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Abstract: Recently, the new operation4 was introduced over intuitionistic fuzzy sets and some of
its properties were studied. Here, new additional properties of this operations are formulated and
checked, providing an analogue to the De Morgan’s Law (Theorem 1), an analogue of the Fixed Point
Theorem (Theorem 2), the connections between the operation4 on one hand and the classical modal
operators over IFS Necessity and Possibility, on the other (Theorems 3 and 4). It is shown that it
can be used for a de-i-fuzzification. A geometrical interpretation of the process of constructing the
operator4 is given.
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1. Introduction

Intuitionistic Fuzzy Sets (IFS) were introduced in 1983 in [1] as extensions of L. Zadeh’s
fuzzy sets [2]. In [3,4], a lot of operations, relations, and operators are introduced over IFSs
(see [3,4]) and their properties are studied. Now, IFSs are one of the most useful type of
fuzzy sets. So, as it is mentioned in [4], it is important to search new operations over IFS
and to search for real applications for them.

The present paper is devoted to the new operation 4 introduced over IFSs in [5],
where some of its properties were studied. Here, new properties of this operations are
formulated and their validity is checked. It is shown that the new operation is useful for
realization of the de-i-fuzzification procedure, discussed in [6], which aims to provide a
tool for transformation of a given IFS to a fuzzy set by analogy with the existing procedures
for de-fuzzification in fuzzy sets theory that transform a fuzzy set to a crisp set (see, e.g., [7],
and further research on de-i-fuzzification in [8–11]).

The paper is organized as follows: in Section 2, some necessary definitions are given.
Section 3 contains the main results, related to the geometrical interpretation of the new
operation and its basic properties.

2. Preliminaries

First, following [1,3,4], we mention that if the set E is fixed, then the IFS A in E is
defined by:

A = {〈x, µA(x), νA(x)〉 | x ∈ E},
where functions µA : E→ [0, 1] and νA : E→ [0, 1] define the degree of membership and
the degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.

For two IFSs A and B, a lot of operations and relations are defined, [1,3,4]. Below, we
give only those of them, which are used in the paper.
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For every two IFSs A and B we define the following relations and operations (every-
where below “iff” means “if and only if”):

A ⊆ B iff (∀x ∈ E)(µA(x) ≤ µB(x) & νA(x) ≥ νB(x));

A ⊇ B iff B ⊆ A;

A = B iff (∀x ∈ E)(µA(x) = µB(x) & νA(x) = νB(x));

A ∩ B = {〈x, min(µA(x), µB(x)), max(νA(x), νB(x))〉|x ∈ E};
A ∪ B = {〈x, max(µA(x), µB(x)), min(νA(x), νB(x))〉|x ∈ E};
¬A = {〈x, νA(x), µA(x)〉 | x ∈ E}.

3. Main Results

Let us have two IFSs A and B such that for each x ∈ E:

µA(x) + νA(x) + µB(x) + νB(x) > 0. (1)

For them, the operation4 is defined as follows:

A4B =

{〈
x,

µA(x) + µB(x)
µA(x) + νA(x) + µB(x) + νB(x)

,
νA(x) + νB(x)

µA(x) + νA(x) + µB(x) + νB(x)

〉
| x ∈ E

}
.

Let us assume that if the condition (1) is invalid for some y ∈ E, then
〈

y,
µA(y) + µB(y)

µA(y) + νA(y) + µB(y) + νB(y)
,

νA(y) + νB(y)
µA(y) + νA(y) + µB(y) + νB(y)

〉
= 〈y,

1
2

,
1
2
〉.

For example, if the universe E = {x, y} and the two IFSs A and B over it have the forms

A = {〈x, 0.3, 0.5〉, 〈y, 0.0, 0.0〉},
B = {〈x, 0.7, 0.1〉, 〈y, 0.0, 0.0〉},

then
A4B = {〈x, 0.625, 0.375〉, 〈y, 0.5, 0.5〉}

We must mention that operation4 can be interpreted as a more detailed form of T.
Buhaescu’s operation

A@B =

{〈
x,

µA(x) + µB(x)
2

,
νA(x) + νB(x)

2

〉
| x ∈ E

}

(see [12]).
An important question when defining a new operation over two IFSs is ensuring that

the result of its application satisfies the conditions in the definition of IFS. In this sense, the
operation4 is defined correctly, because

0 ≤ µA(x) + µB(x)
µA(x) + νA(x) + µB(x) + νB(x)

≤ 1,

0 ≤ νA(x) + νB(x)
µA(x) + νA(x) + µB(x) + νB(x)

≤ 1,

µA(x) + µB(x)
µA(x) + νA(x) + µB(x) + νB(x)

+
νA(x) + νB(x)

µA(x) + νA(x) + µB(x) + νB(x)
= 1 ≤ 1.

The IFS A is a proper one (see [3]) if for at least one x ∈ E:

µA(x) + νA(x) < 1,



Mathematics 2021, 9, 1518 3 of 11

i.e., the set is not a fuzzy set. It is important to mention that operation4, when applied
over two proper IFSs with elements satisfying condition (1), gives as a result a fuzzy set.

In [5], it is checked that operation4 is commutative, but not associative; and there it
was mentioned that for the case of intuitionistic fuzzy pairs (IFP, i.e., pair 〈a, b〉 for which
a, b, a + b ∈ [0, 1], see [13]), it has the form

〈a, b〉4〈c, d〉 =
〈

a + c
a + b + c + d

,
b + d

a + b + c + d

〉
,

where a, b, c, d ∈ [0, 1] and a + b ≤ 1, c + d ≤ 1, such that a + b + c + d > 0. For the case,
when a + b + c + d = 0 we can assume as above that

〈0, 0〉4〈0, 0〉 =
〈

1
2

,
1
2

〉
.

Following [4], let us define the sets

O∗ = {〈x, 0, 1〉 | x ∈ E},
U∗ = {〈x, 0, 0〉 | x ∈ E},
E∗ = {〈x, 1, 0〉 | x ∈ E}

that can be named “complete falsity set”, “complete uncertainty set” and “complete truth
set”, respectively.

We check that for each IFS A:

A4O∗ =
{〈

x,
µA(x)

µA(x) + νA(x) + 1
,

νA(x) + 1
µA(x) + νA(x) + 1

〉
| x ∈ E

}
,

A4U∗ =
{〈

x,
µA(x)

µA(x) + νA(x)
,

νA(x)
µA(x) + νA(x)

〉
| x ∈ E

}
,

A4E∗ =
{〈

x,
µA(x) + 1

µA(x) + νA(x) + 1
,

νA(x)
µA(x) + νA(x) + 1

〉
| x ∈ E

}
.

Having in mind the well-known interpretation of an intuitionistic fuzzy set onto a
triangle F, as illustrated in Figure 1 (see [3,4]), we will show in a stepwise manner the way
of constructing the geometrical interpretation of the element

〈
x,

µA(x) + µB(x)
µA(x) + νA(x) + µB(x) + νB(x)

,
νA(x) + νB(x)

µA(x) + νA(x) + µB(x) + νB(x)

〉
,

when we have the geometrical interpretation of x about both IFSs A and B, i.e., 〈x, µA(x),
νA(x)〉 and 〈x, µB(x), νB(x)〉. We will remind that the point with coordinates 〈1, 0〉 repre-
sents in the IFS triangle the complete Truth, and the point with coordinates 〈0, 1〉 represents
the complete Falsity.
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Figure 1. Geometrical interpretation of an element x ∈ E into the intuitionistic fuzzy interpreta-
tional triangle.

3.1. Algorithm for Construction of Operation4
Step
1.

In Figure 2, we draw a section of length µA(x) + µB(x) + νA(x) + νB(x) for the
case when this length is a positive number.
Note: There are different cases for the length of this section as compared with the
unitary length of the triangle’s side, but the procedure is similar in all the cases.
In the special case, when the length is zero, obviously the result coincides with
the point with coordinates 〈0, 0〉 which in the IFS theory is interpretation of the
complete uncertainty.

Step
2.

We connect the point with coordinates 〈µA(x) + µB(x) + νA(x) + νB(x), 0〉 with
the point with coordinates 〈0, 1〉 (see Figure 3), constructing a line.

Step
3.

After this, we construct the line from point 〈µA(x) + µB(x), 0〉 in such a way that is
parallel to the previous one. It crosses the ordinate at point P. It is easily calculated
that the coordinates of point P are

〈
0, µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x)

〉
(see Figure 4).

Step
4.

We construct a line from point P that is parallel to the hypotenuse of the IFS-
interpretation triangle. The line crosses the abscissa at point Q (see Figure 5). Its
coordinates are

〈
µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x) , 0
〉

.

Step
5.

Finally, we construct a perpendicular from point Q to the hypotenuse of the IFS-
interpretation triangle. The perpendicular crosses the hypotenuse in point R (see
Figure 6). Its coordinates are

〈
µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x) , νA(x)+νB(x)
µA(x)+νA(x)+µB(x)+νB(x)

〉
.

Therefore, point R represents the geometrical interpretation of element x in the IFS
A4B.

Note: The procedure is identical regardless of whether the sum µA(x) + µB(x) + νA(x) + νB(x)
is greater than or less then 1, the only difference is whether the constructions are within or
outside of the triangle.

Figure 1. Geometrical interpretation of an element x ∈ E into the intuitionistic fuzzy interpreta-
tional triangle.

3.1. Algorithm for Construction of Operation4
Step 1. In Figure 2, we draw a section of length µA(x) + µB(x) + νA(x) + νB(x) for the

case when this length is a positive number.
Note: There are different cases for the length of this section as compared with the
unitary length of the triangle’s side, but the procedure is similar in all the cases.
In the special case, when the length is zero, obviously the result coincides with
the point with coordinates 〈0, 0〉 which in the IFS theory is interpretation of the
complete uncertainty.

Step 2. We connect the point with coordinates 〈µA(x) + µB(x) + νA(x) + νB(x), 0〉 with
the point with coordinates 〈0, 1〉 (see Figure 3), constructing a line.

Step 3. After this, we construct the line from point 〈µA(x) + µB(x), 0〉 in such a way that is
parallel to the previous one. It crosses the ordinate at point P. It is easily calculated
that the coordinates of point P are

〈
0, µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x)

〉
(see Figure 4).

Step 4. We construct a line from point P that is parallel to the hypotenuse of the IFS-
interpretation triangle. The line crosses the abscissa at point Q (see Figure 5). Its
coordinates are

〈
µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x) , 0
〉

.

Step 5. Finally, we construct a perpendicular from point Q to the hypotenuse of the IFS-
interpretation triangle. The perpendicular crosses the hypotenuse in point R (see
Figure 6). Its coordinates are

〈
µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x) , νA(x)+νB(x)
µA(x)+νA(x)+µB(x)+νB(x)

〉
.

Therefore, point R represents the geometrical interpretation of element x in the IFS
A4B.

The procedure is identical regardless of whether the sum µA(x) + µB(x) + νA(x) +
νB(x) is greater than or less then 1, the only difference is whether the constructions are
within or outside of the triangle.



Mathematics 2021, 9, 1518 5 of 11Mathematics 2021, 1, 0 5 of 10

@
@

@
@

@
@
@

@
@@

〈0, 1〉

〈0, 0〉
〈1, 0〉

µA(x)
︸︷︷︸

µB(x)
︸ ︷︷ ︸

νA(x)
︸ ︷︷ ︸

νB(x)
︸ ︷︷ ︸

Figure 2. First step

@
@

@
@

@
@
@

@
@@QQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

〈0, 1〉

〈0, 0〉
µA(x)
︸︷︷︸

µB(x)
︸ ︷︷ ︸

νA(x)
︸ ︷︷ ︸

νB(x)
︸ ︷︷ ︸

Figure 3. Second step

@
@

@
@

@
@
@

@
@@QQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

〈0, 1〉

〈0, 0〉
µA(x)
︸︷︷︸

µB(x)
︸ ︷︷ ︸

νA(x)
︸ ︷︷ ︸

νB(x)
︸ ︷︷ ︸Q

Q
Q

Q
Q

Q
QQ

Q
Q
Q

Q
Q

Q
QQ

Q
Q
Q

Q
Q
Q

QQ

Q
Q

Q
Q

Q
Q
QQ

Q
Q

Q
Q
Q

Q
QQ

Q
Q
Q

Q
Q
Q

QQ

Q
Q
Q

Q
Q
Q

QQ
〈0, µA(x)+µB(x)

µA(x)+νA(x)+µB(x)+νB(x) 〉 •P

Figure 4. Third step
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Proof. Let the IFSs A and B be given. Then

¬(¬A4¬B) = ¬({〈x, νA(x), µA(x)〉 | x ∈ E}4{〈x, νB(x), µB(x)〉 | x ∈ E})

= ¬
{〈

x,
νA(x) + νB(x)

µA(x) + νA(x) + µB(x) + νB(x)
,

µA(x) + µB(x)
µA(x) + νA(x) + µB(x) + νB(x)

〉
| x ∈ E

}

=

{〈
x,

µA(x) + µB(x)
µA(x) + νA(x) + µB(x) + νB(x)

,
νA(x) + νB(x)

µA(x) + νA(x) + µB(x) + νB(x)

〉
| x ∈ E

}

= A4B.

This completes the proof.

Let for the IFS A:
2A = A4A

and for each natural number n ≥ 2

nA = (n− 1)A4A.

Then the following theorem is valid, which gives an analogue of some sense to the
Fixed Point Theorem.

Theorem 2. For each IFS A and for each natural number n ≥ 2

nA =

{〈
x,

µA(x)
µA(x) + νA(x)

,
νA(x)

µA(x) + νA(x)

〉
| x ∈ E

}
. (2)

Proof. For the proof, we use the method of mathematical induction. Let n = 2. Then

2A = A4 A

=

{〈
x,

2µA(x)
2(µA(x) + νA(x))

,
2νA(x)

2(µA(x) + νA(x))

〉
| x ∈ E

}

=

{〈
x,

µA(x)
µA(x) + νA(x)

,
νA(x)

µA(x) + νA(x)

〉
| x ∈ E

}
.

Let us assume that for some natural number n ≥ 2 (2) is valid. Then

(n + 1)A = nA4 A

=

{〈
x,

µA(x)
µA(x) + νA(x)

,
νA(x)

µA(x) + νA(x)

〉
| x ∈ E

}
4 A

=





〈
x,

µA(x)
µA(x)+νA(x) + µA(x)

µA(x)
µA(x)+νA(x) +

νA(x)
µA(x)+νA(x) + µA(x) + νA(x)

,

νA(x)
µA(x)+νA(x) + νA(x)

µA(x)
µA(x)+νA(x) +

νA(x)
µA(x)+νA(x) + µA(x) + νA(x)

〉
| x ∈ E





=





〈
x,

µA(x)
µA(x)+νA(x) (1 + µA(x) + νA(x))

1 + µA(x) + νA(x)
,

νA(x)
µA(x)+νA(x) (1 + µA(x) + νA(x))

1 + µA(x) + νA(x)

〉
| x ∈ E





=

{〈
x,

µA(x)
µA(x) + νA(x)

,
νA(x)

µA(x) + νA(x)

〉
| x ∈ E

}
.

This completes the proof.
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Corollary 1. For each IFS A and for each natural number n ≥ 2

nA = A4U∗.

In [1,3], the two simplest intuitionistic fuzzy modal operators are defined by

�A = {〈x, µA(x), 1− µA(x)〉 | x ∈ E},

♦A = {〈x, 1− νA(x), νA(x)〉 | x ∈ E}.
We can check directly that for every two IFSs A and B:

�(A4B) = A4B,

♦(A4B) = A4B,

and, more generally, for each real number α ∈ [0, 1]:

Dα(A4B) = A4B,

where the operator Dα is defined in [3] by

Dα(A) = {〈x, µA(x)+ α(1−µA(x)− νA(x)), νA(x)+ (1− α)(1−µA(x)− νA(x))〉 | x ∈ E}.

The next two theorems give the connections between the operation4 on one hand
and the classical modal operators over IFS Necessity and Possibility, on the other hand.

Theorem 3. For every two IFSs A and B:

�A4 �B ⊆ �(A4B),

♦A4 ♦B ⊇ ♦(A4B).

Proof. Let the two IFSs A and B be given. Then

�A4 �B = {〈x, µA(x), 1− µA(x)〉 | x ∈ E}4{〈x, µB(x), 1− µB(x)〉 | x ∈ E}

=

{〈
x,

µA(x) + µB(x)
µA(x) + 1− µA(x) + µB(x) + 1− µB(x)

,

1− µA(x) + 1− µB(x)
µA(x) + 1− µA(x) + µB(x) + 1− µB(x)

〉
| x ∈ E

}

=

{〈
x,

µA(x) + µB(x)
2

, 1− µA(x) + µB(x)
2

〉
| x ∈ E

}

⊆ �
{〈

x,
µA(x) + µB(x)

µA(x) + νA(x) + µB(x) + νB(x)
,

νA(x) + νB(x)
µA(x) + νA(x) + µB(x) + νB(x)

〉
| x ∈ E

}

= �(A4B).

The inclusion is valid because for every four numbers a, b, c, d ∈ [0, 1] such that
a + b + c + d > 0:

a + c
a + b + c + d

≥ a + c
2

and hence
b + d

a + b + c + d
≤ 1− a + c

2
.

The second inclusion is checked in the same manner.



Mathematics 2021, 9, 1518 9 of 11

Theorem 4. For every two IFSs A and B:

�A ∩�B ⊆ A4B ⊆ ♦A ∪♦B.

Proof. First, for every four numbers a, b, c, d ∈ [0, 1] so that a + b ≤ 1, c + d ≤ 1 we will
prove the inequalities:

min(a, c) ≤ a + c
a + b + c + d

≤ 1−min(b, d).

Really, let a ≥ c. Then

a + c
a + b + c + d

−min(a, c) =
a + c

a + b + c + d
− c ≥ a + c

2
− c ≥ 0.

If a < c, then

a + c
a + b + c + d

−min(a, c) =
a + c

a + b + c + d
− a ≥ a + c

2
− a ≥ 0.

Therefore,

min(a, c) ≤ a + c
a + b + c + d

.

Using this inequality, we obtain

min(b, d) ≤ b + d
a + b + c + d

= 1− a + c
a + b + c + d

,

i.e.,
a + c

a + b + c + d
≤ 1−min(b, d).

Now, using these inequalities, we check that

�A ∩�B = {〈x, µA(x), 1− µA(x)〉 | x ∈ E} ∩ {〈x, µB(x), 1− µB(x)〉 | x ∈ E}

= {〈x, min(µA(x), µB(x)), max(1− µA(x), 1− µB(x))〉 | x ∈ E}
= {〈x, min(µA(x), µB(x)), 1−min(µA(x), µB(x))〉 | x ∈ E}

⊆
{〈

x,
µA(x) + µB(x)

µA(x) + νA(x) + µB(x) + νB(x)
,

νA(x) + νB(x)
µA(x) + νA(x) + µB(x) + νB(x)

〉
| x ∈ E

}

⊆ {〈x, 1−min(νA(x), νB(x)), min(νA(x), νB(x))〉 | x ∈ E}
= {〈x, max(1− νA(x), 1− νB(x)), min(νA(x), νB(x))〉 | x ∈ E}

= {〈x, 1− νA(x), νA(x)〉 | x ∈ E} ∪ {〈x, 1− νB(x), νB(x)〉 | x ∈ E}
= ♦A ∪♦B.

This completes the proof.

Following the idea from [5], where operation 4 was extended from binary to n-
ary form for n IFPs, here we extend operation 4 from binary to n-ary form for n IFSs
A1, A2, ..., An as follows:

4(A1, A2, ..., An) =





〈
x,

n
∑

i=1
µAi (x)

n
∑

i=1
(µAi (x) + νAi (x))

,

n
∑

i=1
νAi (x)

n
∑

i=1
(µAi (x) + νAi (x))

〉
| x ∈ E





.
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Therefore, when E is a finite set, we can define the operator

•4A =





〈
x,

∑
x∈E

µA(x)

∑
x∈E

(µA(x) + νA(x))
,

∑
x∈E

νA(x)

∑
x∈E

(µA(x) + νA(x))

〉
| x ∈ E



.

Hence,
•4 •4A = •4A.

Therefore, the operation 4 and the operator •4 can be used for the procedure for
de-i-fuzzification, as it is discussed in the next section.

4. Discussion and Conclusions

The new operation4 defined over IFSs and studied in the present paper can be used
for aggregation of some experts’ evaluations, when the result should contain no degree of
uncertainty.

The considerations regarding the transformation of IFSs to FSs (de-i-fuzzification)
or real numbers (crisipification) have been a matter of research since 1995 in the works
of Angelov [8], Ansari et al. [9], Ban et al. [6], Atanassova and Sotirov [10], Anzilli and
Facchinetti [11]. For instance, in [6], the authors use as the base of the de-i-fuzzification the
operator Dα (for the definition see [3,6]) and determine the minimal distance, in Hamming
and in Euclidean sense, between the IFS A and the FS Dα(A).

Let us have an expert’s evaluation in the form of an ordered pair 〈a, b〉, where a+ b > 1.
Since it represents an element outside of the intuitionistic fuzzy triangle, it is an incorrect
IFP in terms of the definition of IFS. For this case, a simple modification of the operation4,
when applied over incorrect IFPs 〈a, b〉, can be also used for the procedure for rectification
of the unconscientious experts’ evaluations, as described in [4,14].

Really, for every unconscientious evaluation 〈a, b〉, where a, b ∈ [0, 1], a + b > 1,
the rectification of this incorrect evaluation is given by

〈a, b〉4〈a, b〉 = 〈a, b〉4〈0, 0〉 =
〈

a
a + b

,
b

a + b

〉
.

For example, if an expert has given an unconscientious evaluation 〈0.3, 0.9〉, then as
a result of the operation 4 we obtain the rectified value 〈0.25, 0.75〉, which already is a
correct IFP.

On a side note, a similar procedure can be used according to the SNCF distance (called,
also, French metro metric, radial metric, or other), which appears in the mathematical
literature on distances (see, e.g., [15]). In this case, for any point 〈a, b〉 the closest one is the
point 〈a′, b′〉 satisfying the condition

〈a′, b′〉 =
〈

a
a + b

,
b

a + b

〉
,

therefore, the 4 operation is a de-i-fuzzification operation. The properties of this kind
of de-i-fuzzification, as well as new properties of operation 4 and operator •4 will be
studied in next legs of authors’ research.
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