but also to identify its leverage points. This kind of investigation and the variety of analysis
approaches have never been reported in the literature.

The paper is organized as follows. In Section 2 we introduce the proposed methodol-
ogy of combined SD/DS modeling. In Section 3, the formulation of the V/P scenarios to
be assessed in the system is presented, together with the model validation, model assump-
tions, and limitations. Section 4 is devoted to the simulation results under V/P variations,
and addressed from a bifurcation perspective. Thereafter, in Section 5 more insights from
the possible rationing events and from the leverage points of all V/P scenarios are ob-
tained and discussed by exploiting control theory tools. Finally, the presented results are
summarized in Section 6.

2. Proposed Methodology of Combined SD/DS Modeling

In this section, the hybrid (i.e., combined SD/DS) energy system modeling process
is explained. The SD modeling process is described in Sections 2.1–2.3; this process has
been well documented and readers can find more detail in [27]. The DS modeling process,
mainly applied in physical systems, involves obtaining the ordinary differential equations
of a system and then using them to describe its behavior. Many methodologies have been
developed to study dynamic systems, especially from a mathematical perspective. Here,
as described in Section 2.4, an SD model is transformed into a DS model using Simulink
block diagrams (rather than ordinary differential equations), as this transformation is more
user-friendly and allows the easy application of DS tools for analyzing or describing systems.
This transformation can be further explored in previous work [13].

2.1. Dynamic Hypothesis

The proposed electricity market model seeks to show the causal relationships among
market variables, the different V/P scenarios, and the imminent effects of seasonality and
ENSO phenomena in the electricity generation process. As shown in Figure 1, the dynamic
hypothesis, derived from [28] following the SD modeling steps as in [27], comprises three
balance loops: B1 represents the dynamic interaction of the demand-side variables, whereas
B2 and B3 represent the supply-side interaction associated with hydroelectric plants (V)
and fossil fuel power plants (P), respectively. The Colombian electricity mix is dominated
by hydroelectricity [29], which is considered a variable source because it is affected by
variations in the climate. As (P) (the second largest contributor to the Colombian grid) is
assumed to maintain a constant availability factor, it is considered a permanent source [29];
therefore, V in Figure 1 refers to the variable hydroelectricity, and P refers to the permanent
fossil-fuel electricity.

As one can see from B1 in Figure 1, an increasing market price incentivizes reductions
in energy consumption; this then increases the reserve margin, which measures the capacity
available to meet expected demand (defined by the difference between the demand and the
supply). Similarly, when the electricity market has a decreased reserve margin, consumers
must pay a higher price (as demonstrated in B2). This causes a greater return on investment
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for the producers, thereby incentivizing the expansion of both variable and permanent
capacity, since the market price causalities affect balance loop B2 and B3. Then, the reserve
margin is affected positively, which balances the subsequent causalities.

Figure 1. Dynamic hypothesis of the electricity system. It was modified from the one in [28]. V refers
to the variable generation, and P refers to the permanent generation. Reprinted with the permission
of Reference [13]. Copyright 2018 Elsevier.

2.2. Stock-Flow Diagram

In line with the SD approach provided by [27], a stock-flow building process was then
designed to perform a quantitative analysis that allows the transformation of the causal
loop diagram into a stock-flow diagram describing the system in more detail and involving
the formulation of the dynamic equations.

Loop B3, representing the supply side of all Colombian (P) generation, is comprised
of two stock variables, as illustrated in Figure 2: capacity under construction and installed
capacity. The construction of new plants depends on the investment decision of the
producers, which is determined by the assumed return on investment. Higher electricity
prices increase the incentives for new capacity since the return on investment increases as
well. In Colombia, the highest price is usually reached when thermal plants are used to
produce electricity, since the cost of fuel is more expensive than producing energy with
water resources.

Similarly, the variables affecting the supply of hydroelectricity (i.e., V) are summarized
in Figure 3. The installation of new capacity is dependent on producers’ profits: high
electricity prices increase the desire of the producers to invest, thereby increasing the
capacity under construction and eventually increasing the total installed capacity.

Fossil fuel power and hydropower plants alike become obsolete after their given
lifetimes, thereby reducing the installed capacity. In this sense, the installed capacity
dynamics are here affected in similar ways by the retirement of old plants (plants installed
after 2020) and the retirement of initial ones (plants installed before 2020), as shown in
Figures 2 and 3. As the installed capacity refers to the summed capacity of all plants
in operation, the retirement of initial plants removes the existing capacity (from P or
V, depending on the initial plant type). However, determining a plant’s lifetime is a
difficult task due to a lack of reliable, accurate information regarding when the plant began
operating. Thus, they are smoothly removed from the installed capacity, while taking into
consideration the average lifetime of the general technology used and using a first-order
delay [30]. To improve the accuracy, new plants entering into operation are removed using
a pipeline delay (infinite order delay) once the plants become obsolete, through the flow
retirement of old plants [30].
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Figure 2. Electricity supply from fossil fuel-based (P) generation as in [13,14]. Variability fixed
cost = fixed cost. Reprinted with the permission of Reference [13]. Copyright 2018 Elsevier.

Figure 3. Electricity supply from hydroelectricity (V) generation as in [13,14]. Variability fixed
cost = fixed cost. Reprinted with the permission of Reference [13]. Copyright 2018 Elsevier.

Electricity demand plays an important role in the dynamics, as shown in Figure 4. The in-
teractions among producers, who compete to provide electricity at the price set by the
market, influence the reserve margin of the electricity system. Furthermore, the market
price not only depends on the reserve margin, which sets a rationing price when its level
reaches a critical value, but also on the ultimate technology participating in the dispatch
process to meet the total electricity demand (ed). Market prices also react with a slight
delay, as consumers perceive the electricity price with a certain lag (in Colombia it is
after 3 months). Consequently, and as it is expected in the real system, the market price,
together with the elasticity of demand (also known as price elasticity of demand) in Colom-



Mathematics 2021, 9, 1560 6 of 26

bia [31], can increase or decrease the modeled demand, as detailed in Equations (A1)–(A6)
of Appendix A, where the demand is approximated on a daily basis market-wide, which
mainly reflects an exponential growth along the years.

Figure 4. Demand component of the electricity system as in [13,14]. Reprinted with the permission
of Reference [13]. Copyright 2018 Elsevier.

The dispatching of the produced electricity is then considered, as detailed in Figure 5.
Under the assumption of perfect electricity market competition, the producers cannot
influence the market price. The dispatching merit order is determined by the market,
which sorts the available generation technologies according to their marginal costs: the first
plants called to dispatch are those offering the lowest electricity prices. Once the supply
equals the demand, the market price is set by the most expensive in-operation technology.

Figure 5. Electricity dispatch as in [13,14]. Note that the (V) availability factor is the same variable
of Figure 7 called a fv. This variable connects the electricity dispatch with the ENSO phenomenon.
Reprinted with the permission of Reference [13]. Copyright 2018 Elsevier.

The market price (mp) determines the return on investment, which eventually influ-
ences the system capacity expansion, as it was explained in the supply side modeling.
Moreover, some other variables are determined during dispatch. For example, the utiliza-
tion factor, representing the percentage of the plants participating in the dispatch process,
affects the return on investment and the market price. Thus, the electricity dispatched
by each technology in relation to its capacity provides a rate of usage of this technology
(utilization factor), which serves to compute its return on investment.

The generation capacity depends on the source of generation and on the availability
factor. As thermal power plants are only restricted by fuel availability, they have a near-
constant availability factor and are considered permanent generation sources. As the
capacities of hydropower plants are determined by the amounts of water in the reservoirs
or the flow of the rivers, both of which are affected by weather conditions, one must take
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into account the water contributions of the Colombian rivers, measured as the levels of
water flow entering into the systems [32].

The equations that model the variables of Figures 2–5 are shown in Appendix A,
Appendix A.2.

2.3. Hydroelectricity Variability Modeling

The variability of hydroelectricity was thus addressed within the model to account
for local weather dynamics. Although Colombia’s weather reflects a periodic behavior
pattern throughout the year, pattern variations due to the ENSO phenomenon alter the
cyclical behavior of the dry and wet seasons [33,34], increasing or decreasing the water
availability of the rivers used to power the hydro plants during La Niña or El Niño events,
respectively. The hydroelectricity availability factor (a fv), also called (V) availability factor
in Figure 5, must thus account for the seasonality and ENSO phenomenon to incorporate
more realistic characteristics. The seasonality and ENSO phenomenon were thus modeled
using deterministic functions to approximate the water contribution of the Colombian
rivers. Documented seasonal variations due to La Niña and El Niño events suggest that
these phenomena have been in play since 1950 [35]. In particular, Colombia has been
through several periods of risky electricity scarcity due to the appearance of strong El Niño
events in 1991/1992, 1997, 2008, and 2015/2016. Prior researchers have documented the
strange attractors’ (or chaos) influence on Colombian hydro-climatology [33], confirming to
some extent the existence of chaotic deterministic components in the Colombian hydrology.

Historical mean water contributions from 2000 to 2016 obtained from XM (the com-
pany that manages the Colombian power market) [32] were analyzed and plotted; the
corresponding a fv (in percentage) is shown in Figure 6 by the red line. Note that over the
past years the a fv has experienced situations with great potential and also water scarcity.
Low a fv values correspond to strong El Niño events.

Figure 6. Availability factor of hydroelectricity generation (a fv) [14], where the red line represents the
real behavior of the series of aggregate flows of the Colombian rivers, obtained from [32], and the blue
line was computed using Equation (2) and the Lorenz attractor (or Equation (1)), intended to represent
the main characteristics of the real one (seasonality and ENSO phenomenon). MAPE = 11.35%.

To model the a fv, the Lorenz chaotic attractor described in Equation (1) was then used
to model the ENSO phenomenon, whereas the seasonality was represented by Equation (2).
In general, the effects of seasonality are more pronounced when the ENSO appears, i.e., fur-
ther decreasing water availability in dry seasons and increasing it during wet seasons.
Thus, the ENSO and seasonality components were both included in the calculation of a fv.
In this sense, we are modeling the seasonality and ENSO phenomenon, as several climate
researchers have [33,36,37].
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The Lorenz attractor in its mathematical form is defined as [38]

ẋ = a(y− x)
ẏ = x(b− z)− y
ż = xy− cz,

(1)

where a, b, and c are parameters that were tuned for generating chaotic dynamics; and x, y
and z are the state variables [38].

The seasonality patterns are represented through Equation (2), obtained from [30].

a fv = 1.01 + 0.47 sin(2πt− 0.45π) cos(2πt− 0.45π) + 0.25 sin(2πt− 0.55π) (2)

To incorporate both the ENSO phenomenon and seasonality patterns, these equations
were then combined and used to model the a fv.

Finally, the stock-flow structure and the parameter values used to implement this
more realistic variability are shown in Figure 7 and Table 1, respectively.

Figure 7. The SD modeling approach of the ENSO phenomenon as in [14]. Stock-flow structure of
the a fv. Note that a fv is the same variable of Figure 5 called (V) Availability factor. This variable
connects the ENSO phenomenon with the electricity dispatch.

In principle, the initial conditions and parameter values (a, b, and c) of the Lorenz
attractor were set to exhibit the classical butterfly effect, since this behavior was found to
better represents the ENSO phenomenon, as shown by [33]. Then, one of the three state
variables was selected to represent the ENSO phenomenon by considering their individual
dynamics; here, z was selected since it exhibited a behavior similar to the real a fv. Finally,
the model was then run to obtain the synthetic series, shown in Figure 6 as the dashed
blue line. The resulting simulated line was in good agreement with the real data; MAPE =
11.35%.

The simulated a fv was obtained using only a determined and fixed set of initial
conditions. However, as the chaos theory states, slight changes in the initial conditions of a
chaotic system can result in very different behaviors. The simulated results thus represent
only one possible reality of the Colombian a fv, so that by varying the initial conditions of
the Lorenz attractor it is possible to obtain many different realities.
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Table 1. Parameter values of the Lorenz attractor as in [14].

Parameter Value

a 10
b 28
c 2.6667

x(0) 10
y(0) 5
z(0) 20

2.4. Block Diagrams of Simulink

To more easily apply DS tools and thus describe in more detail the energy SD model
and explore a broader spectrum of scenarios and from different perspectives, the proposed
stock-flow structure was then transformed into a Simulink block diagram to investigate
the SD model problem. The resulting Simulink block diagrams and dynamic equations are
in Appendix A; further details can be found in [13].

The transformation of the stock-flow structure into the Simulink block diagram is in-
tuitive and does not require to program numerical methods for solving ODEs; furthermore,
Simulink provides advantages over other SD software packages, such as Vensim, Power-
sim, and Stella, since an unlimited number of DS tools can be implemented. To transform a
stock-flow structure into a Simulink block diagram, it is only necessary to find the SD vari-
able correspondence with the Simulink block variables. When comparing Figures 2–5 and 7
with Figures A1–A4, know that the structures are similar and their correspondence should
be easy to follow.

Once the SD model has been transformed into Simulink block diagrams, any DS
strategy of analysis can be implemented for investigating its dynamics, as we shall see in
the following sections. Note that with a Simulink model (i.e., a DS model), DS tools can
be implemented or applied in an easier form than having the normal system equations
programmed in MATLAB, C++, Python, etc.

3. Modeling the V/P Scenarios

The generation of the V/P scenarios is discussed in this section, now that the hybrid
model has been explained in the previous section. In addition, prior to obtaining the
simulation results, the proposed model was validated.

Each V/P scenario was simulated for only one initial condition of the Lorenz attractor,
i.e., only one possible reality. As discussed above, chaotic attractors are very sensitive to
changes in their initial conditions; therefore, any change in the initial conditions of the
Lorenz attractor can be seen as a different reality—e.g., asdifferent actions performed by
human beings or just general changes of the entire world—any of which can affect the
environment or climate, and consequently the a fv. Varying the initial condition of the
state variable used to represent the ENSO phenomenon (i.e., z) generates very different
synthetic series, each of which can be seen as a different possible reality of the a fv, or as a
different scenario of the ENSO phenomenon. However, the question arises as to how many
synthetic series should be computed.

To address this question, the variance of one market variable under varying initial
conditions can be computed, thereby allowing a clearer picture of how many synthetic
series are required to equilibrate the variance. Here, the variance of the unmet electricity
demand (unmeted refers to the electricity that the power system is unable to supply) was
calculated under varied condition of z; the results are shown in Figure 8.
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Figure 8. Variance of the unmet electricity demand (unmeted) computed for 6000 simulations using
different initial conditions of z [14].

Note from Figure 8 that the variance due to varied Lorenz attractor scenarios fluctu-
ated drastically in the first 2000 simulations; however, after 4000 simulations, the variance
reached an equilibrium. Despite continued variations to the initial condition of z, the result-
ing synthetic series did not change significantly. As a result, by simulating the electricity
market model up to 4000 times, 4000 different synthetic series or 4000 distinct scenarios
of the Colombian electricity market are guaranteed. These 4000 possible realities can be
considered for studying different share scenarios of P and V installed capacities.

Currently, the Colombian electricity mix consists of approximately 70% hydroelec-
tricity (i.e., V) and 30% thermal electricity (i.e., P) [29]; however, the share of V will likely
continue to grow as the share of P decreases due to concerns regarding the environmental
impact of fossil fuels. Still, as many markets worldwide exhibit similar market condi-
tions with different P and V shares, the impacts of scenarios ranging from 0%V/100%P
to 100%V/0%P were assessed with their corresponding electricity market performances
using DS tools while incorporating the ENSO phenomenon. Thus, this process provides a
detailed analysis of the V/P scenarios thanks to the developed DS tools, and an assessment
of the electricity market’s performance under more realistic conditions.

Although the studied scenarios are specific to the Colombian electricity market,
the main characteristics and properties of the supply and demand rules are followed
by many other countries; as a result, the findings can be extended to other countries. In fact,
as the ENSO phenomenon affects vast areas of Asian and Pacific regions, this methodology
can be applied to several countries. Although the specific technology may vary (e.g.,
the hydroelectricity usage in Colombia), the general discussion of the variability associated
with renewable electricity generation may be applicable.

As discussed above, the initial conditions were varied to generate 4000 synthetic series
of a fv, i.e., 4000 distinct scenarios of the ENSO phenomenon impacting the Colombian
electricity market. These scenarios were then considered over each studied V/P scenario.
Once the 4000 synthetic series were computed for each V/P scenario, the average synthetic
series of each key variable of the electricity market was calculated and plotted; results are
shown in Section 4.1. As these are averaged values, the output behavior patterns exhibit
smooth shapes. Furthermore, the synthetic series were averaged to capture their most
frequent behaviors or their central tendencies. Additionally, note that this is not the same
as a traditional SD sensitivity analysis because traditionally, (i) the ENSO phenomenon
would not be accurately portrayed, (ii) the exact V/P scenario leading to a determined
behavior could not be identified, and (iii) simulating only a few scenarios would be possible,
considering the limitations of the SD software packages that we have explained before.
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As a near-infinite number of V/P scenarios could be simulated, the computational
power required must be considered. In our case, 100 V/P scenarios from 0% to 100% in
1% increments, and using only hydroelectricity as the renewable source, were computed.
Considering the 4000 synthetic series generated by the Lorenz attractor and the 100 V/P
scenarios, this resulted in 400.000 total simulations. This makes our study a vast analysis to
a degree that has never been reached before in this area.

3.1. Model Validation

The complete validation process is out of the scope of the paper and thus not widely
discussed here. The model robustness was tested following the method explained in [39,40];
all validation tests were successfully passed. In fact, a more advanced sensitivity analysis
was applied, as detailed below.

In addition, basic time series of the proposed model were calculated in Vensim,
MATLAB®, and Simulink to verify their accuracy; all showed good agreement (see some
examples in Figures 9 and 10). In fact, to verify the accuracy of the proposed model even
further, the model was run starting from 2017; the modeled data from 2017 to 2019 were
then compared to obtained Colombian electricity market data. Good agreement was found,
including during the months of energy crisis that occurred in 2017 and 2019, as shown
in Sections 4.2 and 5.1. During these months, the market was highly impacted by the
ENSO phenomenon. Additionally, the model successfully predicted the perturbation in
January/February and November/December 2019 caused by the delay of Hidroituango (a
2400 MW hydro plant) announced in April 2018 [41–43]. Thus, the model was determined
to predict accurately electricity market fluctuations.

While taking all of that validation process into account, the model was analyzed
starting from 2020. Hence, the time horizon of the simulations goes from 2020 to 2050,
using a daily time step.

Figure 9. Power demand. The red signal represents the real behavior of the Colombian power demand,
obtained with data from [44]. The blue signal was computed with our SD/DS model. MAPE = 1.95%.
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Figure 10. (V) Potential generation (pgv). The red signal represents the real behavior of the Colombian
potential generation of the variable resources, obtained with data from [44]. The blue signal was
computed with our SD/DS model. MAPE = 15.4%.

3.2. Model Assumptions and Limitations

The start-up time of thermal power plants was not modeled, since its practical im-
plications are negligible in contrast with the time delays associated with the construction
and decommissioning of power plants. Subsidies were not considered, as there currently
exists no subsidy policy in the Colombian electricity market. Electricity storage was not
considered, and fuel prices were kept constant over the 33-year simulation period. Electric-
ity generation technologies were aggregated into two buckets: renewables and fossil fuels
(variable and permanent capacities, respectively). Furthermore, here, only hydropower
was considered as a renewable electricity source, due to its prevalence in the Colombian
market, which is not encouraging the installation of other renewable energy sources. The re-
sults of this paper are thus limited to the Colombian case and foreign power markets with
similar characteristics.

4. Simulation Results: A Bifurcation Perspective

The bifurcation theory has been broadly used in DS to study the behavior of physical
systems against parameter variations [45]. This methodology allows a broad spectrum of
behaviors to be obtained and analyzed as a parameter is varied; furthermore, the parameter
causing a determined behavior can be identified, thereby remedying a drawback of the
sensitivity analysis using SD software packages.

In fact, the sensitivity-based bifurcation analysis is simple to implement once the
stock-flow structure has been transformed in a Simulink model. Several authors explained
the implementation with great detail in [46–48].

4.1. V/P Installed Capacity Scenarios

Key variables of the electricity market model were thus assessed under the modeled
V/P scenarios, while accounting for variability of the ENSO phenomenon using the
proposed advanced sensitivity analysis based on bifurcation theory; results are shown in
Figure 11, where the upper and lower x-axes represent the installed V and P capacities,
respectively. Accordingly, each scenario provides an averaged series containing all possible
solutions of the system under each studied market share of varied V and P generation.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. V/P scenarios considering the seasonality and the ENSO phenomenon. The percentage of the variable
technology was varied from 0% to 100% in 1% steps as the corresponding percentage of the permanent technology decreased
from 100% to 0%. The green rectangles marked represent the solution for the Colombian case (V ≈ 70%, P ≈ 30%).
(a) Installed P capacity—ICp, (b) installed V capacity—ICv, (c) power reserve margin—Prm, (d) energy reserve margin—Erm,
(e) dispatched P—dispp, (f) dispatched V—dispv, (g) unmet electricity demand—unmeted, and (h) market price—mp.

The behaviors for the installed P capacity (ICp) and installed V capacity (ICv) are
shown in Figure 11a,b, respectively. Despite the chaotic variability introduced via the
ENSO phenomenon, both the ICp and ICv show similar white spaces and behavioral
patterns. These white voids reflect the lack of a solution, i.e., discontinuities. However,
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the ICv demonstrated a more organized pattern, regardless of V/P scenario, and was
characterized by rapid, uniform growth. In essence, it appears that the dispatch merit
order effect together with environmental and price issues causes a more uniform and
organized increase in V capacity; as the electricity demand (ed) increases, so does the
construction of hydroelectric plants. Conversely, since the ICp is directly dependent
on the availability of hydropower, the chaotic component of the ENSO phenomenon is
automatically transferred to its dynamics. When the ENSO phenomenon greatly affects
the V generation, larger shares of ICp are required to support it. Accordingly, the ICp
shows less-organized behavior patterns. Thus, a greater installed V capacity results in a
lower installed P capacity. In other words, the market share of P tends to be reduced as
the capacity of V increases. However, the ICp could not be reduced below 13 GW under
an (80%V, 20%P) scenario. Further increases of ICv might actually cause an increase in
the ICp, to support the V technology. Increasing the ICv thus provokes a high degree of
variability in the market, which is then mitigated by increasing the ICp. Thus, if Colombian
decision makers desire to be as environmentally friendly as possible without sacrificing
the security of electricity supply, the best case scenario is (80%V, 20%P). Accordingly, this
can also be recommended to electricity markets of other countries that are affected by the
ENSO phenomenon. Currently, in Colombia, hydroelectricity plants are being installed as
thermal power plants are being decommissioned, suggesting that the market is moving
towards this scenario: continued efforts should thus be made to reach (80%V, 20%P), but
increasing non-conventional electricity generation should also be continued to complement
the high variability of the 80%V technology.

However, Figure 11b shows that as the share of V generation increased (while the P
decreased), the overall ICv slightly decreased, rather than remaining constant or increasing.
By having a large V capacity installed, the resulting higher degree of variability constrained
its overall growth; as a result, less renewable generation capacity was installed over time.

Nevertheless, market dynamics did not allow for a 100% hydroelectricity-dependent
market. A significant amount of P capacity was found to be necessary in the electricity
mix to guarantee security of supply and reliability. Even the scenarios beginning at either
spectral extreme (i.e., (0%V, 100%P) or (100%V, 0%P)) ended up in different combinations
of both technologies; still, the V generation deployment occurred more rapidly and to a
greater extent than did the P generation, likely due to environmental constraints.

The power reserve margin (Prm), detailed in Figure 11c, also presented white empty
places due to the direct transference of the discontinuous behavior of the ICp and ICv
to the Prm. However, a larger share of V capacity being installed resulted in reduced
Prm. As expected, if a larger share of hydropower is used to meet the majority of the ed,
the incentives for expanding the P or V capacity are also reduced, as the lower price of
hydropower generation discourages system expansion. For this reason, the greater the V
capacity installed, the lower the Prm achieved over time. Larger shares of P capacity values
thus cause higher values of Prm due to price issues, but also allow scenarios at which the Prm
reaches the lowest possible value, due to the differences in the lifetimes and construction
times of both technologies. In other words, scenarios with an electricity system dominated
by thermal generation have overall shorter lifetimes; considering that the installation of
hydropower plants takes, on average, 5 to 7 years before become operational, this leads
to a more rapid decrease of the Prm. Conversely, a greater installed hydropower capacity
ensures a longer lifetime of the entire system, together with a complementary technology
(thermal plants) that can be installed in only 2 or 3 years. This, on the contrary, causes the
Prm to decrease slowly.

Similarly, the energy reserve margin (Erm) is prone to be reduced as more V capacity
is installed, as shown in Figure 11d. Again, increased generation of hydropower means
lower revenue for the producers, thereby discouraging the expansion of both P and V
capacities. However, this also increases the risk of electricity blackouts. Similarly to the
Prm, the Erm tends to exhibit less dangerous values (close to zero or even negative) as the
share of hydropower is reduced (which also implies a larger share of thermal generation).
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This can be explained by the a fv dynamics: a scenario with less hydropower immediately
results in a less variable electricity system. Under a high share of P capacity, the Erm
attains higher values, and an electricity market with lower probabilities of exhibiting zero
or negative values of Erm (rationing events) can be expected. However, this does not
necessarily mean that rationing events can be avoided for greater permanent shares, as they
were still present, as shown in Figure 11g. At the current Colombian case (70%V, 30%P),
the maximum rationing episode was not as high as the one exhibited by the larger shares
of V capacity, but was higher than those exhibited by those with lower shares of V capacity.
In other words, in terms of unmet electricity demand, the BaU scenario of Colombia is
currently close to the ideal scenario (62%V, 38%P); if the V capacity is further increased,
the risk of blackouts also increases.

Overall, under scenarios with larger shares of hydropower generation, the thermal
producers sold or dispatched less electricity, and vice versa, as shown in Figure 11e.
However, once the hydropower capacity shares reached 89%, any further increase in the
share did not continue to reduce the thermal electricity dispatched. As explained in the
ICp scenarios, a larger share of hydropower provoked a higher degree of variability, which
was then mitigated by increasing the capacity of installing P generation plants. Although
the dispatch of renewable electricity (dispv) did increase as the share of renewable capacity
increases, an upper confidence limit (around 19 TWh) was always hit, regardless of V/P
scenario, as shown in Figure 11f. This is explained by the fact that at the end of the
simulation, only hydropower generation was able to meet the total ed; as a result, its
maximum value achieved met the final amount of ed required.

The unmet ed (unmeted), shown in Figure 11g, was nonzero in all V/P scenarios, due
to the model’s basis of the Colombian market, in which there exist grid problems and
unplanned maintenance for power plants in several regions of the country. The unmeted
did reach low values for V/P scenarios within (0%V, 100%P)–(62%V, 38%P). However,
for the remaining V/P scenarios, the unmeted reached higher values. Accordingly, an ideal
best V/P scenario would thus be (62%V, 38%P) to avoid high unmeted and any severe
rationing events. A greater share of P capacity might lead to a higher unmeted; by having
a higher share of P generation, the capacity is reduced more quickly for environmental
reasons, leading to higher unmeted events. Likewise, larger shares of V capacity (above
63%) increase the risk of presenting critical values of unmeted, due to variability issues.
Accordingly, further increases of the current hydropower capacity in Colombia might
subject the market to more critical rationing events. In the next section, the expected time
of occurrence of these situations is detailed.

Lower market prices (mp) were observed for greater shares of P capacity, as shown in
Figure 11h. At these share distributions, there is less risk of unmeted events; the rationing
price (RAP) tariff is thus lower, allowing consumers a more competitive mp. If the share of
V generation is increased above 70%, consumers might be forced to pay higher electricity
prices at some time during the 33 years of simulation; when this may occur is discussed
in more detail in Section 4.2. So far policy makers and energy investors know that there
exist near-ideal combinations of P and V capacities of 35% and 65%, respectively. Further
increases or decreases in V generation might increase the risk of electricity blackouts,
especially if increased over 65%.

4.2. Confidence Limits and Their Occurrence

The proposed DS methodology is a derivation of the bifurcation method, as explained
in Section 4. The method allows more information to be obtained from the bifurcation
sensitivity analysis, especially the maximum and minimum values of the system behavior
for each parameter (V/P scenario) with its corresponding year of occurrence.

The DS tools were thus used to obtain further information from the proposed SD
model and provide an in-depth V/P scenario analysis. The corresponding confidence
limits of the advanced sensitivity analysis of the results shown in Figure 11, together with
their exact year of occurrence, are shown in Figures 12 and 13.



Mathematics 2021, 9, 1560 16 of 26

As seen in Figure 12a, scenarios containing greater shares of P capacity are expected
to reach their lowest ICp in approximately 2046, suggesting that the P component of the
electricity matrix may disappear by 2050. These scenarios reached a maximum ICp around
2028. This is because the critical values of the Erm are expected to occur in the short-term
(around 2020), as shown in Figure 12d, which incentivizes the capacity expansion of both V
and P components; as a result, a maximum value of ICp is met in the mid-term. The V/P
scenarios within the range (58%V, 42%P)–(75%V, 25%P), including the current Colombian
case, experienced the lowest value of the ICp near 2020, whereas the maximum value was
met near 2029, due to the short-term critical values of the Erm. Thus, electricity markets
in these scenarios might also expect significant reductions of their thermal components
in 33 years. However, further increasing the V capacity would cause, after an immediate
reduction of the ICp, an increased ICp over the next 20 years due to the high degree of
variability introduced in the system. Thus, the increased thermal capacity might be part of
the electricity matrix for many more years.

Due to the decommissioning and depreciation of old hydropower plants, the lowest
ICv values were reached near 2022, whereas the highest values were reached near 2050,
as shown in Figure 12b. Thus, regardless of V/P scenario, the market share of renewables
will drastically increase after 2022. This dynamic will not happen before 2022 because of
the construction time (delay time); regardless of scenario, the installation of renewable
plants takes time. While this occurs, the existing renewable capacity will become obsolete;
as a result, around 2022 (just before a new renewable plant enters the market) the lowest
renewable capacity should be achieved. In general, renewable electricity is expected to
continue growing in the short, middle, and long-term future due to environmental concerns.

(a) (b)

(c) (d)

Figure 12. Confidence limits of the V/P scenarios and their times of occurrence. The red and blue lines represent maximum
and minimum values, respectively. The green vertical line represents the Colombian case (70%V, 30%P). (a) ICp, (b) ICv, (c)
Prm, and (d) Erm.
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Due to the continued reduction of the ICp and the natural decommission and depreci-
ation of hydropower plants, the Prm reached its minimum near 2020 in all V/P scenarios,
as shown in Figure 12c. The continuous investments in both thermal and hydropower
capacity aimed at overcoming the critical situations of 2020 then caused a maximum Prm
near 2035 or 2032. The Prm was not affected by the ENSO phenomenon, as it is defined
only by the ICp and ICv.

By considering the impact of the ENSO phenomenon, the Erm experienced critical
situations around 2020 in most V/P scenarios studied, as shown in Figure 12d; only
scenarios using fossil fuel shares greater than 91% avoided this critical situation (a zero
or below-zero value). In other words, only the variability of renewable scenarios with
1–9% renewables can be mitigated by the corresponding 91–100% fossil fuel capacities.
All studied V/P scenarios encountered a maximum Erm near 2033, due to the continuous
investments in both thermal and hydropower capacity to overcome the critical situations
of 2020. Thus, regardless of increases or decreases in the share of renewable electricity,
the Colombian market will likely experience a serious electricity risk (Erm near zero) in the
short term.

According to the behavior of the confidence limits’ times of occurrence dispv shown
in Figure 13b, the minimum dispv values shall be reached in the short-term, as they are
related to the minimum values of the ICv, whereas the maximum values shall be met in the
distant future, as high ed yields high hydroelectricity consumption. Within the V/P range
(0%V, 100%P)–(46%V, 54%P), dispatch of fossil-generated electricity (dispp) reached a
minimum value of near-zero close to 2026 (see Figure 13a), as the hydropower generation
can meet the total ed. Although these scenarios were characterized by initial domination
of the electricity matrix by thermal generation, hydropower generation was later highly
deployed. Thus, under these scenarios, the thermal component reached a maximum dispp
near 2021. However, in the scenarios involving V/P ranges of (47%V, 53%P)–(87%V, 13%P)
the hydropower plants met the total ed sooner, since the shares of the V capacity were
larger. The lowest dispp values thus took place around 2020/2021, whereas the highest
dispp values occurred shortly afterwards, around 2022, when the variability and small
installed hydropower capacity (due to the decommissioning of old plants) affected the
electricity production of the hydropower plants. Within the V/P range (88%V, 12%P)–
(100%V, 0%P), disp reached a maximum around 2024, because the hydropower generation
was still not well developed enough to meet a large proportion of the demand.

In the scenarios involving the V/P ranges of (0%V, 100%P)–(62%V, 38%P), less elec-
tricity rationing (i.e., lower unmeted) was found than in those involving greater capacities
of installed hydropower (see Figure 13c). Although rationing events were avoided in the
short-term, most scenarios saw rationing by about 2045. Electricity markets comprised of
V/P scenarios within (63%V, 37%P)–(100%V, 0%P), including that of Colombia, however,
experienced unmeted around 2020/2021.

When a greater share of P capacity was installed, the minimum and maximum values
of the mp occurred further apart, with the minimums occurring in the short-term and maxi-
mums occurring in the long-term, as shown in Figure 13d. The lowest prices occurred near
2026 due to the combination of thermal and hydropower generation, which set competitive
prices for consumers. The subsequent decreases of thermal capacity and Prm/Erm as a
consequence led to a higher mp to incentivize capacity expansion. However, when the
share of the V generation was further increased, mp reached its minimum and maximum
values at almost the same time, close to 2020. This was due to the rationing events ap-
pearing near to this timeframe in these scenarios, which was preceded by hydropower
meeting most of the ed and setting a very low tariff. Once the critical rationing situations
appeared, the mp increased to incentivize capacity expansion. Overall, a greater share of V
generation leads to a higher mp. Together, these results will be useful for decision makers
in Colombia, including investors and policy makers. Without additional inputs, such as
complimentary renewable sources, storage technologies, or subsidy policies, increasing the
renewable generation will likely affect the market price in the short-term and middle-term.
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(a) (b)

(c) (d)

Figure 13. Confidence limits of the V/P scenarios and their time of occurrence. The red and blue lines represent maximum
and minimum values, respectively. The green vertical line represents the Colombian case (70%V, 30%P). (a) dispp, (b) dispv,
(c) unmeted, and (d) mp.

5. Simulation Results: A Control Theory Perspective

An algorithm inspired by the input–output relationship diagram used to design
nonlinear controllers [26] was then developed to illustrate in detail the rationing scenarios
undergone by the proposed electricity market model. The resulting 3D diagram maps each
possible rationing scenario with its corresponding date (year and month) and probability
of occurrence.

5.1. Detailed Rationing Events

To clarify the unmeted events exhibited by the proposed electricity market model,
the input–output relationship diagram derived from control theory [26] was used to
estimate the date (year and month), duration, and probability of occurrence of each elec-
tricity blackout.

The resulting input–output relationship diagram computed for each V/P scenario is
shown in Figure 14. Here, the bottom-left diagram illustrates the frequency of rationing
months (FRM) for each V/P scenario; the upper-left and right diagrams estimate their
corresponding years and months of occurrence, respectively; and the bottom-right diagram
shows the probability of occurrence of each rationing episode in 3D.

In the Colombian case (marked by the horizontal green line), six months of electricity
rationing was expected over the 33-year period studied. According to the upper left
diagram, these months are likely to be in 2021, 2046, 2048, and 2049; however, considering
that other V/P scenarios overlap with the Colombian case (also undergo six rationing
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months), the distribution of the six months over these years cannot be certain. It might
be three months in 2021 and three more in 2048; it also depends on the months graph.
Note that 2021 underwent three rationing months, as did 2048. Still, these results indicate
that steps should be taken to mitigate possible rationing in the short-term (2020–2022)
and in the long-term (2046–2050 at least), especially given that several critical alerts and
much uncertainty were present over the past few years (i.e., 2017 and 2019); more critical
electricity issues are predicted to occur.

Figure 14. Input–output relationship diagram of the V/P scenarios once the ENSO phenomenon
was incorporated in the model. FRM stands for frequency of rationing months. The Colombian case
is marked by the green horizontal line.

In the Colombian case, given the corresponding upper-right diagram, these six ra-
tioning months are likely to be distributed across November–February, i.e., the dry season:
this is likely due to the added stress of the appearance of the ENSO phenomenon. The prob-
ability of occurrence even within these months and years varies drastically; still, January
of 2021 and 2048 were predicted to be the most dangerous months with probabilities of
rationing near 50% and 97%, respectively, as shown in the bottom-right diagram. Steps
should thus be taken to mitigate possible rationing in the target areas.

Rather, more stable V/P scenarios were found within the range (0%V, 100%P)–(45%V,
55%P), where only two rationing months were expected in January of 2048 and 2049,
with respective probabilities of 97% and 60%. In general, larger shares of P generation lead
to more robust security of electricity supply in the short-term and middle-term, and are
subject to rationing events only in the long term.

Variable generation greater than 50% increases the risk of rationing events (>3 FRM),
most likely to occur in January, February, July, November, and/or December. Even when
a large share of P technology is initially installed, V generation overtakes P generation
over time (due to environmental and price issues), thereby compromising the security of
supply of the long-term. A larger share of P generation may be more advantageous in the
short-term and mid-term, but is unfavorable to the environment. Either way, rationing
events are more likely to occur in the long-term than those in the short-term. In particular,
January 2048 appears to be the most dangerous episode, with a probability of nearly 90%.
Due to the Colombian climate and the ENSO phenomenon, December–February is the most
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risky time of year; decision makers should thus develop new strategies moving forward,
especially for these critical months.

5.2. Leverage Points

To study the general leverage points of all V/P scenarios, an algorithm was developed
to detect the final shares (i.e., in 2050) of P (ICp) and V (ICv) generation for each V/P
scenario, thereby aiming to find out if different mixes of electricity sources lead to specific
leverage points (final V/P combination) over time.

The resulting leverage points are illustrated in Figure 15. Regardless of the initial V/P
scenario, the Colombian market is expected to evolve to approximately (90%V, 10%P). Ac-
cordingly, regardless of the initial V/P installed capacity scenario of any country, renewable
generation (here, hydropower) will become much more dominant by 2050 (see Figure 15a).
Colombia and other countries with similar power markets should thus expect their elec-
tricity markets to evolve over the next 33 years to support nearly 90% of their electricity
production from renewable technologies, and nearly 10% of their electricity production
from nonrenewable technologies (see Figure 15b). This result is incentivized for environ-
mental reasons and the merit order effect, which several power markets worldwide share
with the Colombian case.

These results indicate that the Colombian government and energy authorities of
countries with similar power markets should recognize that many energy systems are
evolving towards an electricity market comprised of 10% nonrenewable (see Figure 15b)
and 90% renewable (see Figure 15a) sources.

(a) (b)

Figure 15. Leverage points of all V/P scenarios. The green vertical line represents the Colombian case (70%V, 30%P).
(a) ICv (%) and (b) ICp (%).

6. Conclusions

In this work, renewable capacity scenarios of the Colombian power market were
investigated in order to analyze, determine, and anticipate desirable and undesirable
behaviors. This process was carried out under a hybrid modeling scheme, combining two
methodologies. The proposed model was first derived using SD methodology [27], and
then transformed into a DS model by converting the stock-flow structure into a Simulink
block diagram. As a result, DS tools could easily be implemented to obtain deeper and
more detailed insights and to discover counterintuitive behaviors.

The resulting combined methodology will enable researchers using SD methods to
increase the impact of their results and enrich their analysis, whether using the bifurcation
and control theory tools developed here, or any other number of applicable DS tools. Indeed,
the broader scenarios that can be investigated and the insights that can be obtained (very
detailed and from different perspectives) will be exploited by policymakers to develop a deep
understanding of the electricity markets’ dynamics and to make better decisions. For instance,
now policymakers know how the variability of the renewable generation will affect the
Colombian power market in the short-term and long-term; they know that new and diversified
means need to be installed as soon as possible to avoid electricity blackouts; and they know it
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is inevitable that Colombia and other countries with similar market conditions will achieve
an energy mix of nearly 90% renewable and 10% nonrenewable sources in the long-term, so
they need to find a way to counteract the huge variability associated with this large share of
renewable capacity that will be injected to the electricity system.

The resulting SD/DS study indicated that an installed capacity share of (80%V, 20%P)
will reduce CO2 emissions. However, further modification to the ICv causes a market
response increasing the share of nonrenewable sources: increasing the ICv causes a high
degree of variability, thereby incentivizing the expansion of P generation to guarantee
the supply of electricity, whereas decreasing the ICv causes short-term expansion of P
generation to meet the ed and guarantee the supply.

Once an (80%V, 20%P) scenario is achieved, this market share should be maintained
and only increased by non-conventional generation sources if the goal is to achieve an en-
vironmentally friendly scheme; installing a larger share of variable (renewable) generation
will cause a higher degree of variability in the market, resulting in lower usage of the re-
newable capacity and an increase in the capacity of nonrenewable sources. A greater share
of permanent capacity will lead to less dangerous values (close to zero) of Erm. Basically,
in this scenario (high shares of permanent capacity) the electricity markets get rid of the
variability problem. Overall, the V/P scenario of (62%V, 38%P) appears to be the best case
for reaching the lowest unmeted value.

Electricity markets with V/P scenarios within the range (0%V, 100%P)–(75%V, 25%P),
including the Colombian case, are expected to eliminate or significantly reduce their nonre-
newable components by 2050. However, short-term increases of the variable contribution
beyond 75% will have the opposite effect, causing a market response of an increase in the
thermal plants that continue generating electricity even beyond 2050.

Overall, power markets containing larger shares of variable generation might expect
to have more critical rationing events (i.e., blackouts). Accordingly, it is recommended that
Colombia maintains its current hydropower capacity and diversifies its electricity matrix by
incentivizing non-conventional technologies that were out of the scope of this work, such
as solar or wind power. As is, lower consumer electricity prices are obtained by installing
less variable capacity and more nonrenewable capacity; larger shares of hydroelectricity
may produce higher risks of blackouts, leading to increases in the mp.

This study also revealed that Colombia is under serious risk of short-term electricity
scarcity, and also may required several rationing events during the 33 years we simulated,
especially in 2021/2022, 2048, and 2049. Not only will the delay of Hidroituango stress
the electricity system; the progressive installation of renewables will increase the system’s
variability, and the rapid decommissioning of fossil fuel power plants will reduce the
renewables’ support. To prepare for the short-term future, new capacity must be installed
as soon as possible to diminish the risk of blackouts. This new capacity needs to be
diversified in order reduced the variability associated with the renewable generation. Only
supplying with renewables is not enough profitable to promote the installation of other
generation sources; the government should incentivize this diversification.

Regardless of initial V/P scenario, renewable technologies are expected to comprise
a more dominant share of the markets in the long-term due to environmental concerns,
until an equilibrium point of approximately 90%V and 10%P is reached.

The results here explained are only applicable to the Colombian electricity market and
other foreign power markets that follow its same rules, and supply and demand laws.
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Appendix A

Appendix A.1. Simulink Block Diagrams

Figure A1. Supply side from (P) and (V) generation. Reprinted with the permission of Reference [13].
Copyright 2018 Elsevier.

Figure A2. Demand component. Reprinted with the permission of Reference [13]. Copyright 2018
Elsevier.
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Figure A3. Electricity dispatch. Reprinted with the permission of Reference [13]. Copyright 2018
Elsevier.

Figure A4. Availability factor of the variable generation a fv [14].

Appendix A.2. System Equations

CuCp = CuCp(0) +
t∫

0

(
invp − f pp

)
· dt

ICp = ICp(0) +
t∫

0

(
f pp − ropp − ripp

)
· dt

CuCv = CuCv(0) +
t∫

0
(invv − f pv) · dt

ICv = ICv(0) +
t∫

0
( f pv − ropv − ripv) · dt

PD = PD(0) +
t∫

0
dc · dt

(A1)

invp =


0

PD
PD(0) k1δ(t)

PD
PD(0) k2δ(t)

ROIp ≤ 0
0 < ROIp ≤ 10
ROIp > 10

invv =


0

PD
PD(0) k1δ(t)

PD
PD(0) k2δ(t)

ROIv ≤ 0
0 < ROIv ≤ 10
ROIv > 10

(A2)
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f pp = invp(t− CTp)
f pv = invv(t− CTv)
ropp = f pp(t− LTp)
ropv = f pv(t− LTv)

(A3)

ripp =

{
ICp(0)/LTp;

0
t ≤ 2017 + LTp

other case

ripv =

{
ICv(0)/LTv;

0
t ≤ 2017 + LTv

other case

(A4)

ROIp(t) =
(mp·u fp−VCp−VFCp+Ip)

VFCp+VCp
100%

ROIv(t) =
(mp·u fv−VCv−VFCv+Iv)

VFCv+VCv
100%

(A5)

dc = GRD× epd× PD

epd =

{
1;

(mp/dmp)ε;
dmp = 0

other case
dmp = mp(t− 0.25)

mp =


Pv;
Pp;

RAP;

(genv ≥ ed ∧ rm > 0) ∨ (genv < ed ∧ genp ≤ 0 ∧ rm > 0)
genv < ed ∧ rm > 0 ∧ genp > 0

(genv ≥ ed ∧ rm ≤ 0) ∨ (genv < ed ∧ rm ≤ 0)

(A6)

u fp =

{
0;

dispp/genp;
genp = 0

other case
; u fv =

{
0;

dispv/genv;
genv = 0
other case

(A7)

dispp =


0;

ed− genv;
genp;

genv ≥ ed
genp + genv ≥ ed

other case
; dispv =

{
ed;

genv;
genv ≥ ed
genv < ed

(A8)

Prm =
((
(ICp + ICv)− PD

)
/PD

)
100%; Erm =

((
(genp + genv)− ed

)
/ed
)
100% (A9)

genp = ICp · AFp · 30 · 24; genv = ICv · a fv · 30 · 24; ed = PD · 0.7685 · 30 · 24 (A10)

Appendix A.3. Parameter Values

Table A1. Parameters used in the model based on the Colombian electricity sector [13,14].

Parameter Value

Construction time (CT) 5 yr
Lifetime (LT) 30 yr

Growth rate of demand (GRD) 0.039
Variable cost (VC) 150 COP/kWh

Incentives (I) 0 COP/kWh
Variability fixed cost (VFC) 60 COP/kWh

y(0) 15521 MW
z(0) 9320 MW
x(0) 0 MW

Minimum price (MP) 35 COP/kWh
Maximum increase of price (MIP) 350 COP/kWh

Elasticity of demand (ε) −0.3
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