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Abstract: Battle casualties are the subject of study in military operations research, which applies
mathematical models to quantify the probability of victory vs. loss. In particular, different approaches
have been proposed to model the course of battles. However, none of them provide adequate
decision-making support for high-level command. To overcome this situation, this paper presents
an innovative high-level decision-making model, which uses an adaptive and predictive control
architecture. The paper reports empirical evidence supporting our model by considering one of the
greatest battles of World War II: the Battle of Crete.

Keywords: decision support systems; combat models; system dynamics; battle situation; warfare
information system

1. Introduction

Lanchester’s seminal work [1] on battle dynamics’ modeling has inspired significant
research on the development of combat abstractions to support military decision-making
under uncertainty, pursuing how to achieve superiority in combat. Lanchester’s original
model and its distinct evolving extensions have dominated the dynamic assessment of
conventional land force balance for a long time [2], being used by major organizations
(e.g., the US Army, the Office of the Secretary of Defense, etc.) to assess a wide variety of
issues (e.g., evaluating the balance of operation theater [3,4], guiding decision on weaponry
choices [5], etc.).

Nevertheless, it is worth noting that Lanchesterian models have important limitations,
e.g., they perform an oversimplistic one-side treatment without taking into account the
opponent’s capabilities, and they cannot be used for disaggregated engagements.

Another matter to be taken into account is the abstraction level supported by the
decision-making procedures. Military doctrine usually distinguishes the following three
levels of command:

1. The strategic level studies the conflict from the most abstract perspective, considering
the war final outcomes as a whole. It involves the overall planning, resource distribu-
tion, and organization of the military force. Additionally, it defines and supports the
national policy.

2. War is divided into campaigns, which are organized into operations. The opera-
tional level deals with the design, arrangement, and execution of campaigns and
principal operations.

3. The Tactical level implements the campaign operations on the battlefield.

Interestingly, most decision-making approaches, including the non-Lanchesterian ones,
are focused on the tactical level of command [6,7]. In other words, the operational and
strategic levels of command are insufficiently supported by existing decision-making systems.

This paper proposes an innovative framework that overcomes most limitations of
Lanchesterian models and supports decision-making at the highest command levels: the

Mathematics 2021, 9, 1534. https://doi.org/10.3390/math9131534 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1572-7451
https://orcid.org/0000-0002-7131-0482
https://orcid.org/0000-0002-8591-6581
https://doi.org/10.3390/math9131534
https://doi.org/10.3390/math9131534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9131534
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9131534?type=check_update&version=2


Mathematics 2021, 9, 1534 2 of 15

strategic and the operational ones. Our framework applies adaptive and predictive control
engineering methods to dynamically adjust to changes in the battle, taking into account
the capabilities and maneuvers of the adversary and the effects produced. Addition-
ally, it includes a learning mechanism to improve decisions under conditions with high
uncertainty.

Finally, the paper reports the empirical evaluation of our framework on the Battle
of Crete, an influential World War II battle where paratroopers were used massively for
the first time. This, by itself, constitutes a relevant contribution as most literature on
military decision-making lacks adequate experimental validations. In particular, most
validations follow mathematical procedures that make non-realistic assumptions [8] or rely
on simplistic made-up examples [6,9].

The remainder of this paper is organized as followings. Section 2 escribes our frame-
work and Section 3 reports its empirical validation. Finally, Section 4 provides some
concluding remarks and discusses future challenges.

2. A Framework to Support Battle Operation-Strategic Decision-Making

There are two principal battle analysis mechanisms alternative to classical Lanchester’s
models: (i) stochastic models and (ii) deterministic models, some of them in the Lacheste-
rian tradition [10,11]. Currently, other approaches such as intelligent agents are gaining
substantial momentum [12,13]. These new models aim to extend the capabilities [6,9]
and reduce the shortcomings of previous approaches [14,15]. However, they fail to be an
appropriate benchmark for high-level decision-making.

Our framework overcomes the limitations of Lanchester’s original work, which are
profoundly discussed in [16], by treating the battle as a cause-effect process that evolves
according to the dynamics of the Lanchester’s equations subject to changes and external ac-
tions. To do so, our approach applies the adaptive and predictive control theory introduced
in [17], which incorporates uncertainty modeling techniques. Our approach architecture
comprises a set of blocks that work cooperatively and ensure that decision-making is
carried out coherently, following the military doctrine. In particular, a set of sequential
stages trigger the definition of the applicable strategy, the evaluation and selection of the
different possible COAs, and the adaptation of the model to the evolution of the operation.
Each block represents the mechanics of military thinking, see Figure 1, where x(t) and y(t)
define the number of combatants of the x-force and y-force at each instant, x(t + 1)e and
y(t + 1)e are the estimated the number of combatants for the following instant.

Battle

Adaptive Block

Predictive Block

Expert Block

Scheduler Block

Predicts the battle evolution

Defines the strategyQuantifies 
the decision tree

Logical reasoning

x(t)

y(t)

Selected COA
x(t+1)e
y(t+1)e

Adjusts the values 
that define the battle

Figure 1. Architectural design of our framework. Each block represents the mechanics of military
thinking, thus (i) assessing the events of the battle that will define the strategy to be followed and
selecting the COA to accomplish the mission, (ii) identifying the resources that will be necessary to
carry it out, and finally (iii) adapting to the outcomes.

The implementation requires a logical process capability and should simulate the
decision-making process, from prediction to action. In this context, the new framework is
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formulated and tested (it will be robust if its application on real confrontations meets the
expectations in terms of performance and consistency).

Figure 2 develops the essential elements that trigger the choice of a specific COA. The
predictive block generates the control signal (prediction). The adaptive block adjusts the
parameters of the constituent blocks based on the deviation of the output signal (the actual
situation) from the predicted one. The expert block acts trying to modify the trend defined
by the predictive block through the scheduler block, thus changing the course of actions
following the needs of the battle. It is worth noting that the action development times are
operation times and that the available databases with information on conflicts are usually
represented by time evolutions in days, in the best case.

St St+1Predictive Block Expert Block Trigger Scheduler Block

COAt-1

Trigger

Adaptation of the defender 
advantage factor

Adaptation of the 
prediction model

Adaptive Block

Adaptation of the 
COA utility

Battle evolution prediction

COAt+1

Ongoing 
strategy

Change of 
strategy

Figure 2. Primary elements that trigger the choice of a specific COA in the new framework through a
sequential model.

2.1. Predictive Block

In military doctrine, intelligence is defined as the interpretation and integration
of knowledge about the terrain, meteorology, population, activities, capabilities, and
intentions of a present or potential enemy. The intelligence cycle is composed of the phases
of direction, acquisition, elaboration, and dissemination. The predictive model will recreate
this cycle in the prediction of scenarios necessary to evaluate future decision-making.
Tactics, combat strength, and attrition are identified as the most critical factors for modeling
the dynamic prediction of a future confrontation. The predictive block defines the future
trend of the confrontation at an instant after the current one using the Lanchester equations
and a regression model.

2.1.1. Lanchester Models

Lanchester models are defined as Ordinary Differential Equations (ODEs) that support
the prediction of confrontation results. These equations simplify the battle models, pointing
the importance of troop concentrations up in the final result. They consider two confronted
forces, denoted as x and y. For simplicity, forces are typically modeled as the number of
combatants, i.e., the size of each army. Thus, x(t) and y(t) define the number of combatants
of the x and y forces at instant t. Additionally, Lanchester’s equations usually consider
each force’s lethality, denoted as a and b, whose calculation depends on the fire and combat
typologies.

Table 1 summarizes the most prominent Lanchester equations for combat, assuming
no reinforcements, according to their fire type and the degree command and control
maintained by the command of the situation. The following types of fire are considered:

• Direct (aimed) Fire: Each member of the x-force is within the range of the enemy and,
when the x-force receives casualties, the fire is concentrated on the remaining ones.
See Lanchester [1].

• Fire Concentrated in areas: In the case of forces distributed in areas invisible to the
enemy or using concentrated fires in areas such as artillery, the model of casualties of
the x-force must be proportional to the size of the x-force. See Lanchester [1].
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• Combat Asymmetric: battles between conventional x-force forces against guerrilla
y-forces (invisible to the enemy). See Deitchman [18].

• Unequal sized forces: The difference in size between the contenders is a factor that
conditions the lethality and inefficiencies of scale. Therefore, Helmbold [19] added Ex
and Ey functions that modify force lethality by a x and y ratio.

• Great Battle: A campaign on a big scale, i.e., an aggregation of many smaller battles.
See Fricker [20].

Table 1. Summary of Lanchester equation for combat.

Fire Type

Direct Fire Asymmetric Unequal-Size Great Battles
Fire Concentrated Combat Forces (Logarithmic

(Square Law) in Areas (Linear Law) Law)

Control &
Command

Level

Efficient dx
dt = −ay(t) dx

dt = −ay(t)Ey

(
x
y

)
dy
dt = −bx(t) dy

dt = −bx(t)Ex

(
y
x

)
Not so dx

dt = −ay(t)x(t) dx
dt = −ay(t)

efficient dy
dt = −bx(t)y(t) dy

dt = −bx(t)y(t)

Poor dx
dt = −ax(t)
dy
dt = −by(t)

There is no reason all types of fires should not be used together or developed in
different phases in a battle. Applying the generalized model defined by Bracken [21] into
our approach (Equations (1) and (2)), it is possible to determine the nature of the battle
empirically. We define p as the exponential factor of the attack force and q as the exponential
factor of the defense force. Where f(t) and g(t) are the replacement forces or evacuated
forces according to the sign.

dx
dt

= −ay(t)px(t)q + f (t) (1)

dy
dt

= −bx(t)py(t)q + g(t) (2)

Defining p and q in the interval [0, 1],

• If p and q is (1, 1) defines the linear law.
• If p and q is (1, 0) it defines the quadratic law.
• If p and q is (0, 1) it defines the logarithmic law.

It is work remarking that the tactical parameter d (offensive or defensive strategy) of
Bracken’s model [21] is not taken into account because it does not contribute substantially
to the adjustment of parameters.

2.1.2. Generalized Regression Model

Regression attempts to explain the causality of the effects. The generalized model [21]
generates four variables to be solved. Using (i) the least-squares method as target function
and optimized by the Generalized Reduced Gradient (GRG) algorithm, whose mathe-
matical structure is presented by Abadie [22], from data obtained during the course of
the battle, and (ii) the following metrics that account for the regression model quality:
Sum of Squares Regression (SSR), Sum of Squares Total (SST) and R2, it obtains a feasible
estimation procedure to solve the four unknown variables. Therefore, the GRC algorithm
manages the slope of the target function as the input values change and determines that it
has reached an optimal solution when the partial derivatives are equal to zero. A higher
R2 value indicates a better fit for the mean daily losses (estimated attrition). A perfect fit
would be an R2 of one.
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2.2. Expert Block

The development of decision-making is characterized using intelligence resources
through the predictive block and its interpretation, leading to the strategy definition. Once
the global situation informed by the predictive block has been evaluated, it is necessary to
redefine the strategy when there is a change of trend or when such trend change is sought
by modifying the strategy (Defensive, Offensive, Stability, etc.).

The large units, in their advanced movement, make contact progressively. The aware-
ness of the adversary’s intentions, in specific areas, allows the selection of an adequate
strategy, given the general attitude of the adversary:

• A Defensive Battle means a high risk of being attacked and inferiority of resources.
• An Offensive Battle means a low probability of being rejected and superiority of resources.

If the previous operational decisions are within the acceptable limits of attrition, the
re-evaluation will not make sense in the first approximation.

Intention Model

The assessment of the adversary’s intentions will be based on the actual ability to reject
a possible attack in a hostile scenario and the awareness of the enemy’s intentions. The
contenders will consider a stable state situation if the probability of a failed attack exceeds
the security level. Figure 3 depicts a decision tree for evaluating the adversary’s intentions.

No 
intention

Risk
too high

Repelled
attack Successful

attack

Will the attack 
be successful?

Does the adversary 
intend to attack?

Will the adversary 
assume the risk to attack?

Stable defensive 
situations

Unstable defensive 
situation

yes

yes

yes

no

no

no

Figure 3. Decision tree on adversary intentions in a bipolar situation for assessment, shown in
Christensen’s report [23]. If the relationship between one’s own forces and the adversary is friendly,
the adversary will not consider military aggression. On the other hand, if the relationship is hos-
tile, the adversary may wish to attack, and one’s own forces may need a military defense against
the adversary.

The intention of an opponent to attack will be given by the minimum probability
of success that the opponent needs to launch an attack P (this figure depends on the
doctrine of the contender) and by the probability of being rejected by the defender WinsDef,
conditions (3) and (4). Probabilities are defined unilaterally through the opponent’s vision,
so if the adversary requires a high chance of success of the attack before launching it, the
WinsDef should be low.

• Equation (3) identifies a high risk of being attacked:

P < (1−WinsDef) (3)

• Equation (4) identifies a high risk of being rejected:

P > (1−WinsDef) (4)
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The WinsDef curve represents the probability of being rejected by the defender
(Equations (5)–(8)), and it is obtained using logistic regression. This allows estimating
the probability of success or failure as a function of the defender’s Advantage Factor v as
defined in Helmbold’s work [24], from a subset of data obtained from the CDB90 data set
of individual battles, from 1600-1979 (https://github.com/jrnold/CDB90, last visited 26
June 2021). See Figure 4.

Lanchester’s Square Law defines the Factor v, where x(0) and y(0) are the number
of combatants of the x-force attacker and y-force defender at the initial instant, a is the
lethality of the defender force, and equivalently b of the attacker. Accordingly,

WinsDef =
1

1 + e0.12−3.38v (5)

v = ln

√
δ

α
(6)

α = b
( x0

y0

)
(7)

δ = a
( y0

x0

)
(8)

0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

W
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sD
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Figure 4. Relationship between v and the probability of being rejected by the defender. Empirical
evidence shows that the advantage factor favoring the defender has an important influence in
determining which side wins, according to Helmbold’s work [25].

2.3. Scheduler Block

The COA planning is determined by military doctrine and the different factors of
the operational environment, such as, for example, the enemy centers of gravity (COGs).
Within the military decision-making process, the planning phase involves COA analysis,
comparison, and evaluation, as well as the development of the matrix plan that provides
the resources and conditions to optimize and maximize the results.

Action planning is inferred through decision trees, which process the doctrinal knowl-
edge (friend and enemy), the strategy defined from the expert block, and evaluate possible
outcomes in the context of probable enemy actions obtained through the predictive block.

2.3.1. Alternative Assessment

The assessment of the alternatives is based on the concept of expected value E(x),
applicable to random variables that take numerical values and the utility of the COA. The
final objective of the selected COA will be the fulfillment of the mission. In the current
battle decisions, the own casualties x in combat is the main conditioning factor, so the
Wald or pessimistic criterion is taken: it is a question of assuring conservative casualties
(MAX MIN), Equation (9). This criterion involves selecting an alternative whose expected
or average attrition is lower.

COAi = min(E(x)) (9)

https://github.com/jrnold/CDB90
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2.3.2. Centers of Gravity

All aspects of planning depend on the determination of well-defined, achievable, and
measurable objectives. The process of identifying and defining objectives involves knowing
the enemy, geography, and climate of the area of responsibility.

The objective acquisition model will be simplified using the K-Means clustering
method (by the tactical disposition of the units in the terrain, using the Euclidean distance
as a quantitative variable), obtaining the centers of concentration of the deployed units.

K-Means works by finding clusters with a spherical or convex shape, and needs
as input data the number of groups in which we are going to segment the population
into k cluster, Elbow method, algorithm according to Bholowalia et al. [26], iterates with
different values from 1 to n in the sense of reduction of the total sum of intracluster
variance. Therefore, for each iteration, it takes the Euclidean distance between each unit
with its center and adds up all the squares of the differences calculated (SSE), up to find
the elbow point, where the SSE vs. cluster curve rate of decline is sharpened. Figure 5
shows a practical example of the application of the K-Means plus elbow method algorithm
for the determination of Japan Centers of Gravity (COGs) in the battle of Manchuria on
8 August 1945.

Figure 5. The figure on the left depicts the situation described in the biography of the battle of
Glantz [27] between Japanese (red) and Russian (yellow) forces. The right-hand figure shows the
COGs obtained by applying K-Means plus Elbow method.

2.4. Adaptive Block

Even if a good battle model is available, changes in combat dynamics will lead to
the deterioration of the model’s fit (prediction and driving). Our framework adapts to
varying circumstances in the theater of operations and generates changes in the parameters
that reflect the decisions’ prediction and conditioning. Thus, adaptive control provides a
solution theoretically capable of approximating the dynamics of the battle.

The adapting mechanism involves the following tasks:

• Adapting the prediction and factors that determine the strategy to the current bat-
tle situation.

• Setting the parameters of the COA usefulness.

This adapting mechanism is a learning process and will provide information for
improving the model fit.
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Adapting Mechanism

The design of the adapting mechanism has focused on optimizing model prospect
(i.e., on error minimization) and improving computational performance.

As Figure 6 shows, an autotune control is used for the predictive block, whose time
window is updated step by step with the latest samples. This makes it possible to adapt
the values that define the battle to the different phases of the battle, eliminating the jumps
produced by random errors or outliers, and the poor information for parameter adjustment
in the measurements around an initial operating point.

Predictive Block

Updated parameters

Parameter estimation 
through regression

Buffer data
(time window)

Process+ -

Figure 6. The adaptive autotune control recursively estimates the parameter values of the predictive
model. The most important aspect of this type of control is having a sufficiently robust parameter
estimation technique.

A supervised learning mechanism is used for the expert block adaptation, which
extends the binary values (final result) of previous battles and calculates the logistic
regression base of the intention model according to the advantage factor. Adaptation is
carried out after the final outcome.

Finally, as Figure 7 shows, in the case of the scheduler block, a utility function is used
as an adaptation measure to represent the effectiveness in taking planned actions (Friendly
Options) by casualty ratio. Feeding the effectiveness of the previously selected COAs
concerning the opponent’s actions, it will provide the new framework approach with a dis-
carding capability for future tree constructions, avoiding the selection of inefficient COAs.

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 ... ∞
ΔX/ΔY

f(Δ
X/
ΔY

)

Figure 7. Utility is a function that relates casualties among opponents Ui = f (4x/4 y), where4x
stands for own casualties, and4y for enemy casualties. It is worth noting that the utility function is
close to 1 for COAs that maximize enemy casualties and minimize their own.

3. Empirical Validation

This section reports the empirical validation of our framework on the Battle of Crete,
which is one of the greatest battles of the Second World War, where the type of combat was
mainly land-based. This mode of combat has not essentially changed since then. Therefore,
our experimental results should extrapolate adequately to present-day combat.

In particular, our validation goal is to identify the best possible courses of action and
determine the effects they produce on the adversary in comparison with the actual battle
on 27 April 1941.

3.1. Historical Overview

On 27 April 1941, A. Hitler ordered to invade the island of Crete. Airborne troops car-
ried out the operation under the command of General K. Student, involving 700 transport
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planes and 750 gliders supported by the Luftwaffe. The island’s invasion was undertaken
by 22,000 German paratroopers and mountain troops, and 2700 Italian troops, who took
less than two weeks to occupy it. The Allies had 42,547 men of different nationalities.
The British evacuated their positions protected by the Royal Navy, which suffered heavy
losses. Crete remained in German hands until its garrison capitulated in May 1945. Crete
remained in German hands until its garrison capitulated in May 1945. According to the
historical data:

• 8100 German paratroopers landed on the first day, 7400 on the second day, and 9500
more evenly over the following days.

• In the different areas of Crete there were deployed: 27,550 British Empire soldiers,
13,000 Greek soldiers, as well as unarmed 4000 to 5000 Cypriots and Palestinians.

• A total of 950 British soldiers landed on the eighth day of the battle.
• Two Greek battalions left the battle when their armament and ammunition ran out,

evenly from the third day of the fight. Another 2800 Greek soldiers were captured
or killed.

• Approximately 4000 British troops were evacuated on the tenth day of the fighting,
and another 11,000 evenly through the thirteenth day of the battle, and 1000 more on
the thirteenth day.

• Germans estimated their casualties at 6000, while the British estimated 9000 Germans
wounded and 6000 killed.

• There were 2600 British and 2600 Greek soldiers dead. Additionally, 10,500 British
and 5600 Greek soldiers were captured.

3.2. Battle Analysis

This section describes the dataset, and then summarizes the analysis our framework
provides.

3.2.1. Dataset

Table 2 and Figure 8 describe the dataset regarding the landing of German troops and
the landing or withdrawal of Allied troops during the invasion of Crete. This dataset was
obtained from the combined study of the following literature sources: Engel [28], Biank [29],
Cox [30] and Miller [31]. Additionally, it is assumed that Lanchester’s Square Law is
fulfilled for the acquisition of intermediate casualty data not available in the literature.
Please note that numbers are divided by 1000. For example, the first row in Table 2
shows that at the beginning of the first day, 40,550 Allied troop soldiers and 8100 German
paratroopers landed at Crete in a naval manner. A negative value in the departure column
means that new troops landed, e.g., at the beginning of the 7th day, there were a total of
18,187 German and 28,431 Allied soldiers on the island, and 1357 additional paratroopers
and 600 new Allied soldiers landed.
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Figure 8. German and Allied troops evolution. As the German troops managed to transport enough
units to defeat the garrison, Allied troops progressively lost the battle. Although the invasion was
successful, there were heavy casualties among the German troops.
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Table 2. Crete Battle dataset gathered from [28–31]. Data imputation was performed assuming
Lanchester’s Square Law. Decimal notation is used dividing actual numbers by 1000. G and A stand
for German and Allied.

Total Number Instant Change
Days G. Troops A. Troops G. Paratroopers A. Toops Departure

0 0 40.55 8.1 0

0.5 3.721545 40.55 0 0

1 7.44309 40.35647966 7.4 0

1.5 10.81620251 39.96943898 0 0

2 14.19245006 39.40699645 1.357 0.667

2.5 14.55175339 38.33548905 0 0

3 14.91973593 37.24529787 1.357 0.666

3.5 15.29654901 36.1364716 0 0

4 15.68234359 35.00805105 1.357 0.667

4.5 16.07727838 33.85906919 0 0

5 16.48151992 32.68955071 1.357 0.35

5.5 16.89523456 31.65751167 0 0

6 17.31730871 30.60395948 1.357 0.35

6.5 17.74791664 29.52845942 0 0

7 18.18723612 28.43056776 1.357 −0.6

7.5 18.63544852 27.78483148 0 0

8 19.08889139 27.11578816 1.357 0.35

8.5 19.5477535 25.94816581 0 0

9 19.33757336 24.75668262 0 6.95

9.5 19.13704423 20.27612881 0 0

10 18.97280759 15.80600251 0 2.95

10.5 18.84477897 13.34441651 0 0

11 18.73668919 10.88948801 0 2.95

11.5 18.64848434 8.440180169 0 0

12 18.58011888 5.995458984 0 3.95

12.5 18.53155566 3.054292802 0 0

13 18.50681589 0.115651907 0 0

13.5 18.50587911 0 0 0

14 18.50587911 0 0 0

3.2.2. Predictive Block

Given the aggregated values in Table 2, the predictive block defines which parameter
values (p, q, a, and b) fit best the data, using a generalized version of the Lanchester
Equations (1) and (2) provided by [21].

In this dynamic process, parameter values are adjusted by the adaptive block, step
by step through the battle’s evolution, according to the time window selected (7 sample-
equivalent to 3 battle days). The procedure used determines the parameter values, applying
the generalized regression model depicted in Section 2.1.2.

Figure 9 shows how the values fit around the target values that define the entire battle
shown in Table 3 at each iteration, obtaining values of R2 close to 1. This demonstrates
that the treatment of major battles must be done in phases due to changes in the troop
lethality, as well as the variation in the typology of the confrontations and armaments used,
agreeing with other authors as Lucas et al. [32], Rubio-Campillo [33] and Chen [8].
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Figure 9. Parameter values evolution by adaptive block. Fitted values roughly coincide with the
actual ones in the dataset.

Table 3. Target parameter values obtained from Engel [28] (Data source: https://apps.dtic.mil/sti/
citations/AD0298786, last visited 26 June 2021).

Parameter Calculated Values
p 1

q 0

a 0.0162

b 0.104

3.2.3. Expert Block

The assessment of German Troop intentions, following the procedure depicted in
Section 2.2, identifies a high risk of attack on Allied troops, the probability of success P that
German troops need to launch an attack is much lower than that obtained in the assessment.
See Figure 10.

PGermantroops < (1−WinsDe f ) (10)

The German Troop intentions allow the selection of an adequate strategy for the Allied
troops. In this case, a Defensive strategy is chosen due to the following principles:

• Principle of concentration. The side of the opponent with the greater strength, all
other factors being equal, will inflict the greater damage.

• Law of the casualty distribution. The opponent with greater strength will be the one
that receives fewer casualties.

https://apps.dtic.mil/sti/citations/AD0298786
https://apps.dtic.mil/sti/citations/AD0298786
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Figure 10. Assessment of the adversary’s intentions. The plot shows the Allied troops’ deficient
capability to reject attack (20%), with a defender’s Advantage Factor v = −0.446. Therefore,
PGermantroops < 80%, matching with the real intention of the German Strategy on 27 April 1941.

This assessment has taken into account the following points:

• If the adversary needs a high probability of success to launch the attack, the adversary
has a high risk of aversion (otherwise, a low risk of aversion). Since opponents are
unaware of their enemy’s aversion risk, this parameter is estimated.

• The risk of aversion is conditioned by the sizes of the armies and the uncertainty of
the available information. In our case, the risk of aversion of German troops is low.

3.2.4. Scheduler Block

The evaluation of the alternative COA that could have been carried out to prevent
the defeat of the Allies will be performed using decision trees, following the procedure
depicted in Section 2.3.1, which considers the possible battle outcomes obtained from the
predictive block.

Before the evaluation, the following should be taken into account: German troops
occupied Crete island without numerical superiority, the effectiveness factor of the German
troops was the cause for the Allied defeat as German paratroopers and mountain troops
were better trained, motivated, and organized, as opposed to Allied troops, which were
poorly equipped, worn out, poorly trained and organized by nationalities. From the above
conclusions and taking into account the strategy defined in the previous Section 3.2.3, we
will define a series of operational options that would avoid the defeat.

• Increasing lethality: Greek troops were poorly armed. This course is selected to
increase the factor of lethality by supplying armaments.

• Defensive position, fortified terrain: The Allies were not prepared for the defense of
the island, the maneuver of work, and the creation of fortified zones that would have
prevented the island invasion.

This evaluation has taken into account the following points:

• In the case of a frontal attack, the ability to reject it is conditioned by the law 3:1 of
terrestrial combat, i.e., the defender has an advantage factor of 3 to 1 whenever it
is deployed on favorable terrain and with a defensive position. In other situations,
the most appropriate ratio is 1.5:1, according to the research conducted by Davis [34].
Thus, applied to the evaluation, it means the increase of the allied force by a factor
of 1.5.

• According to Strickland’ [35], in most historical combats, the relations between initial
and final concentrations of forces are relatively high, considering that the breakpoint
of the battle (the end) takes place with attrition of forces >30% to a contender.

After the assessment, see Figure 11 where the different COAs are developed, Figure 12
where the scatter plot for the winning option is depicted, and Figure 13 where the scatter
plot for the defeated option is depicted, the chosen COA is defensive position, fortified
terrain concerning assuring conservative casualties and avoiding the occupation of Crete.
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Figure 11. Development of the various courses of action, each Allie COA creates likely reaction
alternatives for the German strategy quantified through its doctrine. The final expected value for
each COA defines the best choice.

After this proof of concept, it was possible to experimentally test the evolution of
events if other decisions had been made in the theater of operations, based on the ability to
anticipate as an application in the automation of decisions high-level resolution.

35

40

45

50

55

60

65

0.0 2.5 5.0 7.5 10.0 12.5 15.0
#German soldiers (divided by 1,000)

#A
lli

ed
 s

ol
di

er
s

(d
iv

id
ed

 b
y 

1,
00

0)

German 
breakpoint 

(losses>30%)

Figure 12. Scatter plot obtained from the predictive block for defensive position and fortified terrain
as an alternative course by applying a 1.5:1 ratio for Allied troops. The selected COA prevents the
invasion of the island (the German breakpoint on the 8th day defines the Allied victory).
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Figure 13. Scatter plot obtained from the predictive block for increasing effectiveness as an alternative
COA, applying an increased effectiveness of 25%. This shows how the other COA does not prevent
the invasion of the island (the Allied breakpoint on the 8th day defines the Allied defeat).
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4. Conclusions and Future Work

Lanchester’s classic work on battle dynamics modeling has inspired important re-
search on the development of combat abstractions to support military decision-making
under conditions of uncertainty, pursuing ways to achieve combat superiority. Neverthe-
less, it has been subject to the following criticisms: (a) it does not provide a fitting good
enough for historical battle data, (b) it uses a constant lethality factor, (c) it deals with
large battles with multiple types and phases as a whole, (d) it performs an oversimplistic
one-sided treatment without taking into account opponent’s capabilities, and (e) it cannot
be used for disaggregated engagements.

To face those criticisms, this paper proposes a model focused on the types of deci-
sions supported, how these types of decisions are made, and understanding the battle
as a cause-effect process that evolves subject to changes and external actions. Thus, our
framework removes the limitations of Lanchester’s classic work by dynamically adjusting
the factors that define the evolution of the battlefield, including learning mechanisms that
optimize the capabilities of the architecture and, in short, the ability to improve decisions
under uncertainty.

In the paper, we have provided empirical evidence showing that our framework fits
battle trends adequately and can select the most appropriate COA. As a result, our approach
contributes to existing research by supporting decision-making at a high command level.

Currently, our framework assumes that the cause-effect relationship of the battle is
modeled. However, there may be a chaotic behavior in the final phases that makes such
modeling difficult in some battles. We plan as future work to apply artificial intelligence
techniques to overcome this problem. Additionally, we will consider incorporating into
our model additional factors that may or not depend on the size of the forces. These
factors could vary around fixed values as a function of the noise presented by confusion,
momentum, and combat stress. Moreover, we will continue expanding the capabilities of
some of the constituent blocks in the architecture. For example, in the case of the scheduler
block, we are working on determining enemy disposition patterns that allow us to estimate
detailed tactical intentions.
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