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Abstract: This paper addresses the problem of predicting time series data using the autoregressive
integrated moving average (ARIMA) model in an online manner. Existing algorithms require
model selection, which is time consuming and unsuitable for the setting of online learning. Using
adaptive online learning techniques, we develop algorithms for fitting ARIMA models without
hyperparameters. The regret analysis and experiments on both synthetic and real-world datasets
show that the performance of the proposed algorithms can be guaranteed in both theory and practice.

Keywords: ARIMA model; time series analysis; online optimization; online model selection

1. Introduction

The autoregressive integrated moving average (ARIMA) model is an important tool
for time series analysis [1], and has been successfully applied to a wide range of domains in-
cluding the forecasting of household electric consumption [2], scheduling in smart grids [3],
finance [4], and environment protection [5]. It specifies that the values of a time series
depend linearly on their previous values and error terms. In recent years, online learning
(OL) methods have been applied to estimate the univariate [6,7] and multivariate [8,9]
ARIMA models for their efficiency and scalability. These methods are based on the fact
that any ARIMA model can be approximated by a finite dimensional autoregressive (AR)
model, which can be fitted incrementally using online convex optimization algorithms.
However, to guarantee accurate predictions, these methods require a proper configuration
of hyperparameters, such as the diameter of the decision set, the learning rate, the order of
differencing, and the lag of the AR model. Theoretically, these hyperparameters need to be
set according to prior knowledge about the data generation, which is impossible to obtain.
In practice, the hyperparameters are usually tuned to optimize the goodness of fit on the
unseen data, which requires numerical simulation (e.g., cross-validation) on a previously
collected dataset. The numerical simulation is notoriously expensive, since it requires
multiple training runs for each candidate hyperparameter configuration. Furthermore,
a previously collected dataset containing ground truth is needed for validation of the
fitted model, which is unsuited for the online setting. Unfortunately, the expensive tuning
process needs to be regularly repeated if the statistical properties of the time series change
over time in an unforeseen way.

Given a new problem of predicting time series values, it appears that tuning the
hyperparameters of the online algorithms can negate the benefits of the online setting.
This paper addresses this problem in the online learning framework by proposing new
parameter-free algorithms for learning ARIMA models, while their performance can still be
guaranteed in both theory and practice. A naive attempt for this would be to directly apply
parameter-free online convex optimization (PF-OCO) algorithms to the AR approximation.
However, the theoretical performance of the AR approximation and the parameter-free
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algorithms rely on the bounded gradient vectors of the loss function, which is unreasonable
for the widely used squared error with an unbounded domain.

The key contribution of this paper is the design of online learning algorithms for
ARIMA models, avoiding regular and expensive hyperparameter tuning without dam-
aging the power of the models. Our algorithms update the model incrementally with a
computational complexity that is linearly related to the size of the model parameters and
the number of candidate models in each iteration. To obtain a solid theoretical foundation,
we first show that, for any locally Lipschitz-continuous function, ARIMA models with
fixed order of differencing can be approximated using an AR model of the same order
for a large enough lag. Based on this, new algorithms are proposed for learning the AR
model adaptively without requiring any prior knowledge about the model parameters.
For Lipschitz-continuous loss functions, we apply a new algorithm based on the adaptive
follow the regularized leader (FTRL) framework [10] and show that our algorithm achieves
a sublinear regret bound depending on the data sequence and the Lipschitz constant. A spe-
cial treatment on the commonly used squared error is required due to its non-Lipschitz
continuity. To obtain a data-dependent regret bound, we combine a polynomial regular-
izer [11] with the adaptive FTRL framework. Finally, to find the proper order and lag of
the AR model in an online manner, multiple AR models are simultaneously maintained,
and an adaptive hedge algorithm is applied to aggregate their predictions. In the previous
attempts [12,13] to solve this online model selection (OMS) problem, the exponentiated
gradient (EG) algorithm has been directly applied to aggregate the predictions, which
not only requires tuning the learning rate, but also yields a regret bound depending on
the loss incurred by the worst model. Our adaptive hedge algorithm is parameter-free
and guarantees a regret bound depending on the time series sequence. Table 1 provides
a comparison of the online learning algorithms applied to the learning of the ARIMA
models. In addition to the theoretical analysis, we also demonstrate the performance of the
proposed algorithm using both synthetic and real-world datasets.

Table 1. Algorithms for online learning of ARIMA.

Problem Algorithm Reference Tuning-Free Loss Function Regret Dependence

OL for ARIMA OGD [6–9] 7 any largest gradient norm
OL for ARIMA ONS [6–9] 7 exp-concave largest gradient norm
PF-OCO Coin Betting [14,15] 4 normalized gradient gradient vectors
PF-OCO FreeRex [16] 4 any largest gradient norm
PF-OCO SF-MD [17] 7 any gradient vectors
PF-OCO SOLO-FTRL [17] 4 any largest gradient norm
OL for ARIMA Algorithm 1 This Paper 4 Lipschitz data sequence
OL for ARIMA Algorithm 2 This Paper 4 squared error data sequence
OMS for ARIMA EG [12,13] 7 bounded loss of the worst model
OMS for ARIMA Algorithm 3 This Paper 4 local Lipschitz data sequence

For non-Lipschitz-continuous loss functions, the gradient norm can be unbounded. These algorithms with performance depending on the
gradient norm can fail without making further assumptions on the data generation. For OGD, the learning rate and the diameter of the
decision set need to be tuned in practice. ONS has an additional hyperparameter controlling the numerical stability. Applying SF-MD to
ARIMA, the diameter of the model parameter has to be tuned. To obtain optimal performance, the learning rate of EG has to be tuned.

The rest of the paper is organized as follows. Section 2 reviews the existing work
on the subject. The notation, learning model, and formal description of the problem are
introduced in Section 3. Next, we present and analyze our algorithms in Section 4. Section 5
demonstrates the empirical performance of the proposed methods. Finally, we conclude
our work with some future research directions in Section 6.
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Algorithm 1 ARIMA-AdaFTRL.

Input: L1 > 0
Initialize θ1,i arbitrarily, η1,i = 0, Gi,0 = 0 for i = 1, . . . , m
for t = 1 to T do

for i = 1 to m do
Gi,t = max{Gi,t−1, ‖OdXt−i‖2}
ηi,t = ‖θi,1‖F +

√
∑t−1

s=1‖gi,s‖2
F + (LtGi,t)2

if ηi,t 6= 0 then
γi,t =

θi,t
ηi,t

else
γi,t = 0

end if
end for
Play X̃t(γt)
Observe Xt and ht ∈ ∂lt(X̃t(γt))
Lt+1 = max{Lt, ‖gt‖2}
for i = 1 to m do

gi,t = gtOdX>t−i
θi,t+1 = θi,t − gi,t

end for
end for

Algorithm 2 ARIMA-AdaFTRL-Poly.

Input: G0 > 0
Initialize θ1 arbitrarily, G1 = max{G0, ‖OdX0‖2, . . . , ‖OdX−m+1‖2}
for t = 1 to T do

ηt = ‖θ1‖F +
√

∑t−1
s=1‖OdXsx>s ‖2

F + (Gt‖xt‖2)2

λt =
√

∑t
s=1‖xs‖4

2
if ‖θt‖F 6= 0 then

Select c ≥ 0 satisfying λtc3 + ηtc = ‖θt‖F
γt =

cθt
‖θt‖F

else
γt = 0

end if
Play X̃t(γt)
Observe Xt and gt = γtxt −OdXt
Gt+1 = max{Gt, ‖OdXt‖2}
θt+1 = θt − gtx>t

end for
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Algorithm 3 ARIMA-AO-Hedge.

Input: predictor A1, . . . ,AK, d
Initialize θk,1 = 0, η1 = 0 for i = 1, . . . , K
for t = 1 to T do

Get prediction X̃i
t from Ak for i = 1, . . . , K

Set Yt = ∑d−1
i=0 OiXt−1

Set hi,t = l(Yt, X̃i
t) for i = 1, . . . , K

if η1 = 0 then
Set wi,t = 1 for some i ∈ arg maxj∈{1,...,K} hj,t

else
Set wi,t =

exp(η−1
t (θi,t−hi,t))

∑K
i=1 exp(η−1

t (θi,t−hi,t))
for i = 1, . . . , K

end if
Predict X̃t = ∑K

i=1 wi,tX̃i
t

Observe Xt, update Ai, and set zi,t = l(Xt, X̃i
t) for i = 1, . . . , K

θt+1 = θt − zt

ηt+1 =
√

1
2 log K ∑t

s=1‖ht − zt‖2
∞

end for

2. Related Work

An ARIMA model can be fitted using statistical methods such as recursive least square
and maximum likelihood estimation, which are not only based on strong assumptions
such as the Gaussian distributed noise terms [18], linear dependencies [19], and data gen-
erated by a stationary process [20], but also require solution of non-convex optimization
problems [21]. Although these assumptions can be relaxed by considering non-Gaussian
noise [22,23], non-stationary processes [24], or a convex relaxation [21], the pre-trained
models still cannot deal with concept drift [7]. Moreover, retraining is time consuming and
memory intensive, especially for large-scale datasets. The idea of applying regret minimiza-
tion techniques to autoregressive moving average (ARMA) prediction was first introduced
in [6]. The authors propose online algorithms incrementally producing predictions close to
the values generated by the best ARMA model. This idea was extended to ARIMA(p, q, d)
models in [7] by learning the AR(m) model of the higher-order differencing of the time
series. Further extensions to multiple time series can be found in [8,9], while the problem
of predicting time series with missing data was addressed in [25].

In order to obtain accurate predictions, the lag of the AR model and the order of
differencing have to be tuned, which has been well studied in the offline setting. In some
textbooks [20,26,27], Akaike’s Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) are recommended for this task. Both require prior knowledge and strong
assumptions about the variance of the noise [20], and are time and space consuming as
they require numerical simulation such as cross-validation on previously collected datasets.
Nevertheless, given a properly selected lag m and order d, online convex optimization
techniques such as online Newton step (ONS) or online gradient descent (OGD) can
be applied to fitting the model in the regret minimization framework [6–9]. However,
both algorithms introduce additional hyperparameters to control the learning rate and
numerical stability.

The idea of selecting hyperparameters for online time series prediction was proposed
in [12,13]. Regarding the online AR predictor with different lags as experts, the authors
aggregate over predictors by applying a multiplicative weights algorithm for prediction
with expert advice. The proposed algorithm is not optimal for time series prediction,
since the regret bound of the chosen algorithm depends on the largest loss incurred by the
experts [28]. Furthermore, each individual expert still requires that the parameters are taken
from a compact decision set, the diameter of which needs to be tuned in practice. A series
of recent works on parameter-free online learning have provided possibilities of achieving
sublinear regret without prior information on the decision set. In [14], the unconstrained
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online learning problem is modeled as a betting game, based on which a parameter-
free algorithm is developed. The algorithm was further extended in [15], so a better
regret bound can be achieved for strongly convex loss functions. However, the coin
betting algorithm requires that the gradient vectors are normalized, which is unrealistic
for unbounded time series and the squared error loss. In [16,17], the authors introduced
parameter-free algorithms without requiring normalized gradient vectors. Unfortunately,
the regret upper bounds of the proposed algorithms depend on the norm of the gradient
vectors, which could be extremely large in our setting.

The main idea of the current work is based on the combination of the adaptive FTRL
framework [10] and the idea of handling relative Lipschitz continuous functions [11], which
makes it possible to devise an online algorithm with a data-dependent regret upper bound.
To aggregate the results, an adaptive optimistic algorithm is proposed, such that the overall
regret depends on the data sequence instead of the worst-case loss.

3. Preliminary and Learning Model

Let Xt denote the value observed at time t of a time series. We assume that Xt is taken
from a finite dimensional real vector space X with norm ‖·‖. We denote by L(X,X) the
vector space of bounded linear operators from X to X and ‖α‖op = supx∈X,x 6=0

‖αx‖
‖x‖ the

corresponding operator norm. An AR(p) model is given by

Xt =
p

∑
i=1

αiXt−i + εt,

where αi ∈ L(X,X) is a linear operator and εt ∈ X is an error term. The ARMA(p, q)
model extends the AR(p) model by adding a moving average (MA) component as follows:

Xt =
p

∑
i=1

αiXt−i +
q

∑
i=1

βiεt−i + εt,

where εt ∈ X is the error term and βi ∈ L(X,X). We define the d-th order differencing of the
time series as OdXt = Od−1Xt −Od−1Xt−1 for d ≥ 1 and O0Xt = Xt. The ARIMA(p, q, d)
model assumes that the d-th order differencing of the time series follows an ARMA(p, q)
model. In this section, this general setting suffices for introducing the learning model. In the
following sections, we fix the basis of X to obtain implementable algorithms, for which
different kinds of norms and inner products for vectors and matrices are needed. We
provide a table of required notation in Appendix C.

In this paper, we consider the setting of online learning, which can be described
as an iterative game between a player and an adversary. In each round t of the game,
the player makes a prediction X̃t. Next, the adversary chooses some Xt and reveals it to
the player, who then suffers the loss l(Xt, X̃t) for some convex loss function l : X×X→ R.
The ultimate goal is to design a strategy for the player to minimize the cumulative loss
∑T

t=1 l(Xt, X̃t) of T rounds. For simplicity, we define

lt : X→ R, X 7→ l(Xt, X).

In classical textbooks about time series analysis, the signal is assumed to be generated by a
model, based on which the predictions are made. In this paper, we make no assumptions
on the data generation. Therefore, minimizing the cumulative loss is generally impossible.
An achievable objective is to keep a possibly small regret of not having chosen some
ARIMA(p, q, d) model to generate the prediction X̃t. Formally, we denote by X̃t(α, β) the
prediction using the ARIMA(p, q, d) model parameterized by α and β, given by (in this
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paper, we do not directly address the problem of the cointegration, where the third term
should be applied to a low-rank linear operator):

X̃t(α, β) =
p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βiεt−i +
d−1

∑
i=0

OiXt−1. (1)

The cumulative regret of T rounds is then given by

RT(α, β) =
T

∑
t=1

lt(X̃t)−
T

∑
t=1

lt(X̃t(α, β)).

The goal of this paper is to design a strategy for the player such that the cumulative
regret grows sublinearly in T. In the ideal case, in which the data are actually generated by
an ARIMA process, the prediction generated by the player yields a small loss. Otherwise,
the predictions are always close to those produced by the best ARIMA model, independent
of the data generation. Following the adversarial setting in [6], we allow the sequences
{Xt}, {εt} and the parameters α, β to be selected by the adversary. Without any restrictions
on the model, this is no different than the impossible task of minimizing the cumulative
loss, since εt−1 can always be selected such that Xt = X̃t(α, β) holds for all t. Therefore, we
make the following assumptions throughout this paper:

Assumption 1. Xt = εt + X̃t(α, β), and there is some R > 0 such that ‖εt‖ ≤ R for all
t = 1, . . . T.

Assumption 2. The coefficients βi satisfy ∑
q
i=1‖βi‖op ≤ 1− ε for some ε > 0.

Since we are interested in competing against predictions generated by ARIMA models,
we assume that εt is selected as if Xt is generated by the ARIMA process. Furthermore, we
assume the norm ‖εt‖ is upper bounded within T iterations. Assumption 2 is a sufficient
condition for the MA component to be invertible, which prevents it from going to infinity
as t→ ∞ [27].

Our work is based on the fact that we can compete against an ARIMA(p, q, d) model
by taking predictions from an AR(m) model of the d-th order differencing for large enough
m, which is shown in the following lemma, the proof of which can be found in Appendix A.

Lemma 1. Let {Xt}, {εt}, α, and β be as assumed in Assumptions 1 and 2. Then there is some
γ ∈ L(X,X)m with m ≥ q log T

log 1
1−ε

+ p such that

‖OdX̃t(γ)−OdX̃t(α, β)‖ ≤ (1− ε)
t
q R +

2R
T

holds for all t = 1 . . . T, where we define OdX̃t(γ) = ∑m
i=1 γiOdXt−i.

As can be seen from the lemma, a prediction X̃t(γ) generated by the process

X̃t(γ) =
m

∑
i=1

γiO
dXt−i +

d−1

∑
i=0

OiXt−1

is close to the prediction X̃t(α, β) generated by the ARIMA process. In the previous
works [6,7], the loss function lt is assumed to be Lipschitz continuous to control the
difference of loss incurred by the approximation. In general, this does not hold for squared
error. However, from Assumption 1 and Lemma 1, it follows that both X̃t(α, β) and X̃t(γ)
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lie in a compact set around Xt with a bounded diameter. Given the convexity of l, which is
local Lipschitz continuous in the compact convex domain, we obtain a similar property:

l(Xt, X̃t(γ))− l(Xt, X̃t(α, β)) ≤ L(Xt)‖OdX̃t(γ)−OdX̃t(α, β)‖,

where L(Xt) is some constant depending on Xt. For squared error, it is easy to verify that
the Lipschitz constant depends on ‖OdXt‖, the boundedness of which can be reasonably
assumed. To avoid extraneous details, we simply add the third assumption:

Assumption 3. Define set Xt = {X ∈ X|‖X − Xt‖ ≤ 4R}. There is a compact convex set
X ⊇ ⋃T

t=1 Xt, such that lt is L-Lipschitz continuous in X for t = 1, . . . T.

The next corollary shows that the losses incurred by the ARIMA and its approximation
are close, which allows us to take predictions from the approximation.

Corollary 1. Let {Xt}, {εt}, α, β, and l be as assumed in Assumptions 1–3. Then there is some
γ ∈ L(X,X)m with m ≥ q log T

log 1
1−ε

+ p, such that

T

∑
t=1

lt(X̃t(γ))− lt(X̃t(α, β)) ≤ LR(
1

1− (1− ε)
1
q
+ 2)

holds for all t = 1 . . . T.

Proof. It follows from Assumption 1 and Lemma 1 that X̃t(γ), X̃t(α, β) ∈ X holds for all
t = 1, . . . T. Together with Assumption 3, we obtain

T

∑
t=1

(lt(X̃t(γ))− lt(X̃t(α, β))) ≤ L
T

∑
t=1
‖X̃t(γ)− X̃t(α, β)‖.

Applying Lemma 1, we obtain the claimed result.

4. Algorithms and Analysis

From Corollary 1, it follows clearly that an ARIMA(p, q, d) model can be approxi-
mated by an integrated AR model with large enough m. However, neither the order of
differencing d nor the lag m is known. To circumvent tuning them using a previously
collected dataset, we propose a framework with a two-level hierarchical construction,
which is described in Algorithm 4.

Algorithm 4 Two-level framework.

Input: K instances of the slave algorithm A1, . . . ,AK. An instance of master algorithm
M.
for t = 1 to T do

Get X̃i
t from each Ai

Get wt ∈ ∆K fromM . ∆K is the standard K-simplex
Integrate the prediction: X̃t = ∑K

i=1 wi
tX̃

i
t

Observe Xt
Define zt ∈ RK with zi,t = lt(X̃i

t)
Update Ai using zi,t for i = 1, . . . , K
UpdateM using zt

end for

The idea is to maintain a master algorithm M and a set of slave algorithms
{Am|m = 1, . . . , K}. At each step t, the master algorithm receives predictions X̃k

t from
Ak for k = 1, . . . , K. Then it comes up with a convex combination X̃t = ∑K

i=1 wi
tX̃

i
t for some

wt ∈ ∆ in the simplex. Next, it observes Xt and computes the loss lt(Xk
t (γ)) for each slave
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Ak, which is then used to update Ak and wt+1. Let {X̃k
t } be the sequence generated by

some slave k. We define the regret of not having chosen the prediction generated by slave
k as

RT(k) =
T

∑
t=1

lt(
K

∑
i=1

wi
tX̃

i
t)−

T

∑
t=1

lt(X̃k
t ),

and the regret of the slave k

RT(Ak) =
T

∑
t=1

lt(X̃k
t )−

T

∑
t=1

lt(X̃t(γk)),

where X̃t(γk) is the prediction generated by an integrated AR model parameterized by
γk. Let Ak be some slave. Then the regret of this two-level framework can obviously be
decomposed as

RT(α, β) = RT(k) + RT(Ak) +
T

∑
t=1

lt(X̃t(γk))−
T

∑
t=1

lt(X̃t(α, β)).︸ ︷︷ ︸
Corollary 1

For γk, α, and β satisfying the condition in Corollary 1 (this is not a condition of having
a correct algorithm—with more slaves, there are more α, β satisfying the condition; we
increase the freedom of the model by increasing the number of slaves), the marked term
above is upper bounded by a constant, that is,

T

∑
t=1

lt(X̃t(γk))−
T

∑
t=1

lt(X̃t(α, β)) ∈ O(1).

If the regret of the master and the slaves grow sublinearly in T, we can achieve an overall
sublinear regret upper bound, which is formally described in the following corollary.

Corollary 2. Let Ai be an online learning algorithm against an AR(mi) model parameterized by
γi for i = 1, . . . , K. For any ARIMA model parameterized by α and β, if there is a k ∈ {1, . . . , K}
such that X̃t(γk), X̃t(α, β) and {Xt} satisfy Assumptions 1–3, then running Algorithm 4 with
M and A1, . . . ,AK guarantees

T

∑
t=1

(lt(X̃t)− lt(X̃t(α, β))) ≤ RT(k) +RT(Ak) +O(1).

Next, we design and analyze parameter-free algorithms for the slaves and the master.

4.1. Parameter-Free Online Learning Algorithms
4.1.1. Algorithms for Lipschitz Loss

Given fixed m and d, an integrated AR(m) model can be treated as an ordinary linear
regression model. In each iteration t, we select γt = (γ1,t, . . . , γm,t) ∈ L(X,X)m and
make prediction

X̃t(γt) =
m

∑
i=1

γi,tO
dXt−i +

d−1

∑
i=0

OiXt−1.

Since lt is convex, there is some subdifferential gt ∈ ∂lt(X̃t(γt)) such that

lt(X̃t(γt))− lt(X̃t(γ)) ≤ gt(
m

∑
i=1

(γi,t − γi)O
dXt−i),
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for all γ ∈ L(X,X)m. Define gi,t : L(X,X) → R, v 7→ gt(vOdXt−i). The regret can be
further upper bounded by

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

m

∑
i=1

gi,t(γi,t − γi). (2)

Thus, we can cast the online linear regression problem to an online linear optimization
problem. Unlike the previous work, we focus on the unconstrained setting, where γt is not
picked from a compact decision set. In this setting, we can apply an FTRL algorithm with
an adaptive regularizer. To obtain an efficient implementation, we fix a basis for both X
and X∗. Now we can assume X = X∗ = Rn and work with the matrix representation of
γ ∈ L(X,X). It is easy to verify that (2) can be rewritten as

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

m

∑
i=1
〈gtOdX>t−i, γi,t − γi〉F,

where 〈A, B〉F = tr(A>B) is the Frobenius inner product. It is well known that the Frobe-
nius inner product can be considered as a dot product of vectorized matrices, with which
we obtain a simple first-order (the computational complexity per iteration depends linearly
on the dimension of the parameter, i.e., O(n2m)) algorithm described in Algorithm 1.

The cumulative regret of Algorithm 1 can be upper bounded using the following theorem.

Theorem 1. Let {Xt} be any sequence of vectors taken from X. Algorithm 1 guarantees

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ))

≤
m

∑
i=1

(
‖γi‖2

FLT+1

2
+ LT+1 +

L2
T+1
L1

)

√√√√ T

∑
t=1
‖OdXt−i‖2

2

+
m

∑
i=1

(LT+1Gi,T+1 + ‖θi,1‖F)‖γi‖2
F + ‖θi,1‖F

2
.

For an L-Lipschitz loss function lt, in which LT+1 is upper bounded by L, we obtain
a sublinear regret upper bound depending on the sequence of d-th order differencing
{OdXt}. In case L is known, we can set L0 = L, otherwise picking L0 arbitrarily from a
reasonable range (e.g., L0 = 1) would not have a devastating impact on the performance of
the algorithms.

4.1.2. Algorithms for Squared Errors

For the commonly used squared error given by

lt(X̃t(γt)) =
1
2
‖X̃t(γt)− Xt‖2

2,

it can be verified that gt can be represented as a vector

gt =
m

∑
i=1

γi,tO
dXt−i −OdXt

for all t. Existing algorithms, which have a regret upper bound depending on ‖gt‖2, could
fail since ‖gt‖2 can be set arbitrarily large due to the adversarially selected data sequence
X1, . . . , Xt. To design a parameter-free algorithm for the squared error, we equip FTRL
with a time-varying polynomial regularizer described in Algorithm 2.
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Define

xt =

OdXt−1
...

OdXt−m


and consider the matrix representation γt =

(
γ1,t · · · γm,t

)
. Then we have gt = γtxt −

OdXt, and the upper bound of the regret can be rewritten as

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1
〈(γtxt −OdXt)x>t , γt − γ〉F.

The idea of Algorithm 2 is to run the FTRL algorithm with a polynomial regularizer

λt

4
‖γ‖4

F +
ηt

2
‖γ‖2

F,

for increasing sequences {λt} and {ηt}, which leads to updating rule given by

γt = arg max
γ∈L(X,X)m

〈θt, γ〉F −
λt

4
‖γ‖4

F −
ηt

2
‖γ‖2

F =
cθt

‖θt‖F
,

for c satisfying λtc3 + ηtc = ‖θt‖F. Since we have λt ≥ 0 and ηt > 0 for θ1 6= 0, c exists
and has a closed-form expression. The computational complexity per iteration has a linear
dependency on the dimension of L(X,X)m. The following theorem provides a regret upper
bound of Algorithm 2.

Theorem 2. Let {Xt} be any sequence of vectors taken from X and

lt(X̃t(γ)) =
1
2
‖Xt − X̃t(γ)‖2

2 =
1
2
‖OdXt −OdX̃t(γ)‖2

2

be the squared error. We define xt =
(
OdXt−1 · · · OdXt−m

)> and γ =
(
γ1 · · · γm

)
,

the matrix representation of γ1, . . . γm ∈ L(X,X). Then, Algorithm 2 guarantees

T

∑
t=1

(lt(X̃t(γt))− lt(X̃t(γ))) ≤
(
√

mG2
T+1 + ‖θ1‖F)‖γ‖2

F
2

+ ‖θ1‖F + (1 +
‖γ‖4

F
4

)

√√√√ T

∑
t=1
‖xt‖4

2

+ (1 +
GT+1

G0
+
‖γ‖2

F
2

)

√√√√ T

∑
t=1
‖OdXtx>t ‖2

F

for all γ ∈ L(X,X)m.

For squared error, Algorithm 2 does not require a compact decision set and ensures a
sublinear regret bound depending on the data sequence. Similar to Algorithm 1, one can
set G0 according to the prior knowledge about the bounds of the time series. Alternatively,
we can simply set G0 = 1 to obtain a reasonable performance.

4.2. Online Model Selection Using Master Algorithms

The straightforward choice of the master algorithm would be the exponentiated
gradient algorithm for prediction with expert advice. However, this algorithm requires
tuning of the learning rate and losses bounded by a small quantity, which can not be
assumed for our case. The AdaHedge algorithm [29] solves these problems. However, it



Mathematics 2021, 9, 1523 11 of 30

yields a worst-case regret bound depending on the largest loss observed, which could be
much worse compared to a data-dependent regret bound.

Our idea is based on the adaptive optimistic follow the regularized leader (AO-
FTRL) framework [10]. Given a sequence of hints {ht} and loss vectors {zt}, AO-FTRL
guarantees a regret bound related to ∑T

t=1‖zt − ht‖2
t for some time-varying norm ‖·‖t.

In our case, where the loss incurred by a slave is given by l(Xt, X̃k
t ) at iteration t, we simply

choose hk,t = l(∑d−1
i=0 OiXt−1, X̃k

t ). If l is L-Lipschitz in its first argument, then we have
|zk,t − hk,t| ≤ L‖OdXt‖, which leads to a data-dependent regret. The obtained algorithm is
described in Algorithm 3. Its regret is upper bounded by the following theorem, the proof
of which is provided in Appendix B.

Theorem 3. Let {X̃t}, {X̃k
t }, {zt}, {ht}, and {wt} be as generated in Algorithm 3. Assume l is

L-Lipschitz in its first argument and convex in its second argument. Then for any sequence {Xt}
and slave algorithm Ak, we have

RT(k) ≤ (
√

2 log K +

√
8

log K
)

√√√√ T

∑
t=1

L2‖OdXt‖2
2.

By Corollary 2, combining Algorithm 3 with Algorithms 1 or 2 guarantees a data-
dependent regret upper bound sublinear in T. Note that there is an input parameter d
for Algorithm 3, which can be adjusted according to the prior knowledge of the dataset
such that ‖OdXt‖2

2 can be bounded by a small quantity. In case no prior knowledge can be
obtained, we can set d to the maximal order of differencing used in the slave algorithms.
Arguably, the Lipschitz continuity is not a reasonable assumption for squared error with
unbounded domain. With a bounded ‖OdXt‖2

2, we can assume that the loss function is
locally Lipschitz, but with a Lipschitz constant depending on the prediction. In the next
section, we show the performance of Algorithm 3 in combination with Algorithms 1 and 2
in different experimental settings.

5. Experiments and Results

In this section, we carry out experiments on both synthetic and real-world data to
show that the proposed algorithms can generate promising predictions without tuning
hyperparameters.

5.1. Experiment Settings

The synthetic data was generated randomly. We run 20 trials for each synthetic
experiment and average the results. For numerical stability, we scale the real-world data
down so that the values are between 0 and 10. Note that the range of the data are not
assumed or used in the algorithms.

Setting 1: Sanity Check

For a sanity check, we generate a stationary 10-dimensional ARIMA(5, 2, 1) process
using randomly drawn coefficients.

Setting 2: Time-Varying Parameters

Aimed at demonstrating the effectiveness of the proposed algorithm in the non-
stationary case, we generate the non-stationary 10-dimensional ARIMA(5, 2, 1) process
using time-varying parameters. We draw α1, α2, and β1, β2 randomly and indepen-
dent, and generate data at iteration t with the ARIMA(5, 2, 1) model parameterized by
αt =

t
104 α1 + (1− t

104 )α2 and βt =
t

104 β1 + (1− t
104 )β2.
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Setting 3: Time-Varying Models

To get more adversarially selected time series values, we generate the first half of the
values using a stationary 10-dimensional ARIMA(5, 2, 1) model and the second half of the
values using a stationary 10-dimensional ARIMA(5, 2, 0) model. The model parameters
are drawn randomly.

Stock Data: Time Series with Trend

Following the experiments in [8], we collect the daily stock prices of seven technology
companies from Yahoo Finance together with the S&P 500 index for over twenty years,
which has an obvious increasing trend and is believed to exhibit integration.

Google Flu Data: Time Series with Seasonality

We collect estimates of influenza activity of the northern hemisphere countries, which
has an obvious seasonal pattern. In the experiment, we examine the performance of the
algorithms for handling regular and predictable changes that occur over a fixed period.

Electricity Demand: Trend and Seasonality

In this setting, we collect monthly load, gross electricity production, net electricity
consumption, and gross demand in Turkey from 1976 to 2010. The dataset contains both
trend and seasonality.

5.2. Experiments for the Slave Algorithms

We first fix d = 1 and m = 16 and compare our slave algorithms with ONS and OGD
from [9] for squared error lt(X̃t) = 1

2‖Xt − X̃t‖2
2 and Euclidean distance

lt(X̃t) = ‖Xt − X̃t‖2. ONS and OGD stack and vectorize the parameter matrices, and incre-
mentally update the vectorized parameter respectively using the following rules

wt+1 = ΠW (wt − η(
t

∑
s=1

gtg>t + λI)−1gt)

and
wt+1 = ΠW (wt − ηgt),

where gt is the vectorized gradient at step t,W is the decision set satisfying supu∈W‖u‖2 ≤
c, and the operator ΠW (v) projects v into W . We select a list of candidate values for
each hyperparameter, evaluate their performance on the whole dataset, and select the
configuration with the best performance for comparison. Since the synthetic data are
generated randomly, we average the results over 20 trials for stability. The corresponding
results are shown in Figures 1–6 (to amplify the differences of the algorithms, we use log
plots for the y-axis for all settings; for the synthetic datasets, we also use log plot for the
x-axis, so that the behavior of the algorithms in the first 1000 steps can be better observed).
To show the impact of the hyperparameters on the performance of the baseline algorithm,
we also plot their performance using sub-optimal configurations. Note that since the error
term εt cannot be predicted, an ideal predictor would suffer an average error rate of at least
‖εt‖2

2 and ‖εt‖2 for the two kinds of loss function. This is known for the synthetic datasets
and plotted in the figures.

In all settings, both AdaFTRL and AdaFTRL-Poly have a performance on par with
well-tuned OGD and ONS, which can have extremely bad performance using sub-optimal
hyperparameter configurations. In the experiments using synthetic datasets, AdaFTRL
suffers large loss at the beginning while generating accurate predictions after 1000 itera-
tions. The relative performances of the proposed algorithms after the first 1000 iterations
compared to the best tuned baseline algorithms are plotted in Appendix D. AdaFTRL-Poly
has more stable performance compared to AdaFTRL. In the experiment with Google Flu
data, all algorithms suffer huge losses around iteration 300 due to an abrupt change in the
dataset. OGD and ONS with sub-optimal hyperparameter configurations, despite good
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performance for the first half of the data, generate very inaccurate predictions after the
abrupt change in the dataset. This could lead to a catastrophic failure in practice, when
certain patterns do not appear in the dataset collected for hyperparameter tuning. Our
algorithms are more robust against this change and perform similarly to OGD and ONS
with optimal hyperparameter configurations.
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Figure 1. Results for setting 1 (sanity check), using a stationary ARIMA(5,2,1) model.
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Figure 2. Results for setting 2 (time-varying parameters), using a non-stationary ARIMA(5,2,1) model.
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Figure 3. Results for setting 3 (time-varying models), using a combination of stationary ARIMA(5,2,1) and
ARIMA(5,2,0) models.
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Figure 4. Results for stock data.
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Figure 5. Results for Google Flu data.
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Figure 6. Results for electricity demand data.

5.3. Experiments for Online Model Selection

The performance of the two-level framework and Algorithm 3 for online model
selection is demonstrated in Figures 7–12. We simultaneously maintain 96 AR(m) mod-
els of d-th-order differencing for m = 1, . . . 32 and d = 0, . . . 2, which are updated by
Algorithms 1 and 2 for squared error and Euclidean distance, respectively. The predictions
generated by the AR models are aggregated using Algorithm 3 and the aggregation algo-
rithm (AA) introduced in [13] with learning rate set to

√
T. We compare the average losses

incurred by the aggregated predictions with those incurred by the best AR model. To show
the impact of m and d, we also plot the average loss of some other sub-optimal AR models.

In all settings, AO-Hedge outperforms AA, although the differences are very slight in
some of the experiments. We would like to stress again that the choice of the hyperparame-
ters has a great impact on the performance of the AR model. In settings 1–3, the AR model
with 0-th-order differencing has the best performance, although the data are generated
using d = 1, which suggests that the prior knowledge about the data generation may not
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be helpful for the model selection in all cases. The experimental results also show that
AO-Hedge has a performance similar to the best AR model.
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Figure 7. Model selection in setting 1.
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Figure 8. Model selection in setting 2.
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Figure 9. Model selection in setting 3.
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Figure 10. Model selection for stock data.
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Figure 11. Model selection for Google Flu.
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Figure 12. Model Selection for electricity demand.

6. Conclusions

We proposed algorithms for fitting ARIMA models in an online manner without
requiring prior knowledge or tuning hyperparameters. We showed that the cumulative
regret of our method grows sublinearly with the number of iterations and depends on the
values of the time series. The comparison study on both synthetic and real-world datasets
suggests that the proposed algorithms have a performance on par with the well-tuned
state-of-the-art algorithms.

There are still several remaining issues that we want to address in future research.
Firstly, it would be interesting to also develop a parameter-free algorithm for the cointe-
grated vector ARMA model. Secondly, we believe that the strong assumption on the β
coefficient can be relaxed for multi-dimensional time series by generalizing Lemma 2 in [7].
Furthermore, we are also interested in applying online learning to other time series models
such as the (generalized) ARCH model [30]. Finally, the proposed algorithms need to be
empirically analyzed using more real-world datasets and loss functions, and compared
with more recent predictive models such as recurrent neural networks and the models
combining neural networks and ARIMA models [31].
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Appendix A

We prove Lemma 1 in this section. Consider the ARIMA model given by

OdXt(α, β) =
p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βiεt−i + εt

with OdXt(α, β) = OdXt for t ≤ 0. Let

Xt(α, β) = OdXt(α, β) +
d−1

∑
i=0

OiXt−1

be the t-th value generated by the ARIMA process. To prove Lemma 1, we generalize the
proof provided in [6]. To remove the MA component, we first recursively define a growing
process of the d-th-order differencing

OdX∞
t (α, β) =

p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βi(O
dXt−i −OdX∞

t−i(α, β))

with OdX∞
t (α, β) = OdXt for t ≤ 0. Let

X∞
t (α, β) = OdX∞

t (α, β) +
d−1

∑
i=0

OiXt−1

be the t-th value generated by this process.

The next lemma shows that it approximates an ARIMA(p, q, d) process.

Lemma A1. For any α, β, and {εt} satisfying Assumptions 1 and 2, we have, for t = 1, . . . , T,

‖X∞
t (α, β)− X̃t(α, β)‖ ≤ (1− ε)

t
q R.

Proof. First of all, we have

X∞
t (α, β)− X̃t(α, β) =OdX∞

t (α, β)−OdX̃t(α, β)

=
q

∑
i=1

βi(O
dXt−i −OdX∞

t−i(α, β)− εt−i)

for t ≥ 0. Define Yt = OdXt − OdX∞
t (α, β) − εt. W.l.o.g. we can assume ‖εt‖ ≤ R for

t ≤ 0. Next, we prove by induction on t that ‖Yτ‖ ≤ (1− ε)
τ
q R holds for all τ ≤ t. For the

induction basis, we have
‖Yτ‖ = ‖−εt‖ ≤ R

for all τ ≤ 0. We assume the claim holds for some t, then we have

https://github.com/OnlinePredictorTS/AOLForTimeSeries
https://github.com/OnlinePredictorTS/AOLForTimeSeries
https://finance.yahoo.com/
https://github.com/datalit/googleflutrends/


Mathematics 2021, 9, 1523 18 of 30

‖Yt+1‖ =‖OdXt+1 −OdX∞
t+1(α, β)− εt+1‖

=‖OdXt+1 −
p

∑
i=1

αiO
dXt+1−i −

q

∑
i=1

βiεt+1−i − εt+1‖+ ‖
q

∑
i=1

βiYt+1−i‖

=
q

∑
i=1
‖Yt+1−i‖‖βi‖op

≤(1− ε)
t+1−q

q R
q

∑
i=1
‖βi‖op

≤(1− ε)
t+1

q R,

which concludes the induction. Finally, we have

‖X∞
t (α, β)− X̃t(α, β)‖ =‖

q

∑
i=1

βi(O
dXt−i(α, β)−OdX∞

t−i(α, β)− εt−i)‖

≤
q

∑
i=1
‖βi‖op‖Yt−i‖

≤(1− ε)(1− ε)
t−q

q R

=(1− ε)
t
q R,

which is the claimed result.

Next, we recursively define the following process:

OdXm
t (α, β) =

p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βi(O
dXt−i −OdXm−i

t−i (α, β)), (A1)

where OdXm
t (α, β) = OdXt for m ≤ 0. Let {Xm

t (α, β)} be the sequence generated as follows:

Xm
t (α, β) = OdXm

t (α, β) +
d−1

∑
i=0

OiXt−1. (A2)

We show in the next lemma that it is close to {X∞
t (α, β)}.

Lemma A2. For any α, β, {lt}, and {εt} satisfying A1–A2, we have

‖Xm
t (α, β)− X∞

t (α, β)‖ ≤ 2R
T

,

for m =
q log T
log 1

1−ε

.

Proof. Define Zm
t = OdXm

t (α, β)−OdX∞
t (α, β). We prove by induction on m that

‖Zm̃
t ‖ ≤ (1− ε)

m̃
q 2R

holds for all t = 1, . . . , T and 0 ≤ m̃ ≤ m. For m = 0, we have for t = 1, . . . , T

‖Z0
t ‖ =‖OdX0

t (α, β)−OdX∞
t (α, β)‖

=‖OdXt −OdX∞
t (α, β)‖.

By the definition of the stochastic process {OdX∞(α, β)}, we have
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−OdXt +OdX∞
t (α, β)

=−OdXt +
p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βi(O
dXt−i(α, β)−OdX∞

t−i(α, β))

=−OdXt +
p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βiεt−i +
q

∑
i=1

βi(O
dXt−i(α, β)−OdX∞

t−i(α, β)− εt−i)

=OdX̃t(α, β)−OdXt +
q

∑
i=1

βi(O
dXt−i(α, β)−OdX∞

t−i(α, β)− εt−i)

=OdX̃t(α, β)−OdXt +
q

∑
i=1

βiYt−i,

where Yt−i is defined as in the proof of Lemma A1. From the assumption, we have
‖OdX̃t(α, β)−OdXt‖ = ‖εt‖ ≤ R, and, as we have proved in Lemma A1, ‖Yt‖ ≤ R holds.
Therefore, we obtain ‖Z0

t ‖ ≤ 2R, which is the induction basis. Next, assume the claim
holds for all 0, . . . , m− 1. Then we have

‖Zm
t ‖ =‖

q

∑
i=1

βi(OdXt−i −OdXm−i
t−i (α, β)−OdXt−i +OdX∞

t−i(α, β))‖

≤‖
q

∑
i=1

βi(O
dX∞

t−i(α, β)−OdXm−i
t−i (α, β))‖

≤
m

∑
i=1
‖βi(O

dX∞
t−i(α, β)−OdXm−i

t−i (α, β))‖

+
q

∑
i=m+1

‖βi(O
dX∞

t−i(α, β)−OdXt−i)‖

From the induction hypothesis, we have

‖OdX∞
t−i(α, β)−OdXm−i

t−i (α, β)‖ ≤ (1− ε)
m−i

q 2R.

From the proof of the induction basis, we have

q

∑
i=m+1

‖βi(O
dX∞

t−i(α, β)−OdXt−i)‖ ≤ 2R
q

∑
i=m+1

‖βi‖op.

Therefore, ‖Zm
t ‖ can be further bounded using

‖Zm
t ‖ ≤2R

m

∑
i=1
‖βi‖op(1− ε)

m−i
q + 2R

q

∑
i=m+1

‖βi‖op

≤2R
m

∑
i=1
‖βi‖op(1− ε)

m−i
q + 2R

q

∑
i=m+1

‖βi‖op(1− ε)
m−i

q

≤(1− ε)
m−q

q 2R
q

∑
i=1
‖βi‖op

≤(1− ε)
m
q 2R.

Choosing m ≥ q log T
log 1

1−ε

= q log1−ε(T)
−1, we have

‖Xm
t (α, β)− X∞

t (α, β)‖ ≤2R
T

,

which is the claimed result.
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This process of the d-th-order differencing is actually an integrated AR(m + p) process
with order d, which is shown in the following lemma.

Lemma A3. For any data sequence {Xm
t (α, β)} generated by a process of the d-th-order differenc-

ing given by (A1) and (A2) there is a γ ∈ L(X,X)m+p such that

m+p

∑
i=1

γiO
dXt−i +

d−1

∑
i=0

OiXt−1 = Xm
t (α, β)

holds for all t.

Proof. Let {OdXm
t (α, β)} be the sequence generated by (A1). We prove by induction on m

that for all m̃ ≤ m there is a γ ∈ L(X,X)m̃+p such that

OdXm̃
t (α, β) =

m̃+p

∑
i=1

γiO
dXt−i

holds for all α and β. The induction basis follows directly from the definition that

OdX0
t (α, β) =

p

∑
i=1

αiO
dXt−i.

Assume that the claim holds for some m. Let αi be the zero linear functional for i > p and
βi be the zero linear functional for i > q. Then we have

OdXm+1
t (α, β)

=
p

∑
i=1

αiO
dXt−i +

q

∑
i=1

βi(O
dXt−i −OdXm+1−i

t−i (α, β))

=
p

∑
i=1

αiO
dXt−i +

m+1

∑
i=1

βiO
dXt−i −

m+1

∑
i=1

βiO
dXm+1−i

t−i (α, β)

=
p

∑
i=1

αiO
dXt−i +

m+1

∑
i=1

βiO
dXt−i −

m+1

∑
i=1

βi

m+1−i+p

∑
j=1

γm+1−i
j OdXt−i−j

=
p

∑
i=1

αiO
dXt−i +

m+1

∑
i=1

βiO
dXt−i −

m+p+1

∑
i=1

(
m+1

∑
j=1

β j

i−j

∑
k=1

γ
m+1−j
k )OdXt−i,

where the second equality follows from the fact that βi(OdXt−i − OdXm+1−i
t−i (α, β)) = 0

for i > m + 1, the third line uses the induction hypothesis and the last line is obtained by

rearranging and setting
n
∑

i=m
ai = 0 for m > n. The induction step is obtained by setting

γm+1
i = αi + βi −

m+1

∑
j=1

β j

i−j

∑
k=1

γ
m+1−j
k

for i = 1, . . . , m + p + 1, and the claimed result follows.

Finally, we prove Lemma 1 by combining the results.

Proof of Lemma 1. From Lemmas A1, A2, and A3, there is some γ ∈ L(X,X)m with
m ≥ q log T

log 1
1−ε

+ p such that
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‖OdXt(γ)−OdX̃t(α, β)‖
=‖OdXm

t (γ)−OdX̃t(α, β)‖
≤‖OdXm

t (γ)−OdXt
∞(α, β)‖+ ‖OdX∞

t (γ)−OdX̃t(α, β)‖

≤(1− ε)
t
q R +

2R
T

,

which is the claimed result.

Appendix B

In this section, we prove the theorems in Section 4. The required notation is sum-
marized in Appendix C. We apply some important properties of convex functions and
their convex conjugate defined on a general vector space, which can be found in [17]. The
proposed algorithms are instances of the adaptive optimistic follow the regularized leader
(AO-FTRL) [10], which is described in Algorithm A1.

Algorithm A1 AO-FTRL.

Input: closed convex setW ⊆ X
Initialize: θ1 arbitrary
for t = 1 to T do

Get hint ht
wt = Oψ∗t (θt − ht)
Observe gt ∈ X∗
θt+1 = θt − gt

end for

Lemma A4. We run AO-FTRL with closed convex regularizers ψ1, . . . , ψT defined onW ⊆ X
satisfying ψt(w) ≤ ψt+1(w)s for all w ∈ W and t = 1, . . . , T. Then, for all u ∈ W , we have

T

∑
t=1

gt(wt − u) ≤ ψT+1(u) + ψ∗1 (θ1) +
T

∑
t=1
Bψ∗t

(θt+1, θt − ht),

where Bψ∗t
(θt+1, θt − ht) is the Bregman divergence associated with ψ∗t .

Proof. W.l.o.g. we assume hT+1 = 0, since it is not involved in the algorithm. Then we have

T

∑
t=1

(ψ∗t+1(θt+1 − ht+1)− ψ∗t (θt − ht))

=ψ∗T+1(θT+1 − hT+1)− (θ1 − h1)w1 + ψ1(w1)

≥(θT+1 − hT+1)u− ψT+1(u) + h1w1 − θ1w1 + ψ1(w1)

≥θT+1u− ψT+1(u) + h1w1 − sup
w∈W

(θ1w1 − ψ1(w1))

=−
T

∑
t=1

gtu− ψT+1(u) + h1w1 − ψ∗1 (θ1).

.

Furthermore, we have

ψ∗t+1(θt+1 − ht+1)− ψ∗t (θt − ht)

=ψ∗t+1(θt+1 − ht+1)− ψ∗t (θt+1) + ψ∗t (θt+1)− ψ∗t (θt − ht)

≤(θt+1 − ht+1)wt+1 − ψt+1(wt+1)− θt+1wt+1 + ψt(wt+1) + ψ∗t (θt+1)− ψ∗t (θt − ht)

≤ψ∗t (θt+1)− ψ∗t (θt − ht)− ht+1wt+1
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Combining the inequalities above, rearranging and adding ∑T
t=1〈gt, wt〉 to both sides,

we obtain

T

∑
t=1

gt(wt − u)

≤ψT+1(u) + ψ∗1 (θ1) +
T

∑
t=1

(ψ∗t (θt+1)− ψ∗t (θt − ht) + gtwt − htwt)

=ψT+1(u) + ψ∗1 (θ1) +
T

∑
t=1

(ψ∗t (θt+1)− ψ∗t (θt − ht)− (θt+1 − θt + ht)Oψ∗t (θt − ht))

=ψT+1(u) + ψ∗1 (θ1) +
T

∑
t=1
Bψ∗t

(θt+1, θt − ht),

which is the claimed result.

Proof of Theorem 1. First of all, since we have

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ)) ≤
T

∑
t=1

m

∑
i=1

gi,t(γi,t − γi)

=
m

∑
i=1

(
T

∑
t=1

gi,t(γi,t − γi)),

the overall regret can be considered as the sum of the regrets ∑T
t=1 gi,t(γi,t − γi). Next,

we analyse the regret of each i = 1, . . . m. Define ψi,t(γi) =
ηi,t
2 ‖γi‖2

F. It is easy to verify
γi,t ∈ ∂ψ∗i,t(θi,t) for t = 1, . . . , T. Applying Lemma A4 with ht = 0, we obtain

T

∑
t=1

gi,t(γi,t − γi) ≤ ψi,T+1(γi) + ψ∗i,1(θi,1) +
T

∑
t=1
Bψ∗i,t

(θi,t+1, θi,t).

From the updating rule of Gi,t, we have gi,t = 0 for Gi,t = 0. Let t0 be the smallest index
such that Gi,t0 > 0. Then we have

T

∑
t=1
Bψ∗i,t

(θi,t+1, θi,t) =
T

∑
t=t0

Bψ∗i,t
(θi,t+1, θi,t).

For Gi,t > 0, ψi,t is ηi,t-strongly convex with respect to ‖·‖F. From the duality of strong
convexity and strong smoothness (see Proposition 2 in [17]), we have

T

∑
t=t0

Bψ∗i,t
(θi,t+1, θi,t) ≤

T

∑
t=t0

1
2ηi,t
‖gi,t‖2

F =
T

∑
t=t0

‖gi,t‖2
F

2
√

∑t−1
s=1‖gi,s‖2

F + (LtGi,t)2
.

From the definition of Frobenius norm, we have

‖gi,t‖2
F = ‖htOdX>t−i‖2

F = ‖ht‖2
2‖OdXt−i‖2

2 ≤
‖ht‖2

2
L2

t
L2

t G2
i,t.

Then, we obtain
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T

∑
t=t0

‖gi,t‖2
F

2
√

∑t−1
s=1‖gi,s‖2

F + (LtGi,t)2
≤

T

∑
t=t0

max{1, ‖ht‖2
Lt
}‖gi,t‖2

F

2
√

∑t
s=1‖gi,s‖2

F

≤max{1,
‖h1‖2

L1
, . . . ,

‖hT‖2

LT
}

√√√√ T

∑
t=1
‖gi,t‖2

F

≤(1 + LT+1

L1
)

√√√√ T

∑
t=1
‖gi,t‖2

F

≤(LT+1 +
L2

T+1
L1

)

√√√√ T

∑
t=1
‖OdXt−i‖2

2,

where the second inequality uses Lemma 4 in [17] and the last inequality follows from the
fact that ‖gi,t‖F ≤ Lt‖OdXt−i‖2 ≤ LT+1‖OdXt−i‖2. Furthermore, we have

ψi,T+1(γi) ≤
‖γi‖2

F
2

√√√√ T

∑
t=1
‖gi,t‖2

F +
LT+1Gi,T+1‖γi‖2

F
2

≤
‖γi‖2

FLT+1

2

√√√√ T

∑
t=1
‖OdXt−i‖2

2 +
LT+1Gi,T+1‖γi‖2

F
2

,

and ψ∗i,1(θi,1) ≤
‖θi,1‖F

2 . Adding up from 1 to m, we have

T

∑
t=1

lt(X̃t(γt))− lt(X̃t(γ))

≤
m

∑
i=1

(
‖γi‖2

FLT+1

2
+ LT+1 +

L2
T+1
L1

)

√√√√ T

∑
t=1
‖OdXt−i‖2

2

+
m

∑
i=1

LT+1Gi,T+1‖γi‖2
F + ‖θi,1‖F

2

Proof of Theorem 2. Define ψt(γ) =
λt‖γ‖4

4 + λt‖γ‖2

2 . First of all, it is easy to verify that
γt ∈ ∂ψ∗t (θt). Applying Lemma A4 with ht = 0, we have

T

∑
t=1
〈gtx>t , γt − γ〉F ≤ψT+1(γ) + ψ∗1 (θ1) +

T

∑
t=1
Bψ∗t

(θt+1, θt). (A3)

Define vt ∈ ∂ψ∗t+1(θt). Then we have

Bψ∗t
(θt+1, θt) =ψ∗t (θt+1)− ψ∗t (θt)− 〈γt, θt+1 − θt〉F

=〈θt+1, vt〉F − ψt(vt)− 〈θt, γt〉F + ψt(γt)− 〈γt, θt+1 − θt〉F
=〈θt+1, vt〉F − ψt(vt) + ψt(γt)− 〈γt, θt+1〉F
=〈θt+1, vt − γt〉F − ψt(vt) + ψt(γt)

=〈gtx>t , γt − vt〉F − ψt(vt) + ψt(γt) + 〈θt, vt − γt〉F
=〈gtx>t , γt − vt〉F −Bψt(vt, γt)

=〈γtxtx>t , γt − vt〉F + 〈−OdXtx>t , γt − vt〉F −Bψt(vt, γt)

=〈γtxtx>t , γt − vt〉F −Bψ̃t
(vt, γt)

+ 〈−OdXtx>t , γt − vt〉F −Bψ̄t(vt, γt),

(A4)
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where we define ψ̃t(γ) =
λt
4 ‖γ‖4

F and ψ̄t(γ) =
ηt
2 ‖γ‖2

F. From the properties of the Frobe-
nius norm, we have

〈γtxtx>t , γt − vt〉F ≤‖γtxtx>t ‖F‖γt − vt‖F

≤‖xt‖2
2‖γt‖F‖γt − vt‖F

Following the idea of [33], we can upper bound ‖γt‖2
F‖γt − vt‖2

F as follows:

λt

2
‖γt‖2

F‖γt − vt‖2
F

=
λt

2
‖γt‖2

F(‖γt‖2
F + ‖vt‖2

F − 2〈γt, vt〉F)

≤λt

4
(‖γt‖4

F + ‖vt‖4
F − 2‖γt‖2

F‖vt‖2
F) +

λt

2
‖γt‖2

F(‖γt‖2
F + ‖vt‖2

F − 2〈γt, vt〉F)

=
λt

4
‖vt‖4

F +
3λt

4
‖γt‖4

F − λt‖γt‖2
F〈γt, vt〉F

=
λt

4
‖vt‖4

F −
λt

4
‖γt‖4

F + λt‖γt‖2
F〈γt, γt〉F − λt‖γt‖2

F〈γt, vt〉F

=
λt

4
‖vt‖4

F −
λt

4
‖γt‖4

F − λt‖γt‖2
F〈γt, vt − γt〉F

=Bψ̃t
(vt, γt)

Thus, for λt 6= 0, we have

〈γtxtx>t , γt − vt〉F −Bψ̃t
(vt, γt) ≤2

√
‖xt‖4

2
2λt
Bψ̃t

(vt, γt)−Bψ̃t
(vt, γt)

≤
‖xt‖4

2
2λt

,

where the second inequality uses the fact that 2ab− b2 ≤ a2. Let t0 be the smallest index
such that λt0 > 0. Then we have

T

∑
t=1

(〈γtxtx>t , γt − vt〉F −Bψ̃t
(vt, γt))

≤
T

∑
t=t0

‖xt‖4
2

2λt

=
T

∑
t=t0

‖xt‖4
2

2
√

∑t
s=1‖xt‖4

2

≤

√√√√ T

∑
t=1
‖xt‖4

2,

(A5)

where the last inequality uses Lemma 4 in [17]. Similarly, let t1 be the smallest index such
that ηt0 > 0. Then we obtain the upper bound
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T

∑
t=1

(〈−OdXtx>t , γt − vt〉F −Bψ̄t(vt, γt))

≤
T

∑
t=1

(‖OdXtx>t ‖F‖γt − vt‖F −Bψ̄t(vt, γt))

≤
T

∑
t=t1

(

√
2‖OdXtx>t ‖2

F
ηt

Bψ̄t(vt, γt)−Bψ̄t(vt, γt))

≤
T

∑
t=t1

(2

√
‖OdXtx>t ‖2

F
2ηt

Bψ̄t(vt, γt)−Bψ̄t(vt, γt))

≤
T

∑
t=t1

‖OdXtx>t ‖2
F

2ηt

=
T

∑
t=t1

‖OdXtx>t ‖2
F

2
√

∑t−1
s=1‖OdXsx>s ‖2

F + L2
t ‖xt‖2

2

≤max{1,
‖OdX1x>1 ‖F

G1
, . . . ,

‖OdXTx>T ‖F

GT
}

T

∑
t=t1

‖OdXtx>t ‖2
F

2
√

∑t
s=1‖OdXsx>s ‖2

F

≤max{1,
‖OdX1x>1 ‖F

G1
, . . . ,

‖OdXTx>T ‖F

GT
}

√√√√ T

∑
t=1
‖OdXtx>t ‖2

F

≤(1 + GT+1

G1
)

√√√√ T

∑
t=1
‖OdXtx>t ‖2

F

(A6)

Combining (A3)–(A6), we obtain

T

∑
t=1
〈gtx>t , γt − γ〉F ≤

(
√

mG2
T+1 + ‖θ1‖F)‖γ‖2

F
2

+ ψ∗1 (θ1) + (1 +
‖γ‖4

F
4

)

√√√√ T

∑
t=1
‖xt‖4

2

+ (1 +
GT+1

G1
+
‖γ‖2

F
2

)

√√√√ T

∑
t=1
‖OdXtx>t ‖2

F.

For θ1 6= 0, it is easy to verify that ψ∗1 (θ1) ≤ 〈w1, θ1〉F ≤
‖θ1‖2

F
η1
≤ ‖θ1‖F. By putting this in

the inequality above, we obtain the claimed result.

Proof of Theorem 3

Proof. Define

ψt : ∆→ R, w 7→ ηt

K

∑
k∈Iw

wk log wk + ηt log K,

where Iw = {i = 1, . . . , k|wi 6= 0}. It can be verified that wt ∈ ∂ψ∗t (θt). Applying
Lemma A4, we obtain

T

∑
t=1

z>t (wt − u) ≤ ψT+1(u) + ψ∗1 (θ1) +
T

∑
t=1
Bψ∗t

(θt+1, θt − ht).

From the definition of ψt, it follows that ψT+1(u) ≤
√

log K
2 ∑T

t=1‖zt − ht‖2
∞ and ψ∗1 (θ1) = 0

hold. Define vt ∈ ∂ψ∗t (θt+1). Next, we bound the third term as follows:
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Bψ∗t
(θt+1, θt − ht)

=ψ∗t (θt+1)− ψ∗t (θt − ht)− (ht − zt)
> wt

=θ>t+1vt − ψt(vt)− (θt − ht)
>wt + ψt(wt)− (ht − zt)

> wt

=(ht − zt)
>(vt − wt)− (ψt(vt)− ψt(wt)− (θt − ht)

>(vt − wt))

=(ht − zt)
>(vt − wt)−Bψt(vt, wt)

=(ht − zt)
>(vt − wt)− ηt+1‖vt − wt‖2

1 + ηt+1‖vt − wt‖2
1 −Bψt(vt, wt)

≤(ht − zt)
>(vt − wt)− ηt+1‖vt − wt‖2

1 + (ηt+1 − ηt)‖vt − wt‖2
1

≤‖ht − zt‖∞‖vt − wt‖1 − ηt+1‖vt − wt‖2
1 + 4(ηt+1 − ηt)

≤‖ht − zt‖2
∞

4ηt+1
+ 4(ηt+1 − ηt),

where the first inequality uses the fact that ψt is 2ηt strongly convex w.r.t. ‖·‖1. Adding up
from 1 to T, we have

T

∑
t=1
Bψ∗t

(θt+1, θt − ht) ≤
T

∑
t=1

(
‖ht − zt‖2

∞
4ηt+1

+ 4(ηt+1 − ηt))

≤

√√√√ log K
2

T

∑
t=1
‖ht − zt‖2

∞ + 4ηT+1

≤

√√√√ log K
2

T

∑
t=1
‖ht − zt‖2

∞ +

√√√√ 8
log K

T

∑
t=1
‖ht − zt‖2

∞.

Combining the inequalities, we obtain

T

∑
t=1

l(Xt,
K

∑
i=1

wi,tX̃i
t)−

T

∑
t=1

l(Xt, X̃k
t )

≤
T

∑
t=1

K

∑
i=1

wi,tl(Xt, X̃i
t)−

T

∑
t=1

l(Xt, X̃k
t )

=
T

∑
t=1

w>t zt −
T

∑
t=1

l(Xt, X̃k
t )

≤(
√

2 log K +

√
8

log K
)

√√√√ T

∑
t=1
‖ht − zt‖2

∞,

where the first inequality follows from Jensen’s inequality. Furthermore, if l is L-Lipschitz
in its first argument, then we have

‖ht − zt‖∞ = max
i∈{1,...,K}

|zi,t − hi,t| ≤ L‖OdXt‖2.

Finally, we obtain the regret upper bound

T

∑
t=1

l(Xt,
K

∑
i=1

wi,tX̃i
t)−

T

∑
t=1

l(Xt, X̃k
t ) ≤

(√
2 log K +

√
8

log K

)√√√√ T

∑
t=1

L2‖OdXt‖2
2,

which is the claimed result.

Appendix C

We summarize the main notations used throughout the article in Table A1.
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Table A1. Nomenclature.

(X, ‖·‖) finite dimensional norm space
(X∗, ‖·‖∗) the dual space with dual norm of (X, ‖·‖)
L(X,X) vector space of bounded linear operators
‖α‖op = supx∈X,x 6=0

‖αx‖
‖x‖ the operator norm of α ∈ L(X,X)

‖x‖2 =
√

∑d
i=1 x2

i 2 norm for x ∈ Rd

‖x‖1 = ∑d
i=1|xi| 1 norm for x ∈ Rd

‖x‖∞ = max{|x1|, . . . , |xd|} max norm for x ∈ Rd

〈A, B〉F = tr(A>B) Frobenius inner product
‖A‖F =

√
〈A, A〉F Frobenius norm

∆d : {x ∈ Rd|∑d
i=1 xi = 1, xi ≥ 0} standard d-simplex

ψ :W → R closed convex function
∂ψ(w) = {g ∈ X∗|∀v ∈ W .ψ(v)− ψ(w) ≥ g(v− w)} the set of subdifferential of ψ at w
ψ∗ : X∗ → R, θ 7→ supw∈W θw− ψ(w) convex conjugate of ψ
Bψ(u, v) = ψ(u)− ψ(v)− g(u− v), where g ∈ ∂ψ(u) the Bregman divergence

Appendix D

For the synthetic data, the relative performance of the proposed algorithms after
the first 1000 iterations are plotted in Figures A1–A3. For each setting, we calculate the
average loss after the first 1000 iterations and plot the difference of the proposed algorithms
compared to the average loss incurred by the best baseline algorithm.
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Figure A1. Relative performance for setting 1.
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Figure A2. Relative performance for setting 2.
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Figure A3. Relative performance for setting 3.

Similarly, we plot the relative performance for the real-world data over the time
horizon in Figures A4–A6.
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Figure A4. Relative performance for stock data.
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Figure A5. Relative performance for Google Flu.
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Figure A6. Relative Performance for electricity demand.
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