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Abstract: The article reviews the results of a number of recent papers dealing with the revision of
the simplest approaches to the control of first-order time-delayed systems. The concise introductory
review is extended by an analysis of two discrete-time approaches to dead-time compensation control
of stable, integrating, and unstable first-order dead-time processes including simple diagnostics of
the model used and focusing on the possibility of simplified but reliable plant modelling. The first
approach, based on the first historically known dead-time compensator (DTC) with possible dead-
beat performance, is based on the reconstruction of the actual process variables and the compensation
of input disturbances by an extended state observer (ESO). Such solutions play an important role both
in a disturbance observer (DOB) based control and in an active disturbance rejection control (ADRC).
The second approach considered comes from the Smith predictor with two degrees of freedom, which
combines feedforward control with output disturbance reconstruction and compensation by the
parallel plant model. It is shown that these two approaches offer advantageous properties in the case
of actuator limitations, in contrast to the commonly used PID controllers. However, when applied to
integrating and unstable first-order systems, the unconstrained and possibly unobservable output
disturbance signal of the second solution must be eliminated from the control loop, due to the hidden
structural instability of the Smith predictor-like solutions. The modified solutions, usually referred to
as filtered Smith predictor (FSP), then no longer provide a disturbance signal and thus no longer fully
fit into the concept of Industry 4.0, which is focused on further optimization, predictive maintenance
in dynamic systems, diagnosis, fault detection and fault identification of dynamic processes and
forms the basis for the digitalization of smart production. Nevertheless, the detailed analysis of
the elimination of the unstable disturbance response mode is also worth mentioning in terms of
other possible solutions. The application of both approaches to the control of a thermal process
shows almost equivalent quality, but with different dependencies on the tuning parameters used. It
is confirmed that a more detailed identification of the controlled process and the resulting higher
complexity of the control algorithms does not necessarily lead to an increase in the resulting quality
of the transients, which underlines the importance of the simplified plant modelling for practice.

Keywords: dead-time compensation; disturbance reconstruction; saturation; filtration; noise attenuation;
total variation; monotonicity

1. Introduction

Time delays due to the terminal velocity of information transmission and process-
ing, the computational speed of computers, or the terminal velocity of mass and energy
transport are among the fundamental aspects of the control of dynamical systems. We
encounter them in innumerable variations across the spectrum of scientific and engineering
disciplines [1–7].
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First-order time-delayed (FOTD) systems are the most commonly used process models
in control design [8]. In addition to their use in classical tuning methods, they are also
successfully used in model-based control. Two basic types of model-based controllers
that incorporate transport delays are dead-time compensators (DTCs) and proportional-
integral-derivative (PID) controllers. Skogestad [9] has shown that classical PID controllers
can result from a delayed-model approach when the delay is replaced by the first terms
of Padé or Taylor series approximations. Such simplifications [10] were common in the
analog controller era, when implementing dead time was a major challenge. Today, the
implementation of time delays in digital controllers is trivial. In this context, the time-shift
operation in dead time modelling and simulation is the basic functionality. In terms of
dead-time approximations, it is therefore surprising that there were still doubts whether
DTCs (i.e., the “more accurate” solutions) are indeed more robust than the “less accurate”
approximate solutions based on PID controllers [9,11]. Should the approximate solutions
really guarantee higher robustness than the DTCs based on exact delays? Is this also true
for the higher-order PIDs (HO) discussed in [10,12] with the aim to obtain more degrees
of freedom for designers to meet a predefined set of performance criteria, especially to
increase performance and robustness for noisy and uncertain systems? These contributions
lead to the first question, whether the solutions based on DTCs and PIDs are correctly
interpreted and understood, and whether they can be considered equivalent. However,
there are several other unanswered or unresolved questions related to the design of DTCs
that are uncovered in this paper.

The best known DTC, originally designed as a Smith predictor (SP) [13], can only
be applied to stable FOTD systems. Therefore, its extension to integrating and unstable
systems is still the goal of current research. However, in addition to the further develop-
ment of FSPs [14–16], DTCs for unstable and integrating systems can also be designed
as stabilized solutions that still provide the disturbance signal, which is important for
many applications. The stabilizing controller designed correctly for an unstable plant can
first yield a stable circuit with known dominant dynamics, for which we then propose a
disturbance observer in the usual way [17]. Alternatively, we may design the feedforward
control and disturbance reconstruction and compensation separately, and use reference
models to incorporate a stabilizing controller into the overall structure without nominally
affecting the operation of the basic (lower-level) loops [18].

The first aim of this paper is to extend these two two-step approaches to design of
DTCs with explicitly reconstructed disturbance signal to integrating and unstable pro-
cesses by showing the third (direct) possibility when the stabilizing controller and the
disturbance reconstruction in the state-space are designed using the extended state ob-
server (ESO) [19,20]. This original solution providing dead-beat performance preceded
the development in both the ADRC and Disturbance Observer-based controller design
domains. In this paper, it is complemented by a simple filtering technique that allows for
the consideration of noise and uncertainty.

The second aim is to analyse in details all significant features of the discrete-time Smith
predictor inspired solutions applied possibly also to unstable and integral plants [14,16–18,21,22].
This, however, requires elimination of the unstable plant mode from the disturbance response
and also elimination of the disturbance signal from the controller structure. The detailed analysis
of these eliminations is also worth mentioning in terms of other possible solutions.

Moreover, as Ziegler and Nichols [23] pointed out in their pioneering work, which was
later followed by numerous other contributions in the area of Active Disturbance Rejection
Control (ADRC, [24,25]) or Model Free Control (MFC, [26]), but they have already been
noticed by authors from the field of PID control [12,27], the simple integrating models can
also be attractive for the design of simplified DTCs on the simplest stable processes [18].

The rest of the paper is structured as follows: Section 2 deals with the modelling
problems, the approximation of model uncertainties by input and output disturbances,
the design of stabilizing P controllers, and the state and disturbance reconstruction in
time-delayed systems, using the state-space and polynomial approaches. The proposed
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controllers are illustrated by Example 1. Section 3 continues this work with a special focus
on Smith Predictor-inspired approaches. Example 2 provides a comparison of the two types
of the DTCs considered and Example 3 gives analyses of the control constraints impact.
The application of both types of DTCs is also illustrated in Section 4, with an example
of the control of a thermal process. Although the thermal process represents a typical
stable system, the use of solutions based on integrating models provides an interesting
opportunity to simplify the whole process modelling and the corresponding DTC designs.
The main results obtained are discussed in Section 5 and summarized in the conclusions.

2. Modelling and Controller Design for the Simplest Time-Delayed Processes

In order to generalize and modify SP (and other DTCs) for all types of processes
(e.g., integrating and unstable), we first need to interpret it in a more concise way. For
several decades now, SP modifications for integrating and unstable systems have not
been explained sufficiently consistently (as, e.g., discussed in [18]). This can be one of the
sources of distrust of DTCs expressed in [9,11], or in surveys on the importance of control
structures for introductory control courses [28]. In terms of design interpretation, there are
several options.

Dead-time elimination. One possible interpretation of SP is that its advantage is to
remove the transport delay from the characteristic polynomial of the closed-loop [29,30].
However, such an interpretation gives only limited information about the closed-loop
response. Indeed, the disturbance response with all model imperfections is still affected by
time delays in the loop, which must be taken into account when choosing the controller
structure and tuning.

Output reconstruction/prediction. The second possible interpretation of SP is the recon-
struction of the actual (not-delayed) plant output of the system from the series of delayed
measurements of the input and output signals of the plant [29,31]. The same results can be
derived by generating the control signal from a predicted process output value, which can
be calculated by applying the control signal samples accumulated in the system input delay.
Inspired by some older works by de Paor [32–34], such an interpretation of time delay
compensation has been used much earlier [19,20,35,36] in combination with stabilizing P
or PD controllers with two degrees of freedom (2-DoF) in the setpoint tracking channel and
with input disturbance reconstruction and compensation. The preferred use of input (load)
disturbance reconstruction resulted from the unobservability of the output disturbances in
combination with integrating models.

Dynamical setpoint feedforward and output disturbance rejection. The third interpretation
considers SP as a feedforward control realized by a primary loop complemented by a
secondary output disturbance rejection loop acting on the reference setpoint signal.

The last two interpretations are further clarified by designing DTCs in the state space
and in generalizing the SP. However, the reliable implementation of DTCs requires the
solution of numerous other problems. In this regard, it is necessary to explain:

1. The principles of setpoint and disturbance feedforward control and the conditions for
their use;

2. The effects of external and internal, input and output disturbances and their role in
compensating plant uncertainties;

3. The reconstruction of output and input disturbances by the parallel and inverse plant
models and how such feedback transforms the controlled plant;

4. Why a setpoint feedforward through the primary loop is used and the role of control
constraints and unstable plant dynamics in such control;

5. Stabilization based on zero setpoint tracking error and zero total input disturbance;
6. Why to apply integrating models even for non-integrating plants;
7. How to introduce experimentally verifiable robustness measures suitable for all stable,

integrating and unstable plants in the time domain;
8. How to attenuate the measurement noise by an appropriate filter design.
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2.1. Two Types of Linear Models for First-Order Dominant Plant Dynamics

When modelling the first-order time-delayed plant with output y(t) and input u(t),
one might expect optimal control behaviour if the model parameters Ksm, am and Tdm in

Sdm(s) =
Y(s)
U(s)

= Sm(s)e−Tdms; Sm(s) =
Ksm

s + am
(1)

approach the parameters Ks, a and Td of a “nominal real” plant S(s)

S(s) =
Y(s)
U(s)

= S0(s)e−Tds; S0(s) =
Ks

s + a
(2)

Remark 1. However, the assumption that the “nominal” model is well-defined has no solid basis
in practice. The majority of plants have “no real parameters” and the model parameters are
just numbers ( knobs ) used to approximate a more or less complex real plant behaviour. The
notion of “nominal” plant dynamics may be useful in the simulation environment, but this does
not mean that the nominal model can be obtained in practice and then used as a standard for
evaluating experiments.

A commonly used simplification is to neglect the process time constant by simply
considering am = 0 (instead of am = a). In this way, one can deliberately work with an
even simpler integrator-plus-dead-time (IPDT) model, even when dealing with clearly
stable plants. Such an approach, motivated by simplified path identification or simplified
controller design (or both), is routinely used. As an example, one of the most commonly
cited methods for plant identification is based on a tangent line drawn through an inflection
point of the plant step response [23], which may well be interpreted by the IPDT model [37].
Other well-known examples are Model Free Control (MFC) [38] and the Active Disturbance
Rejection Control (ADRC) with an Extended State Observer (ESO) [5,24,39,40]. A similar
conclusion was reached in the design of PI and PID control by [27,41]. However, in DTCs
based on Internal Model Control (IMC), which includes the SP-inspired structures, the
integrating process model leads to significant problems.

Another issue in DTC-related works that deserves a more detailed analysis is the
advantage of discrete-time realization. Namely, the advantage is a simpler and more
accurate modelling of transport delays in digital circuits. On the other hand, since the
sampling period can be neglected, the continuous-time nomenclature is mostly used today
because of the simpler description. To the best of our knowledge, there are no recent works
dealing with the analog dead-time implementation in controller design, which is performed
in the continuous-time domain. Therefore, we will not address continuous-time controller
design for integrating systems in this paper with respect to digital implementation of
standard industrial controllers [31,42] .

For discrete-time control with a sampling period Ts satisfying Tdm = kmTs, km ∈ Z+

and z representing the shift operator, the model of the FOTD plant (1), changes in the
discrete-time domain to

Sdm(z) = Sm(z)z−km ; Sm(z) =
Km

z− Dm
; where for

am = 0, Km = KsmTs; Dm = 1;

am 6= 0, Km =
Ksm(1− Dm)

am
; Dm = e−amTs .

(3)

Let us define the discrete-time model of the real plant for the nominal case:

S(z) = S0(z)z−k; S0(z) = K/(z− D). (4)
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2.2. Model Uncertainties and Setpoint Feedforward

From a control design point of view, it is important to mention that closed-loop
performance is significantly affected by external disturbances and model imperfections
resulting from uncertainties caused by modelling, identification, time-varying nature of
systems, nonlinearities, etc. [41,43]. These uncertainties can be considered as internal
disturbances. It should be emphasized that the acting disturbances and uncertainties are
the main reason for using feedback in automatic control and both have a significant impact
on the controller design.

Starting with the simplest case, where a reference setpoint w is filtered by the first-
order low-pass filter Qw(s) with a gain of one and a time constant Tc > 0 [18], the simple
feedforward block Cw(s) used for an open-loop generation of the feedforward control
signal uw f , can be designed as

Cw(s) =
Uw f (s)
W(s)

=
Qw(s)
Sm(s)

; Qw(s) =
1

1 + Tcs
. (5)

Similarly, in the discrete-time domain, the filtered feedforward could be calculated as

Cw(z) =
Uw f (z)
W(z)

=
Qw(z)
Sm(z)

; Qw(z) =
1− Dc

z− Dc
; Dc = e−Ts/Tc . (6)

The low-pass filters Qw(s) and Qw(z) make the feedforward Cw(s) and Cw(z) proper
and determine the speed of the output response.

For example, consider the uncertainty of the plant model expressed as am = a + ∆a, or
Dm = D + ∆D. For simplicity, assume that the plant gain is perfectly modelled (Ksm = Ks,
or Km = K). Then, the outputs of the continuous-time and discrete-time feedforward
control systems are

Y(s) =
s + a + ∆a

s + a
Qw(s)W(s) = (1 +

∆a
s + a

)Qw(s)W(s)

Y(z) =
z− D + ∆D

z− D
Qw(z)W(z) = (1 +

∆D
z− D

)Qw(z)W(z).
(7)

It turns out that the model uncertainty corresponds to an “internal” disturbance
∆di = ∆a/Ks, or ∆di = ∆D/K acting at the input of the continuous-time S(s) (Equation (2)),
or the discrete-time S(z) (Equation (4)) plant. Although the transients can be made faster
by using smaller values of Tc → 0 (or Dc → 0) can be accelerated, for the control of stable
systems (a > 0, D ∈ (0, 1)), the fading of the uncertainty perturbations depends on the
time constant T = 1/a. In the case of unstable systems (a < 0, or D > 1), “internal”
disturbances already lead to an unrestrained increase in the system output and make such
a disturbance controller unusable. Since such “exponential” outputs can be interpreted
as results of equivalent unimpeded output disturbances do, in practice, the calculation of
output disturbance signals should be avoided in unstable systems, since they can lead
to an overflow of the computer’s registers. (Not always, as signal Y is also often limited
in practice).

For Ksm 6= Ks, or Km 6= K, permanent steady-state errors occur, which can again
degrade feedforward control even in stable systems. In such situations, as well as when
compensating for output disturbances of stable systems, corrective feedback is sufficient
to achieve the desired output. However, for the control of unstable systems, stabilizing
feedback with elimination of possible input disturbances must be used. In both cases, we
must avoid using unbounded output disturbances.

Therefore, considering these factors, we have proceeded with the reconstruction
and compensation of input disturbances in the development of integrating controllers
based on the reconstruction and compensation of disturbances in the state space, as well as
considering the unobservability of output disturbances for integrating models [19,20,35,36].
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2.3. 2-DoF P Control with Disturbance Feedforward

Let us consider a nominal case with a delay-free plant, Dm = D, am/Ksm = a/Ks and
no filtration applied (n = 0 in Figure 1). For piecewise constant inputs (setpoint w and
disturbances di, do) and the control error introduced at time instants t = NTs as

e(N) = w(N)− y(N), (8)

the plant output difference equation derived for linear control (uc = u) is

x(N + 1) = K[u(N) + di(N)] + Dx(N); y(N) = x(N) + do(N). (9)

Figure 1. 2-DoF filtered P control with filtered compensation of measurable input and output
disturbances di and do, Ho = zero-order hold.

The monotonic control error decrease requirement can be expressed as

e(N + 1) = Dce(N); 0 ≤ Dc < 1; Dc = e−Ts/Tc ; Tc > 0, (10)

with Dc = e−Ts/Tc denoting the quotient (the closed loop pole) corresponding to the closed
loop time constant Tc > 0. From the expression of the closed loop control error (10) and
from Equations (8) and (9), the control signal u may be calculated by means of a two-degree
of freedom (2-DoF) P controller:

u(N) = KPe(N) + (w(N)− do(N))(1 + am/Ksm)− di(N);

KP = (D− Dc)/K; Dc = e−
Ts
Tc .

(11)

Nominally, for the perfect model gain (Km = K) and no filtration applied (n = 0), such
a controller guarantees setpoint step responses with the output Y(z) specified by Fwy(z)
and the corresponding control signal dynamics Fwu(z)

Fwy(z) =
[

Y(z)
W(z)

]
di=do=0

=
1− Dc

z− Dc
= Qw(z);

Fwu(z) =
[

U(z)
W(z)

]
di=do=0

=
1− Dc

z− Dc

z− D
K

=
Qw

S0(z)
.

(12)

The transfer function Fwu(z) including the plant inverse S−1
0 (z) indicates that such a

controller-plant combination may also be useful to generate the filtered setpoint feedfor-
ward W f = QwW. However, it should be mentioned that, since S0(z) is not known, the
model Sm(z), should be used instead in the plant model inversion, as given in
Equations (5) and (6).

When Dc → 0 (with Tc/Ts → 0) the design offers easily detectable dead-beat per-
formance, celebrated in the early years of digital control as its exceptional achievement.
However, as Tc increases, the gain KP decreases, which also decreases the effect of the
measurement noise. Since such noise appears in output and disturbances measurement,
the quasi-continuous control with Tc >> Ts may be preferred in the majority of industrial
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applications. Note that the dead-beat control can still be applied as well, e.g., when eval-
uating circuit imperfections. It will only need to be used with relatively long sampling
times. Nevertheless, in practice, it may be required to introduce an additional filtration for
attenuation of the measurement noise.

2.4. Filtered P Controller Design

For an increased noise attenuation in both, the disturbance compensation and the
output measurement channels, the additional filters

F(z) =
(1− λ)n

(z− λ)n (13)

may be used (Figure 1) by selecting n > 1. As, e.g., mentioned in [44], “more roll-off may
contribute to robustness, but excessive roll-off results in peaking of the sensitivity and
complementary sensitivity functions”. Since the additional roll-off is only effective when
the feedback controller includes the same amount of roll-off, the filters will be introduced
simultaneously into both, the output stabilization and the disturbance compensation
channels. Their delays characterized by the filter order n and its time constant Tf , or the
pole λ = e−Ts/Tf , must then be taken into account when tuning the KP.

For the closed loop characteristic polynomial

A(z) = (z− λ)n(z− D) + KKP(1− λ)n (14)

the “optimal” gain KPo will be determined from the conditions for the double real dominant
pole zo expressed as:{

A(z) = 0;
dA(z)

dz
= (z− λ)n−1[z− λ + n(z− D)] = 0

}
z=zo

(15)

They yield

zo =
λ + nD
n + 1

; KPo =
1
K

D− λ

n + 1

(
D− λ

(1− λ)(1 + 1/n)

)n
(16)

Unlike the situation without a filter, where it was possible to choose arbitrarily the
tuning parameter Dc in Equation (11), the “optimal” controller gain (16) now depends on
the filter parameters n and λ.

2.5. State-Space Based DTC Design in the Discrete-Time Domain

The third not sufficiently explained aspect in the papers on FSP is related to the DTCs
history and missing specifications. DTCs with plant stabilization via the setpoint tracking
channel [19,20,35,36,45,46] existed before the first FSP control solutions and their modifications
to integrating and unstable systems. In some of published FSP concepts [16,47–55], the
insufficient attention is paid to the alternative solutions, which yield comparable, or even
better results than those offered by the FSP control.

When describing one of the first published DTCs [19,20,35,36] with a stabilizing
controller in the setpoint tracking channel, let us firstly suppose the nominal case with
Km = K and Dm = D. Thereby, for the state vector (Figure 2)

x =
[

di y0 y1 y2 · · · yk
]′; yi(N) = y0(N − i); i ∈ [0, k], (17)

the system with a piecewise constant input disturbance di = x1 = const, actually measured
output y0(N) = x2, the transport delay Td = kTs and the delayed measured outputs
yk(N) = xk+2 may be described by the following state space equations

x(N + 1) = Ax(N) + bu(N) + bdud(N); y(N) = c′x(N); (18)
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A =


1 0 0 · · · 0 0
K D 0 · · · 0 0
0 1 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0

 ; b =


0
K
0
...
0

; c′ =
[

0 · · · 1
]
.

A ∈ R(k+2)x(k+2); b ∈R(k+2)x1; c′ ∈ R1x(k+2)

Figure 2. Plant model with a piecewise constant input disturbance di (changed by uncontrolled input
pulses ud 6= 0) and the output delay consisting of k shift elements.

Its state will be reconstructed by the Luenberger state observer [56] described as

x(N + 1) = Ax(N) + bu(N) + h
(
y(N)− c′x(N)

)
; y(N) = c′x(N), (19)

which yields the observer matrix

A = A− hc′. (20)

The observer vector h may be determined according to the Ackermann formula as

h = Q(A)W−1; W =



c′

c′A
c′A2

...
c′Ak

c′Ak+1


=



0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 0
...

...
...

... · · ·
...

...
0 1 0 · · · 0 0 0
K D 0 · · · 0 0 0


, (21)

where, for K 6= 0, W is a regular observability matrix. For a dead-beat observer, when
Q(z) = zk+1, we obtain

h =


1/K

1 + D + ... + Dk+1

1 + D + ... + Dk

...
1 + D

 =


1/K

(Dk+2 − 1)/(D− 1)
(Dk+1 − 1)/(D− 1)

...
1 + D

. (22)

From such a dead-beat reconstruction we may then easily introduce both the delay
and disturbance compensations with a required filtration degree, or implement a control
with dynamical setpoint feedforward.

This early state-space-inspired solution, for state and disturbance reconstruction and
control, has been used on the simplest integrating models (a = 0), as well as on static (stable
and unstable) models with a 6= 0. At about the same time, a similar solution, today known
as Extended State Observer (ESO), has been proposed by [39]. It is focusing on design
based on integrating models (in our case with am = 0), which is specific for the Active
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Disturbance Rejection Control (ADRC). However, the solutions dealing with time-delayed
first-order systems under the ADRC brand (see, for example [5,6]) came much later than
the above-described proposal.

2.6. Why Not the Output Disturbance Reconstruction?

On the other hand, in a case of a piecewise constant output disturbance do (Figure 3),
it may be shown that even for a delay-free plant (k = 0), with respect to

A =

[
1 0
0 D

]
; b =

[
0
K

]
; c′ =

[
1 1

]
; W =

[
c′

c′A

]
=

[
1 1
1 D

]
, (23)

such a configuration is unobservable for D = 1. Hence, for integrating plant models it
makes no sense to reconstruct and compensate output disturbances. If anyone has to use
such a control scheme based on unobservable signals, the scheme has to be modified by
eliminating the unobservable signal from the implementation scheme. Thus, by modifying
the original structure, it can be applied, but without the reconstruction of the output
disturbance. In addition, the output disturbance do, equivalent, for integrating plants, to
di = const, increases over time beyond all limits, leading to overflow of the computer’s
registers. As a result, the first DTCs focused on the reconstruction and compensation of
input disturbances.

Figure 3. First-order plant model S0(z) with a piecewise constant output disturbance do (changed by
uncontrolled input pulses udo 6= 0).

2.7. Polynomial Interpretation of ESO-Based Non-Delayed Signals Reconstruction

While the state-space approach is useful for the initial analysis and design yielding
the observer and controller structure, for interpretation of the mentioned approaches
and a modified use, it is easier to deal with a polynomial approach. From the observer
Equation (19), rewritten as

x(z) = (zI−A + hc′)−1[bu + hy(z)], (24)

it is possible to express the reconstructed actual plant output y0 and the input disturbance
di as:

y0(N) =
[

0 1 · · · 0
]
x(N); di(N) =

[
1 0 · · · 0

]
x(N). (25)
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Taking into account expression (24), Equation (25) yields

y0(N) = Suy(z)u(N) + Syy(z)y(N);

Suy(z) =
K(z− 1)[zk + βk−1zk−1 + ... + β0]

zk+2 ; Syy(z) =
α1z + α0

z2 ;

βk−1 = 1 + D; βk−2 = 1 + D + D2; β0 = 1 + D + D2 + ... + Dk =
Dk+1 − 1

D− 1
;

α1 = 1 + D + ... + Dk+1 =
Dk+2 − 1

D− 1
; α0 = −(D + ... + Dk+1) = −D

Dk+1 − 1
D− 1

;

di(N) = Sudu(N) + Sydy(N);

Sud(z) = −
1

zk+2 ; Syd(z) =
z− D
Kz2 .

(26)

Given the maximum overall delay kt = k + 2 occurring in these relationships, it can
be stated that the proposed dead-beat responses based on Equation (26) can be ideally
completed in kt steps.

2.8. Controller Design for the Shortest Possible Transient Responses

The relationships (26) can also be derived by a much simpler polynomial approach,
and, at the same time, use higher flexibility in determining the order of individual transfer
functions, which is used by the DOB-based approach initiated in [57,58] and for the time-
delayed systems applied in [46].

The input disturbance reconstruction (see Figure 4) can be based on the formula

di = ua − u. (27)

Using the inverse transfer function of the system, ua can be formally expressed as
ua = S(z)−1y, which yields

di(N) =
(z− D)zk

K
y(N)− u(N). (28)

By modifying this non-causal relationship, the fastest achievable causal estimate of
the input disturbance di corresponds to its value delayed by k + 1 steps, expressed as

di(N − k− 1) =
(z− D)

Kz
y(N)−

1
zk+1u(N). (29)

Hence, the polynomial interpretation of the disturbance reconstruction including
the inverse plant model S0(z)−1 (in Syd(z)) is quite simple and fully equivalent to the
continuous case presented in [46]. The disturbance di delayed equally as the measured
plant output may then be simply calculated by subtracting the equally delayed controller
output from the reconstructed plant input signal [45,46]. Similarly as in [59], with respect
to ESO, the DOB-reconstruction delay may be decreased by one step to kt = k + 1 steps.

In addition, the reconstruction of the actual plant output y0 can be interpreted by
solving the Diophantine equation resulting from an intuitive requirement of behaviour
equivalent to delay-free plant [19,20]: the signal y0 resulting from the introduced feedback
should be equivalent to the undelayed plant output y0. Therefore, with respect to the
control signal u it must hold

y0
u

= S(z)Syy(z) + Suy(z) = S0(z). (30)

Thereby, in order to make the output reconstruction independent from a constant
disturbance di, the transfer function Suy(z) has to include factor z − 1 in its numerator
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(the effect of feedback through Suy will depend on the difference of two consecutive input
values, where the constant value di does not apply).

Figure 4. Reconstruction of an input disturbance di and of an undelayed first-order plant output y0

from sequences of the input u and the measured delayed output ym; δ-measurement noise.

Note that a modification of the ESO solution (26), Equation (30) may also be expressed
in the form

K
(z− D)zk+2

[
α1z + α0 + (z− 1)(z− D)(zk + βk−1zk−1 + ... + β0)

]
=

K
z− D

. (31)

From Equation (31) follows

α1z + α0 + (z− 1)(z− D)(zk + βk−1zk−1 + ... + β0) = zk+2. (32)

Comparison of the coefficients at the individual powers of z in Equation (32) with
βk = 1 yields two systems of equations. The first one with a triangular matrix and βk = 1

1 0 0 0 ... 0 0 0 0
−(1 + D) 1 0 0 ... 0 0 0 0

D −(1 + D) 1 0 ... 0 0 0 0
...

...
...

... ...
...

...
...

...
0 0 0 0 ... −(1 + D) 1 0
0 0 0 0 ... D −(1 + D) 1


.



βk
βk−1
βk−2

...
β1
β0


=



1
0
0
...
0
0


(33)

has the solution

βk−1 = (1 + D)βk = 1 + D
βk−2 = (1 + D)βk−1 − Dβk = 1 + D + D2

...

β0 = (1 + D)β1 − Dβ2 = 1 + D + ... + Dk =
Dk − 1
D− 1

.

(34)

From the second subsystem of equations[
D −(1 + D)
0 D

]
.
[

β1
β0

]
+

[
1 0
0 1

]
.
[

α1
α0

]
=

[
0
0

]
(35)
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follows

α1 = (1 + D)β0 − Dβ1 = 1 + D + ... + Dk+1 =
Dk+2 − 1

D− 1
;

α0 = −Dβ0 = −D(1 + D + ... + Dk) = −D
Dk+1 − 1

D− 1
.

(36)

However, similarly as in disturbance reconstruction, the polynomial approach offers
flexibility also in reconstruction of the actual output y0. Equations (31)–(36) can be resolved
for a reduced minimal feasible delay kt = k + 1, thus reducing the number of steps required
to reconstruct the current output. The corresponding transfer functions are:

Suy(z) =
K(z− 1)[zk−1 + βk−2zk−2 + ... + β0]

zk+1 ;

βk−2 = 1 + D; βk−3 = 1 + D + D2; ... β0 =
Dk − 1
D− 1

;

Syy(z) =
α1z + α0

z
; α1 =

Dk+1 − 1
D− 1

; α0 = −D
Dk − 1
D− 1

;

Sud(z) = −
1

zk+1 ; Syd(z) =
z− D

Kz
.

(37)

For the system in Figure 2, based on measuring the plant input and output with an
additional filtration (with F(z) (Equation (13)) defined as F = NQ/DQ), it possible to
compile a simple scheme for the reconstruction of any of the internal variables, i.e., also the
actual system output y0 and its input disturbance di (Figure 5).

Figure 5. Reconstruction and filtration of an input disturbance di and of an undelayed first-order
plant output y0 in Matlab/Simulink for Td = 4Ts: the static setpoint feedforward (blue), the setpoint
tracking circuitry with the actual output reconstruction, filtration and the stabilizing controller Kp

(orange) and the disturbance reconstruction, filtration and compensation (green).

2.9. Filtration Aspects—PrP-DOB Controller

Reconstruction of the input disturbance di and the non-delayed output y = y0 enables
their further use within the circuit in Figure 5 inspired by Figure 1. Such a procedure, which
employs simple relationships, and requires only selection of n and λ and the calculation of
KP (Equation (16)), seems more appropriate than perpetual change of the characteristic ob-
server polynomial in Equation (21) to achieve the required filtration and then recalculation
of KP. With respect to elimination of delay in the output and disturbance reconstruction,
including use of disturbance observer (DOB), this controller will be denoted as predictive
P controller (PrP) with DOB-based disturbance reconstruction and compensation, shortly
PrP-DOB controller.
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2.10. Example 1

To illustrate the different possible areas of application of the proposed PrP-DOB
controller and its settings, let us first consider the plant with nominal model parameters
Ks = Ks = 1, a = a = −1, Td = 0.6. This relative dead time value Td/T = 0.6, T = 1/|a| is
significantly larger than Td/T = 0.19 used in an unstable chemical reactor discussed in [14]
and by some other contributions to SP modifications for unstable plants. Four different
tuning scenarios have been proposed:

1. Dead-beat performance without additional filtration (n = 0)—appropriate only for
relatively long sampling periods (the chosen value Ts = 0.2 gives k = 3) and a
relatively low measurement noise and model uncertainty. For Tc → 0 we get Dc = 0
and Kp = 5.5167 (Equation (11)). This setting is important for comparing the results
of the original state-space and reduced polynomial approaches;

2. Transients with relatively long sampling periods (Ts = 0.2), slowed down by selection
of Tc = 1, which is reflected in the value of the pole Dc = 0.8187 and the reduced gain
Kp = 1.8187. This can partially reduce the effect of noise and circuit uncertainties also
without an additional filtration;

3. A significant increase of noise attenuation and robustness to uncertainties can only
be achieved with shorter sampling periods. For larger ones, the additional filtration
would threaten the stability of the control system with unstable plant. By choosing
Ts = 0.01, n = 1 and Tf = 0.1 yielding λ = e−Ts/Tf = 0.9048, we obtain Kp = 2.8936
(Equation (16));

4. A further increase in damping and robustness can be achieved by using higher-order
filters, e.g., n = 2 with Ts = 0.01, Tf = 0.1, λ = 0.9048 and Kp = 1.8958.

The corresponding transients are given in Figure 6. Obviously, decreasing the con-
troller order and choosing shorter sampling period is beneficial in terms of the disturbance
response for long Ts without additional filtration. For the shorter sampling periods with
filtration applied, the difference in the total considered delay (kt = k + 2 or kt = k + 1) is
not to distinguish in the plant output and input responses, but may be important for the
reconstructed disturbance response using higher-order filters.
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Figure 6. Time responses corresponding to different nominal tuning of the PrP-DOB controller
specified in Example 1 with the controllers derived with ESO (Equation (26)) for the total delay
kt = k + 2 (left) and by the polynomial approach (Equation (37)) with the minimal possible value
kt = k + 1 (right).
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2.11. Summary 1

Setting up the PrP-DOB controller depends on filtration. Without additional filtration,
the gain Kp is set by changing the parameter (required closed loop time constant) Tc, or
the corresponding pole Dc. When using an additional filter, the parameters Tc, or Dc may
not be chosen independently. Instead, Kp is calculated from the selected filter order n
and its time constant Tf . The only difference between stable, integrating and unstable
systems is that in the case of unstable systems it is not possible to choose arbitrarily large
filter time constant and/or the sampling period. The dependence of the transients on the
(possibly uncertain) setting parameters can be easily verified using the web application at
http://apps.iolab.sk/advanced/mathematics2021/, accessed on 25 June 2021.

The reconstruction of output and input disturbances could also be further modified
for the purpose of dynamic feedforward control within the so-called reference model
control [18,60]. However, in this paper, before giving a practical demonstration of the
algorithms, we are going to briefly discuss the modification of the discrete-time FSP
according to [21,22].

3. Smith Predictor Inspired Controllers

If we want to explain all the conditions for successful application of Smith predictor
inspired solutions, we need to start from the feedforward control dynamics [17,18]. The pos-
sibility of a discrete-time feedforward control by the closed-loop P controller immediately
follows from Fwu(z) in Equation (12).

However, let us firstly note that such an interpretation is far from common. In one
of the basic contemporary control textbooks [61], the feedforward control and the Smith
predictor have been presented in two completely independent chapters, without discussing
their interrelationships. It indicates that these two problems are not generally known
as related to each other. The same holds for numerous works on the so-called Filtered
Smith predictor (FSP) published before 2013. There is no term “feedforward” in article [14]
either. Thus, the third SP interpretation denoted as “Dynamical setpoint feedforward and
output disturbance rejection” may present a new information for the readers. Therefore, it
deserves a deeper attention. Furthermore, we believe that it has also never been mentioned
that the FSP structure has the following deficiencies:

• Unobservable output disturbances do for integrating models;
• Unlimited do increase for unstable and integrating plant models corresponding to

external or internal input disturbances;
• The problems in the presence of control constraints.

It is worth to mention that the authors of [14] added a note that the proposed schemes
needed to be further modified for implementation. However, they did not sufficiently
explain, why and how, and that such a change completely changes the functionality of the
structure, which no longer has the ability to provide a reconstructed disturbance signal.

3.1. SP Structure for Constrained Control

If a feedforward has to deal effectively with impact of the control signal constraints,
which are especially relevant when controlling unstable systems, its implementation by
the transfer functions (5) and (6) does not represent the optimal solution. Instead, a much
more effective approach is to use a primary loop (as illustrated for the continuous-time
control by transients in [18]) with plant models (1)–(3) and a constrained P controller set in
the continuous- and discrete-time-domains as (see Figure 7)

KP = (1/Tc − am)/Ksm
KP = (Dm − Dc)/Km; Dc = e−Ts/Tc

(38)

In the proportional zone of control, the primary loop yields the controller transfer
function (5). Then, unlike the feedforward implementation by the filtered inversion by
the model transfer function, it also takes into account the control signal limitations for

http://apps.iolab.sk/advanced/mathematics2021/
http://apps.iolab.sk/advanced/mathematics2021/


Mathematics 2021, 9, 1519 15 of 33

the inverse dynamics [21,22]. Therefore, without constraints, there are no reasons to
use the feedforward implementation in form of the primary loop. Hence, there are no
reasons for using the traditional SP structure for linear systems. Surprisingly, in the large
majority of papers devoted to SP and its modifications there are no comments mentioning
the constraints. The proper realization of constrained feedforward control deals with a
conditioning technique ([62], pp. 737).

Figure 7. Constrained setpoint feedforward implemented by the single transfer function (12) (with
the nominal plant S0(z) (Equation (4)) replaced by the model (3), above) and by the primary loop
with 2-DoF P control (below).

Furthermore, the traditional solutions with PI control exhibit in such situations windup
and make the tuning rules for different plant types unnecessarily complex [63–67] . These
are fundamental, not sufficiently emphasized shortcomings of the traditional SP in the
existing literature, which neglects the realization of an inverse dynamics by means of
control. The fact that each controller [68] inherently includes the inverse plant model is
known for a long time. It is then not necessary to use such complex solutions as proposed
in [60] .

3.2. 2-DoF SP with a Stabilizing Disturbance Feedforward

Here, it will be shown, how the reference setpoint feedforward may be extended
by reconstruction and compensation of non-measurable output disturbances using IMC
structure with a parallel model, as given in Figure 8.

Moreover, in the case of unstable control systems, there is another strong argument
for the feedforward control implementation by the primary loop that was not required
in SPs for stable systems: In the transfer-functions-based IMC control with parallel plant
model (as in Figure 8), one control action cannot stabilize, even identical, two parallel
unstable systems. In order to extend this structure to integrating and unstable systems,
the model Sm has to be embedded in the (stabilizing) primary loop. In addition, in order
to apply feedforward control to unstable plants (see Equation (7)), it is also necessary
to stabilize their input disturbance response (by the structure called as 2-DoF SP) with
the feedback controller Co, which does not modify the primary loop dynamics. With
respect to the properties of unstable plants, discussed in Section “Model uncertainties
and setpoint feedforward”, the disturbance feedback provides zero total disturbance at
the plant input. Therefore, to eliminate the (possibly unstable) plant dynamics from the
disturbance response, Co composed of a stabilizing PD control

R f b(z) = 1 + βn(z− 1), (39)

combined with an n ≥ 1 order low-pass filter (1− D f )
n/(z− D f )

n; D f = e
− Ts

Tf with a
unity steady-state gain, a proper transfer function, and yields disturbance feedforward (to
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keep the number of tuning parameters as low as possible, the disturbance feedforward will
mostly use the same time constant Tf = Tc as introduced for the primary loop tuning)

Co(z) =

(
1− D f

z− D f

)n

[1 + βn(z− 1)]. (40)

In [21,22] the low pass filter order in Co has been chosen just with respect to properness.
Since the first-order filter may be associated with high noise exposure, some authors
(e.g., [14]) start with evaluating the second-order filters, whereby they introduce Co with
two unknown parameters, but without considering its unit steady-state gain.

Figure 8. 2-DoF IMC as a setpoint feedforward with reconstruction and compensation of output
disturbances do (above), 2-DoF SP with a primary loop using 2-DoF P control (middle) and the
equivalent structure with unchanged signals u and uw f of the saturation block, but eliminating the
possibly unbounded output disturbance signal do, which represent the key feature of the so-called
filtered Smith predictor (FSP, below).

In order to eliminate the possibly unstable plant pole z = D = e−aTs from the nominal
input disturbance response

Fiy(z) = S(z)
(

1−Q(z)Co(z)z−k
)

(41)

the parameter βn has to be chosen as

am = 0; βn = k +
1

1− Dc
+

n
1− D f

; D f = e−Ts/Tf ; Dc = e−Ts/Tc ; n = 1, 2, ...

am 6= 0; βn =

1− Dk D− Dc

1− Dc

(
D− D f

1− D f

)n

1− D
; D = e−amTs

(42)
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3.3. Loop Stability Versus Disturbance Response Stability

As in each disturbance observer-based control [44], disturbance feedforward makes
the controlled plant to behave as the nominal model Sm(z) and thus achieves invariance
of the considered control to the model uncertainty. When replacing the internal positive
feedback through the plant model Sdm and the blocks Cw(z)Co(z) in Figure 9, the equivalent
controller R(z) is

R(z) =
1

1− Smz−km CoQS−1
m

=
1

1−QCoz−km
(43)

Together with the plant S(z) and the blocks Cw(z), Co(z) yields the equivalent plant
dynamics Se(z)

Se(z) =
SmS

Sm(1−QCoz−km) + QCoS
(44)

connected in series with the setpoint feedforward Cw(z). The corresponding input distur-
bance response is

Fiy(z) =
S

1 + SCwCoR
=

S Sm(1−QCoz−km)

Sm(1−QCoz−km) + QCoS
(45)

For relatively low frequencies ω → 0, when according to z = ejωT → 1 and
Co(z)Q(z)z−km → 1, Se(z) approaches the model dynamics Sm(z) (Equation (46)) (see
Figure 10). From Fiy(1) = 0, it follows that for stable plants the loop guarantees full com-
pensation of constant disturbances in steady state. Similarly, as in the case of compensation
of input disturbances by disturbance observer [44], the following limit cases hold:

z→ 1, Co(z)Q(z)z−km → 1, Se(1) ≈ Sm(z), Fiy(z) = 0
z→ ∞, Co(z)Q(z)z−km → 0, Se(z) ≈ S(z)

(46)

At high frequencies, when Co(z)Q(z)z−km → 0, the disturbance feedforward loses its
effectiveness and Se(z) behaves as an uncontrolled plant S(z).

Figure 9. Impact of the disturbance feedforward on the equivalent plant.
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Figure 10. Nyquist curves of the equivalent plant Se(z) (Equation (44)), of the delay-free model
Sm(z) (3) and of the plant S(z) corresponding to S(s) = e−0.1s/(s− 1) and Sdm(s) = e−0.07s/(s− 0.9)
with Ts = 0.01 and of the disturbance responses Fiy(z) (Equations (41) and (45)); z = ejωTs ,
ω ∈ (0, π/Ts).

These features, applied now to the structures based on setpoint feedforward combined
with output disturbance compensation from Figure 9, may well be documented by the
corresponding Nyquist curves (Figure 10). It needs to be emphasized that they lead to
conflicting requirements, when with regard to the stability of the plant state, it is not
possible to impose the compensation dynamics corresponding to an unstable model, but
with respect to the aptness of the reconstruction, we obtain the best short term results
with unstable model approximating optimally the controlled dynamics. It also led to
the incorrect conclusions that the stability of disturbance responses was considered to be
sufficient condition for the stability of the system state. However, this is not true, as will be
shown in the following sections.

3.4. Why the Structure of FSP and Not a Compact Equivalent Controller?

Despite several modifications to the Smith predictor were suggested so far in order to
control unstable systems, which are based on the above analysis, they are still not sufficient
to ensure stability of the circuit in Figure 8 (middle). When being aware of the fact that
the output disturbance, which is used for reconstruction, is unobservable in the case of
integrating systems and that it grows infinitely due to possible constant input disturbances
on unstable plants, it is straightforward that the mentioned structure is not applicable.
Therefore, it is clear that the reconstruction of output disturbance should be avoided.
However, the scheme can be modified so that at least some of its functional advantages
related to the limitation of the control signal remain unchanged. Figure 8 below depicts
such a modification, which may be fully equivalent to the structure presented in the middle
with respect to the input and output signals of the saturation u and uw f . In other words,
the local feedback around the saturation (including Sm and KP) has to be united with the
feedback including z−km and Co into the new block

Su(z) = Sm(z)[
KP
K′P
− Co(z)z−km ] =

NSu(z)
DSu(z)

(47)

Such a solution avoids the unbounded output disturbance reconstruction, which could
lead to overflow of computer registers.

As mentioned in [14], for a stabilizing disturbance feedforward Co(z), with βn (Equation (42))
calculated to cancel the unstable plant pole z = D from the disturbance transfer function
Hiy(z), the unstable pole will also be canceled from Equation (47) and the controller will
be based on internally stable blocks. From the user’s point of view, however, not only the
calculation of βn parameters is important, but also the calculation of the stable transfer
function (47), where the value of km can be high for short sampling periods Ts. Since the
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derivation of Su is missing in [14] and its expression is not trivial, we will derive it here by
using several approaches.

3.5. Integrating Plants

In the special case of integrating plant models with am = 0, K′P = KP and unobservable
output disturbances, besides of eliminating the pole z = 1 [22] in

Fiy(z) =
S(z)

1 + KPS0(z)

[
1− Co(z)

zk

]
=

NFiy(z)
DFiy(z)

(48)

it is also necessary to eliminate the reconstructed output disturbance do from the 2-DoF
SP control scheme in Figure 8 (middle), according to the bottom scheme. Thus, in order
to get a zero steady-state error, it must not only hold that Fiy(1) = 0, but the numerator
NFiy(z) must have a double zero z = 1 to also cancel the pole z = 1 brought by the step
transform z/(z− 1).

Secondly, in order to avoid using do, but still keeping the unmodified control algorithm
used for calculating the control signal (avoiding problems with control constraints [22]),
one may use a loop with all internal feedbacks from the saturated controller output into
block Su of the equivalent controller denoted usually as FSP. As discussed in [17,22], this
controller can no longer be interpreted as a dynamic feedforward with output disturbance
reconstruction and compensation—the reconstructed disturbance no longer occurs in the
controller structure, in which neither feedforward can be identified. Therefore, the name
used is misleading. Rather, it would be appropriate to talk about the SP-inspired solutions.

Introduction of this block, with or without further simplification of the loop by an
equivalent controller KP/(1 + KPSu) [21], cannot be reliably accomplished without taking
into account the limitations of the control action.

In the nominal case and in addition to the calculation βn, according to Equation (42), it
is yet necessary to calculate Su(z) (Equation(47)). For the nth order denominator of Co(z),
given by Equation (40), the numerator coefficients

NSu(z) = f0 + ... + fn+kzn+k−1 (49)

represent the remainder after dividing the numerator of Nsu(z) (Equation (47)) with
Dsu(z) yielding

G(z) = Kzk(z− Dc)n − K[1 + βn(z− 1)](1− Dc)n =
= g0 + g1z + ... + gn+kzn+k;

(50)

It means that they follow from equation

NSu(z)(z− 1) = G(z) (51)

1 0 0 0 ... 0
−1 1 0 0 ... 0
0 −1 1 0 ... 0
...

...
...

... ...
...

0 0 0 0 ... 1
0 0 0 0 ... −1


.


fn+k−1
fn+k−2

...
f1
f0

 =



gn+k
gn+k−1
gn+k−2

...
g1
g0


with solution

fn+k−1 = gn+k = K; fn+k−i = fn+k−i+1 + gn+k−i+1; − f0 = g0; i ∈ [2, n + k] (52)

Analytically, the solution can also be handled, preferably with the help of computer
algebra (by partial fraction decomposition). Here, the formulas will be limited to the
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simplest cases starting with the first order Co(z) corresponding to n = 1 in Equation (40),
when Sun(z) = Su(z). The results for n = 1, 2, 3 are the following

Su1(z) = K
zk + D1zk−1 + ... + D1z− (β− 1)D1

(z− D f )zk ;

Su2(z) = K
zk+1 + (1− 2D f )zk + D2zk−1 + ... + D2z− (β− 1)D2

(z− D f )2zk ;

Su3(z) = K
zk+2 + (1− 3D f )zk+1 + (1− 3D f + 3D2

f )z
k + D3zk−1 + ... + D3z− (β− 1)D3

(z− D f )3zk ;

Dn = (1− D f )
n; n = 1, 2, 3.

(53)

In this way, it is a relatively easy to derive the values for any integer k and higher
values of n. In order to simplify the formulas, we did not use a single general formula.

3.6. Unstable Plants

For both unstable and stable systems with the value am 6= 0, the calculation of
the reduced transfer function Su (Equation (47)), resulting from canceling the unstable
pole z = D, is even more complicated. In the nominal case with am = a, Ksm = Ks,
Km = K, Dm = D and km = k the result, for different values of n, may be expected in
the form

n = 1; κ = KPKs; D f 1 = 1− D f ; D1 = D− 1; δ = D− D f ;

Su1(z) = K
κD1

[
zk + δ(zk−1 + ... + Di−2zk−i + ... + Dk−2z)

]
+ (κ + a)D f 1 − κDk−1δ

(κ + a)D1(z− D f )zk ;

n = 2; κ = KPKs; D f 2 = (1− D f )
2; D1 = D− 1; δ = (D− D f )

2;
Su2(z) =

= K
κD1

[
zk+1 + (D− 2D f )zk + δ(zk−1 + ... + Di−2zk−i + ... + Dk−2z)

]
+ (κ + a)D f 2 − κDk−1δ

(κ + a)D1(z− D f )zk ;

n = 3; κ = KPKs; D f 3 = (1− D f )
3; D1 = D− 1; δ = (D− D f )

3;

Su3(z) = K
κD1 N3(z) + (κ + a)D f 3 − κDk−1δ

(κ + a)D1(z− D f )zk ;

N3(z) = zk+2 + (D− 3D f )zk+1 + (D2 − 3D f D + 3D2
f )z

k + δ(zk−1 + ... + Di−2zk−i + ... + Dk−2z).

(54)

3.7. Equivalent Controller

At this point, we should mention again that the importance of control constraints,
in terms of the FSP structure, was not mentioned in the discussed article, nor in older
publications. Namely, if we consider only linear circuits, there is no reason to use the
reduced transfer function [21,22], since it would be simpler to apply an equivalent controller

Ceq(z) =
K′P

1 + Su(z)K′P
(55)

instead. In order to show such a modification in at least one example, we derive Ceq for the
general case of unstable systems with n = 1, when, by using the computer-aided symbolic
calculations, we obtain:

Ceq(z) =
(KP + a/Ks)D1(z− D f )zk

D1
[
zk+1 + (KPK− D f )zk + S

]
+ Ka(1− D f )− KPK(Dk − 1− D f Dk−1 + D f )

S = KPKδ
k−2
∑

i−1
Di−1zk−1−i ; D1 = D− 1; δ = D− D f

(56)

This transfer function, where Su poles are present in the numerator of Ceq, also depicts
that the unstable pole of the system S is not canceled by the numerator of Ceq, which is a
necessary condition of the loop stability.

3.8. Example 2

This example considers the unstable plant from Example 1 controlled by 2DOF
SP and FSP and be implemented interactively using a http://apps.iolab.sk/advanced/
mathematics2021/, accessed on 25 June 2021. To illustrate different areas of application, we
chose firstly the nominal model parameters Ks = Ks = 1, a = a = −1, Td = 0.6 and four
different tuning scenarios:

http://apps.iolab.sk/advanced/mathematics2021/
http://apps.iolab.sk/advanced/mathematics2021/
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1. 2-DoF SP with dead-beat performance, appropriate for relatively long sampling
periods (Ts = 0.2), and a relatively low measurement noise and model uncertainty.
For Tc → 0, we obtain Dc = 0, Kp = 5.5167 (Equation(11)) and, for n = 1, Tf → 0,
D f = 0 and the Co tuning parameter β = 7.7609. The responses should be the same
as in Example 1 (Figure 6) with kt = k + 1.

2. With a relatively large sampling period and slowed down by the choice of Tc = 0.1,
which is reflected in the value of the pole Dc = 0.1353, by the reduced gain Kp = 4.9054
and the disturbance feedforward with n = 2 and D f = 0, giving strictly proper Co
with β = 10.9046 (i.e., situation close to options 1 and 2 in Example 1).

3. A significant increase in noise attenuation and robustness to process uncertainties
can again be achieved with shorter sampling periods. For Ts = 0.01, k = 60,
n = 2, Tf = 0.1, D f = e−Ts/Tf = 0.9048 and Tc = 0.2, Dc = 0.9512, Kp = 5.8527
(Equation (11)) and Kc = KP + a/Ks = 4.8527, the disturbance rejection is signifi-
cantly improved.

4. Yet, higher noise attenuation, paid by not so fast disturbance response, may be
expected for the same Ts = 0.01, Tc = 0.3, Dc = 0.9672 with filter time constants
Tf = 0.1 and D f = 0.9048 for increased Co order to n = 3, Kp = 4.262 and Kc = 3.262.

In the next step, different uncertainty impacts may be examined and compared with
the PrP-DOB controller.

3.9. Summary 2

Since only the courses with 2-DoF SP and a sufficiently long simulation time show the
collapse of the simulation due to exponentially growing internal signals, some authors have
overlooked this issue. The FSP authors responded by excluding unbounded disturbance
signals from the scheme, which they achieved by merging the primary loop signal with
one of the components of the reconstructed filtered disturbance. While [14] refers to 2-DoF
SP and FSP as “FSP conceptual” and “FSP implementation” structures, it should be noted
that these are two different controllers with different functionalities. Such misleading ter-
minology could only have arisen due to inconsistencies in the implementation of concepts.
Once we define SP as a setpoint feedforward with output disturbance reconstruction and
compensation, we can no longer label the modified structure as FSP. It contains neither
setpoint feedforward nor disturbance reconstruction and compensation. FSP rather re-
sembles solutions with a stabilizing controller in the direct path. The disturbance itself is
unknown, which excludes possible applications in the fields of identification (such as, e.g.,
discussed in [69]), diagnostics or adaptive control. As will be shown, also the structure
with equivalent controller (Equation (55)) yields different functionality.

Since for unstable systems, the 2-DoF SP does not guarantee long-term stability, the
only structure that can be used for disturbance reconstruction is the PrP-DOB. Although the
FSP terminology is common, it can be misleading from the user’s point of view and is ob-
scure rather than clarifying. Unlike PrP-DOB, where, both for the control of stable unstable
systems, only effort should be focused on selection of settings, the use of structures inspired
by the SP is completely different for stable and for integrating and unstable systems.

Next, the impact of control signal constraints on all considered control structures will
be investigated.

3.10. Example 3

Constrained (dead-beat) control with relatively long sampling period in Figure 11
enables to demonstrate in details some of the key characteristic properties of 2-DoF SP, FSP,
of the equivalent controller Ceq and of the PrP-DOB control. It again deals with the nominal
model parameters Ks = Ks = 1, a = a = −1, Td = 0.6 with four different situations:

1. The equivalent controller Ceq (Equation (56)) with a dead-beat tuning given by Ts =
0.2, Tc → 0, K = 0.2214, D = 1.2214, Dc = 0, Kp = 5.5167 (Equation (11)), n = 1,
Tf → 0, D f = 0 and β = 7.7609, which, in linear case, is fully equivalent to the FSP
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controller, yields under process input constraints u ∈ [−1.1, 0.5] fully unusable results
(see Figure 11, response 1).

2. In this respect, it may seem to be more suitable to apply the 2-DoF SP with dead-beat
performance (Figure 11, response 2), using the same parameters. However, due to
diverging reconstructed disturbance and unstable plant mode, it will be taken out of
service in a short time.

3. While used with the same parameter as in Example 1 for kt = k + 1, n = 0, the
disturbance response of the PrP-DOB controller with a dead-beat tuning (without
additional filtration) shows the same amplitude of the disturbance rejection as the 2-
DoF SP with dead-beat performance (Figure 11, response 3). However, the closed-loop
response is stable.

4. In Figure 11, the responses of the FSP controller (curves 4), the 2-DoF SP and the PrP-
DOB controller fully overlap. The advantage is that FSP and PrP-DOB responses are
internally stable. The disadvantage of FSP is that there is no reconstructed disturbance
signal available.
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Figure 11. Transients corresponding to constrained u ∈ [−1.1, 0.5] control with (1) nominal dead-beat
tuning of the equivalent controller Ceq (Equation (56)), (2) 2-DoF SP (according to Figure 8 middle)
with reconstruction and compensation of output disturbances (2-DoF SP), (3) PrP-DOB control From
Example 1, (4) FSP (according to Figure 8 down) with dead-beat tuning specified in Example 3.
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3.11. Summary 3

In terms of the constrained dead-beat performance, the 2-DoF SP, the FSP and the
PrP-DOB control may seem to be equivalent. However, the 2-DoF SP is unstable, its
disturbance signal is diverging and thus giving no useful information and also the FSP
does not give any information about the acting disturbances. From the practical point of
view, the problem is that, despite the large number of publications on the topic of FSP, an
evaluation considering control constraints, although extremely important, to the best of
our knowledge, has not yet been published. In fact, without such a study, the FSP cannot
be compared to simpler solutions with Ceq.

In practice, it will be necessary to work with the smallest possible sampling periods,
while ensuring a sufficiently high processing speed (whether it is the suppression of noise
or uncertainty).

4. Illustrative Example—Temperature Control

As for the illustration of the discussed controllers by real-time control, we do not know
of an available unstable system with dominant first-order dynamics, which would allow
safe experimentation in a laboratory environment. The unstable robotic arm used in the
article [16] rather represents a system with unstable second-order dynamics that, in general,
requires at least two pulses in the control signal course (corresponding to acceleration and
braking), which should be respected in evaluating its dynamics (see, e.g., [10]). We will
return to it when designing the corresponding controllers. With regard to the absence of
suitable unstable processes with dominant first-order dynamics, we decided to illustrate
at least the use of a simplified design of controllers based on the integrating models
approximating a stable higher-order process.

For illustrating the controllers proposed, temperature control of an Arduino-based
laboratory plant TOM1A [70–72] will be considered. Its heat channel consists of a 5 W bulb
representing a heat source, a cooling fan used to generate disturbances, and a temperature
sensor. Although it may be considered as a typically stable system, the marginally stable
integrating models will be used here, as an DTC-based alternative to ADRC [24,39,40]
and MFC [38], simplifying the plant modelling and controller design, and significantly
shortening the plant model identification.

4.1. Loop Dynamics Modelling

Already in early works [19,20], the selection of the nominal model of the controlled
system, based on two types of linear models (one created by the approximation of controlled
dynamics by “ultra local” IPDT models and the other by “local” FOTD ones) was considered
as one of the basic design steps. As other authors later confirmed [44], the basic model
selection criterion should be its simplicity. So, although the controlled system is physically
characterized by at least two modes of heat dissipation, one fast (radiation) and the other
one slow (convection), the choice of models remains quite limited to FOTD and IPDT ones,
representing just a single mode of the heat transfer. Given that this is a stable process,
the approximation by the first-order model, and the rigorous evaluation of the achieved
transients, do not pose any problems with regard to the permissible courses of the control
signal variable.

Thereby, for the mentioned laboratory plant, the identification results from the previ-
ous papers [70,71] yield

Ksm = 0.01; am = 0.05s−1; Tdm = 0.3s; Ts = 0.02s (57)

The identified plant dead time covers delay of the faster heat transfer by radiation,
contribution of several possible shorter time delays and transport delay due to information
processing and control signal calculation. Parameter am corresponds to a plant time
constant T1m = 1/am ≈ 20s, or it is chosen as am = 0 (for IPDT model). The mode of slow
heat conduction associated with heating the device body with a longer time constant in the
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range of 20 min is neglected. As a consequence of the simplified model, the results of the
experiments will largely depend on whether they were obtained using a cold or already
heated system. At the same time, they will also depend on the ambient temperature,
which may change, especially during longer experiments (information recorded for each
experiments includes both the board and the ambient temperatures). In such circumstances,
the definition of a nominal system dynamics, representing frequently the cornerstone of
robustness analysis, becomes questionable. Rather, it would make sense to define the
interval for each considered model parameter, together with the ambient temperature
value (if changed over a wider range). It should be noted here that, given the high degree
of simplification, the use of both models can be considered as a robustness test for both
types of controllers.

While in the simplest case the use of IPDT and FOTD models appears to differ only
in the value of a single parameter am, it has a huge impact on the necessary identification
experiment procedure. Obtaining a complete step-response for the FOTD model identifica-
tion requires a several-hour experiment, in which the effect of variable outer (environment)
disturbances must be excluded. However, to obtain a comparable IPDT model, an experi-
ment lasting a few seconds is sufficient. In such a case, however, it is also necessary to take
into account the differences in the parameters Ksm.

The situation is also complicated by a relatively high level of measurement noise.
In order to achieve the best possible filtration, it is necessary to work with the smallest
possible sampling period. With regard to the need for filtration in the following, we are
using the design of PrP-DOB controller based on kt = k + 2.

4.2. Experiment Organization

The system output has been firstly brought to the temperature w0 = 31 ◦C with the fan
input set to u f an = 5 (see Figure 12). Then, a reference setpoint step change to w1 = 37 ◦C
has been applied at t = 50 s. By increasing the fan input to u f an = 15, a disturbance step
has been produced at t = 150 s. Each measurement cycle finished with a cooling period
with switched off bulb and fan set to u f an = 100 for the period of 100 s.
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Figure 12. Experiment cycle: plant output response at the initial reference temperature w0 = 31 ◦C
with the fan input u f an1 = 5, transient to w1 = 37 ◦C at t = 50 s and a disturbance step produced by
an increased fan input u f an2 = 15 at t = 150 s; experiment with PrP-DOB control (left) and with the
FSP inspired solution (right); n = 3; Tc = 2.

4.3. Performance Measures Used

When publishing the first critique of the traditional SP, concerning the unnecessary,
or even harmful, inclusion of I-action in the primary feedforward loop, we thoroughly
tested all claims with a number of simulations and real-time control experiments using
nonlinear optical and thermal systems [63–67]. With regard to the possibility of immediate
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evaluation, we preferred time-domain performance measures (as used, for example, in [9]),
namely the Integral of absolute error (IAE) of the output variable

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y (58)

and the Total Variation (TV) of the control signal

TVu(u) = ∑
i
|ui+1 − ui| (59)

The Integral of Absolute Error (IAE) represents a quantitative performance measure
used typically for evaluating the speed of transients [73]. It may be applied to the reference
setpoint (IAEs) and the input disturbance (IAEi) step responses. In order to demonstrate
a balanced performance view, in this paper, the loop evaluation considers the simple
combined value

IAE = IAEs + IAEi (60)

Of course, by weighing the individual components as in [74], we could refine the
evaluation, but with respect to a number of other possible parameters, we will try to keep
the evaluation as simple as possible.

Skogestad introduced TV as a measure of an excessive control effort. However, as
explained in [75], as the main qualitative parameters of a control design it is frequently
useful to consider shapes of the resulting transient responses both at the plant input and
output [72]. Among them, deviations from monotony can be used as a quantifiable measure.
Since for a monotonic transient of a setpoint step response resulting into a process output
change between y0 and y1, the total output variation TV equals to the net output change
|y1 − y0|, an output deviation from monotonicity (MO) may be quantified by an excess of
the TV measure from the minimum necessary value, denoted as TV0 (excessive variation):

TV0(ys) = ∑
i
|yi+1 − yi| − |y∞ − y0| (61)

For a single integrator plant, the input corresponding to a MO output is a one-pulse
(1P) signal [74]. This is formed by two MO intervals. Thus, the transient between the initial
and the final input values u0 and u∞ must be separated by an extreme point um /∈ (u0, u∞)
(or an interval at a saturation limit) and the twice applied deviation from monotonicity
(Equation (61)) yields together

TV1(u) = ∑
i
|ui+1 − ui| − |2um − u∞ − u0|. (62)

At the plant output, similar 1P shapes, quantified by TV1(yi), occur after step-like
disturbances. A well-balanced controller tuning may again consider combined values at
the output and input

TV(y) = TV0(ys) + TV1(yi); TV(u) = TV1(us) + TV1(ui); (63)

A “holistic” view (considering both the speed and shapes of responses) may be defined
by the speed-effort (SE) cost function

J(u) = IAEκ TV(u) (64)

and or the speed-wobbling (SW) cost function

J(y) = IAEκ TV(y) (65)
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with the parameter κ representing the weight of IAE (speed of control) in the evaluation.
Besides speed of control, the SE cost function (64) focuses on smooth control signal and SW
(Equation (65)) focuses on reduced output wobbling.

4.4. Application of the PrP-DOB Control

The first set of experiments has been carried out by PrP-DOB control structure, em-
ploying the output and disturbance reconstruction using three low pass filters (n = 1, 2, 3),
applied according to Figure 1. They have been tuned by the single tuning parameter
Tc ∈ [0.1, 2] s, whereby the filter pole λ = −n/Tc is chosen to yield a constant average
residence time [61] Tc = n/|λ| of the filter.

For the shortest Tc values, the IAE values are high due to the noisy overload plant
input and output signals. By increasing Tc, the noise impact rapidly decreases (Figure 13).
Despite the limitation of the control signal, there was no permanent control deviation at
the output as discussed in [76]. Increase of IAE at higher Tc values appears due to slow
down transients. However, the increase is not so high when increasing n. For larger Tc,
the optimum IAE values do not significantly depend on the type of model used. When
applying larger Tc values, IAE increases more rapidly for IPDT models and for lower n
(Figure 14 left).
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Figure 13. PrP-DOB controller (Equation (26)) combined with filtration according to Figure 1 (left):
output and input for Tc = 0.1 s (left) and Tc = 0.2 s (right); am = 0, n = 1.
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Figure 14. PrP-DOB controller (Equation (26)) combined with filtration according to Figures 1 and 5,
λ = −n/Tc (left) and FSP controller (Equations (39)–(52)). (right): Combined IAE versus the tuning
parameter Tc ∈ [0.1, 2] s.

By using the “holistic” cost functions (64) and (65) considering with the weighting
κ = 1 both speed of the control and the shapes of transients (Figure 15 left), the achieved
performance remains nearly the same for both considered models (am = 0 and am 6= 0). This
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result again suggests that the controller is not sensitive to the accuracy of the determination
of parameter am and (similarly as in ADRC) it is enough to use simpler integrating models.

By using higher-order filters, performance may be significantly improved for longer
Tc (the considered cost function is displayed in a logarithmic scale). In the case of speed-
wobbling cost function (Figure 15 left below), for n = 1, the performance improvement by
increasing Tc is strongly limited for both models.

With increased control error weighting κ = 6 in the holistic cost functions (64) and (65)
(Figure 16 left), the possibilities of improving performance by increasing Tc will be limited—
for SE cost function significantly more than for SW one. The different positions of the
optimal points with the minimum values of the individual cost functions illustrate why the
optimal setting of the controllers cannot be crammed into a single optimal relationship, or
rule, covering all possible requirements of practice. However, it turns out that in a large
number of situations, it will be possible to suffice with the choice of IPDT model and n = 2
regarding the filter degree.
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Figure 15. PrP-DOB controller (Equation (26)) combined with filtration according to Figures 1 and 5,
λ = −n/Tc (left) and FSP controller (Equations (39)–(52)) (right). Speed-effort (above) and speed-
wobbling cost functions (below) versus the tuning parameter Tc ∈ [0.1, 2] s; κ = 1.
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Figure 16. PrP-DOB controller (Equation (26)) combined with filtration according to Figure 1 and
Figure 5, λ = −n/Tc (left) and FSP controller (Equations (39)–(52)) (right). Speed-effort (above) and
speed-wobbling cost functions (B) versus the tuning parameter Tc ∈ [0.1, 2]s; κ = 6.

4.5. Application of the FSP Controller

For the shortest Tc, the corresponding IAE values (Figure 14 right) are high due to the
noise at the process output. By increasing Tc, the IAE values decrease to a minimum, from
which they grow again due to slowing down the process. Surprisingly, the optimum IAE
values correspond to a simpler IPDT model with the highest filter order n. The minimum
achievable IAE values are slightly higher than with the PrP-DOB controller.

Unlike the PrP-DOB controller, the increased n increases cost functions (64) and (65)
(Figure 15 right). However, it should be noted that for FSP we worked with low-pass filter
degrees 2,3,4, while in the first method it was the degree one lower. With a similar choice
of FSP degrees from 1 [72], the worst effect of noise for the minimum value of n was shown
there as well.

As with the PrP-DOB controller, the combined functions decrease with increasing
Tc. Effects of an increased control error weighting achieved with k = 6 in holistic cost
functions (64) and (65) (Figure 16 right) are similar to those with PrP-DOB control, just the
particular minima are shifted to higher Tc values.

4.6. Summary 4

Real-time experiments on a thermal plant confirmed the equivalence of the compared
PrP-DOB and FSP controllers in terms of the transients performance. Although the charac-
teristics of the selected performance indicators depending on Tc have different shapes, the
achieved optimal values are fully comparable.

At the same time, the results show that by not considering possibilities of the simplified
process modelling given by the use of IPDT approximations, the works from the DTC
area (as, e.g., [14,16]) neglect possibilities of a significant design simplification offered by
ADRC and MFC control. Although, as can be verified by simulation with web applications,
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in unstable systems, the quality of transients based on design using integral models will
decrease with a Td value much faster than in stable systems (similarly as in PID control [12]).

5. Discussion of the Results

The above results obtained by both simulation and real-time control should be reason
enough to rewrite or add to some of the listed references in [14], which represent a whole
body of work on FSP. Part of the problems has already been explained in the article [16].
However, since the number of papers written on FSP and based on a primary loop with a
PI control is really high, see, e.g., [47–49,51–55], whereas it was not sufficiently explained
why the conceptual schemes, implementation and equivalent controller differ and what
are the impacts on the control task, it may take longer to correct the understanding of SP,
FSP and other alternatives in DTC design. Because many explanations are still lacking in
the current literature, we believe that this work helps uncover some hidden secrets.

On the other hand, problems with the control based on integrating models seem to
have contributed to the fact that users of structures inspired by Smith’s predictor did not
notice possible simplifications brought by their use into identification and control and
which are already for long time in the focus of attention in the field of ADRC.

In our future work, we will focus more on the limitations of SP. It is not widely known
that SP cannot be applied to unstable systems with larger delays because such a delay
makes the whole control system unstable, but the structure could be used after introducing
a stabilizing controller complemented by a disturbance reference model [18]. Or that SP
becomes redundant for stable systems with larger delays and it is easier to modify the
solution based on the Reswick solution [10,77]. Another direction of our research will
deal with the possibility of using additional information based on the analysis of the
reconstructed disturbance provided by the PrP-DOB controller.

6. Conclusions

The article has shown that several facts important for the control of simple first-order
time-delayed systems are still unknown to the broad control community. Insufficiently
known or clearly explained aspects then result in insufficient use of the advantages of
already existing solutions and their generalization for more complex tasks. Indeed, the fact
that the reader is not provided with all the information that would allow him to understand
the DTCs at hand is the central aspect of the problem considered and constitutes obstacles to
the further development of time-delayed systems control. To make progress, it is important
to place DTCs in the broader context of control methods, combined with a clarification of
the common relationships and differences. In a series of articles focused on the DTCs for
stable, unstable and integrating models, we have shown that limiting this issue to FSP is
very restrictive, even misleading. We have shown several new possibilities of designing
alternative solutions while maintaining the full functionality of the original SP, i.e., also
the signal of the reconstructed disturbance. Two different recently published designs of
DTCs with stabilizing controllers have been extended with a third one based on the ESO
design and extended by polynomial interpretation, providing an input disturbance signal
and an undelayed plant output, which allow the stabilizing controller to increase the speed
of transients. We hope that such a responsible approach to all design issues allows to
find a response to articles such as “Grimholt and Skogestad: Should we forget the Smith
Predictor?” from the PID2018 conference [11]. We see the starting point for improving the
situation in this area as taking note of all the solutions that exist in this area, not just some
of them, calling them by their proper names, respecting the essential points of their design,
and considering all the important aspects in their implementation.
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Abbreviations
1P One-Pulse, response with 2 monotonic segments (1 extreme point)
2-DoF Two-Degree of Freedom
ADRC Active Disturbance Rejection Control
DOB Disturbance Observer
DTC Dead-Time Compensator
ESO Extended State Observer
FO Fractional Order
FOTD First-Order Time-Delayed
FSP Filtered Smith Predictor
HO Higher Order
IAE Integral of Absolute Error
IMC Internal Model Control
IPDT Integrator Plus Dead-Time
MFC Model-Free Control
MO Monotonicity
P Proportional
PD Proportional-Derivative
PID Proportional-Integral-Derivative
PIDm

n generalized PID with mth order derivative action and nth order low-pass filter
PrP Predictive Proportional
SE Speed-Effort
SP Smith Predictor
SW Speed-Wobbling
TV Total Variation
TV0 Deviation from monotonicity
TV1 Deviation from 1P shape
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17. Huba, M.; Bisták, P.; Vrančić, D. 2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed
Plants. Mathematics 2021, 9, 1064. [CrossRef]
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