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1. Introduction

In 1940, the audience of the Mathematics Club of the University of Wisconsin had
the pleasure to listen to the talk of S. M. Ulam presenting a list of unsolved problems.
See [1]. Such problems have been taken up by Hyers [2], Rassias [3] and other fine
mathematicians. Since then, the stability problems of many function equations have been
extensively investigated in various abstract spaces [4–6]. Obloza [7] appears to be the first
author who investigated the Hyers–Ulam stability of a differential equation, followed by
Alsina and Ger [8]. Then, a generalized result was given by S. E. Takahasi, T. Miura and
S. Miyajima [9], in which they investigated the stability of the Banach space valued linear
differential equation of first order (see also [10,11]).

Many interesting results concerning the Ulam stability of different types have been
established. For example, see [12–23]. Some studies dealing with difference equations were
published in [24,25]. Recently, many articles studied the Hyers–Ulam stability of Dynamic
equations on time scales [26–30]. Hamza and Yaseen [31] generalized and extended the
work of Douglas R. Anderson, Ben Gates and Dylan Heuer [26] for unbounded time scales.
In [32], Hamza et al. obtained new sufficient conditions for Hyers–Ulam–Rassias stability
of an abstract second-order linear dynamic equation on time scales.

In this paper, we investigate sufficient conditions for Hyers–Ulam and Hyers–Ulam–
Rassias stability of second-order nonlinear dynamic equations on time scales of the form

ψ∆2
(t) = Q(t)ψ(t) + G(t, ψ(t), h(ψ(t))) + f (t), t ∈ J κ , ψ∆i

(a) = ai ∈ X, i = 0, 1, (1)

where J := [a, b] ∩ T with a time scale T ⊂ R, a, b ∈ T, a < b, and X is a Banach space
endowed with a norm ‖.‖. Additionally, G(t, x, y) : J × X2 → X is such that G(., x, y)
is rd-continuous and G(t, ., y) and G(t, x, .) are continuous for all t ∈ J and x, y ∈ X.
Additionally, Q ∈ R, the family of all regressive and rd-continuous functions from J to
R, f ∈ Crd(J ,X) the space of all rd-continuous functions from J to X, and h : X → X
is continuous. As usual, for a bounded function Φ : X → Y from a normed space X to a
normed space Y, we denote

‖Φ‖∞ = sup
x∈X
‖Φ(x)‖.
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For the time scale terminology, we refer the reader to Bohner and Peterson [33,34].
We introduce the notion of the Lipschitz condition with some constants.

Definition 1. A function f : T×Xk → X is said to satisfy the Lipschitz condition with constant
L > 0 if

‖ f (t, x1, . . . , xk)− f (t, y1, . . . , yk)‖ 6 L
k

∑
i=1
‖xi − yi‖ (2)

for all xi, yi ∈ X and all t ∈ T.
As usual, a function h : Xk → X is said to satisfy the Lipschitz condition with constant γ > 0 if

‖h(x1, . . . , xk)− h(y1, . . . , yk)‖ 6 γ
k

∑
i=1
‖xi − yi‖. (3)

2. Sufficient Conditions for Existence and Uniqueness of Solutions

Theorem 1. Let K(t, x) : J × X → X be rd-continuous in t ∈ J for every x ∈ X, and
continuous in x for every t ∈ J . Then, ψ is a solution of

ψ∆2
(t) = K(t, ψ(t)), t ∈ J κ , ψ∆i

(a) = ai ∈ X, i = 0, 1, (4)

if, and only if ψ solves the integral equation

ψ(t) = a0 + a1(t− a)−
∫ t

a
(s− t + µ(s))K(s, ψ(s))∆s, t ∈ J , (5)

for some constants a0, a1 ∈ X.

Proof. Assume that ψ satisfies the integral Equation (5). We denote by

M(t) = −
∫ t

a
(s− t + µ(s))K(s, ψ(s))∆s.

By Theorem 1.117(i) in [33], we conclude that

M∆(t) =
∫ t

a
K(s, ψ(s))∆s,

and
M∆2

(t) = K(t, ψ(t)).

This implies that ψ∆2
(t) = K(t, ψ(t)). To prove the other direction, assume ψ is a solution

of Equation (4). We denote by

G(t) =
∫ t

a
K(s, ψ(s))∆s,

and

L(t) =
∫ t

a
G(s)∆s.

By integrating both sides of (4) twice, we have

ψ(t) = a0 + a1(t− a) + L(t).
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Here, ai = ψ∆i
(a), i = 0, 1. It is readily seen thatM(t) = L(t) for every t. Indeed, we have

L∆(t) = G(t)

=
∫ t

a
K(s, ψ(s))∆ s

=M∆(t).

Consequently,M(t) = L(t) + C, t ∈ [a, b]T. We have C =M(a)−L(a) = 0. Therefore, ψ
satisfies Equation (5).

As a direct consequence, setting K(t, ψ(t)) = Q(t)ψ(t) + G(t, ψ(t), h(ψ(t))) + f (t),
we get the following:

Corollary 1. ψ is a solution of Equation (1) if and only if ψ solves the integral equation

ψ(t) = a0 + a1(t− a)−
∫ t

a
(s− t + µ(s))(Q(s)ψ(s) + G(s, ψ(s), h(ψ(s))) + f (s))∆s, t ∈ J , (6)

for some constants a0, a1 ∈ X.

Throughout the rest of the paper, we use the following conditions.

(A) Q ∈ R and f ∈ Crd(J ,X).
(B) G and h satisfy the Lipschitz conditions with constants β and γ, respectively.

(C) For any a0, a1 ∈ X, (1) has a solution φ satisfying φ∆i
(a) = ai, i = 0, 1.

(D) There is α ∈ (0, 1) such that

sup
t∈J

∫ t

a
|Q(s)|∆s ≤ α

b− a
− β(1 + γ)(b− a).

Theorem 2. Assume (A), (B), and (D). If a0, a1 ∈ X, then (1) has a unique solution φ satisfying
φ∆i

(a) = ai, i = 0, 1.

Proof. Fix a0, a1 ∈ X. Define the operator T : Crd(J ,X)→ Crd(J ,X) by

Tψ(t) = a0 + a1(t− a) +
∫ t

a
(s− t + µ(s))(−Q(s)ψ(s)− G(s, ψ(s), h(ψ(s)))− f (s))∆s.

For ψ1, ψ2 ∈ (J ,X), we have

‖Tψ1(t)− Tψ2(t)‖ ≤
∫ t

a
|s− t + µ(s)|(|Q(s)|‖ψ1(s)− ψ2(s)‖

+ ‖G(s, ψ1(s), h(ψ1(s)))− G(s, ψ2(s), h(ψ2(s)))‖)∆s.
(7)

It follows from (B) and (D) that
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‖Tψ1(t)− Tψ2(t)‖ ≤
∫ t

a
|s− t + µ(s)| |Q(s)|‖ψ1(s)− ψ2(s)‖∆s

+ β
∫ t

a
(‖ψ1(s)− ψ2(s)‖+ ‖h(ψ1(s))− h(ψ2(s))‖)∆ s

≤
∫ t

a
|s− t + µ(s)||Q(s)|‖ψ1(s)− ψ2(s)‖∆ s

+ β
∫ t

a
(‖ψ1(s)− ψ2(s)‖+ γ‖ψ1(s)− ψ2(s)‖)∆ s

≤
∫ t

a
|s− t + µ(s)|[|Q(s)|‖ψ1(s)− ψ2(s)‖+ β(1 + γ)‖ψ1(s)− ψ2(s)‖]∆ s

≤ (b− a)‖ψ1 − ψ2‖∞(
∫ t

a
|Q(s)|∆s + β(1 + γ)(b− a))

≤ α‖ψ1 − ψ2‖∞.

This implies that T is a contraction. Therefore, T has a unique fixed point φ, which is the
unique solution of the integral Equation (6). By Corollary 1, φ is the unique solution of (1)
satisfying the initial conditions.

3. Hyers–Ulam Stability Results

In this section, we assume that Q ∈ Crd(J ,R) and f ∈ Crd(J ,X). We investigate the
Hyers–Ulam stability of (1). For a function ψ ∈ C2

rd(J ,X), the space of all rd-continuous
functions whose first and second derivatives exist and are rd-continuous, we denote

Hψ(t) = Q(t)ψ(t) + G(t, ψ(t), h(ψ(t))) + f (t), (8)

and
gψ(t) := ψ∆2

(t)−Hψ(t). (9)

First, we recall the concept of Hyers–Ulam stability. See [12].

Definition 2 (Hyers–Ulam Stability). We say that (1) has Hyers–Ulam stability if there exists
a constant L > 0, a so-called HUS constant, with the following property. For any ε > 0,
if ψ ∈ C2

rd(J ,X) is such that

‖gψ(t)‖ 6 ε f or all t ∈ J κ , (10)

then there exists a solution φ : J → X of (1) such that

‖ψ(t)− φ(t)‖ 6 Lε f or all t ∈ J . (11)

The next Theorem establishes sufficient conditions for the Hyers–Ulam stability of (1).

Theorem 3. If (A), (B), and (C) hold, then (1) has Hyers–Ulam stability with HUS constant

L := (b− a)2e(b−a)[|Q|+β(1+γ)](b, a). (12)

Proof. Let ε > 0 and ψ ∈ C2
rd(J ,X) such that (10) holds. Then ψ satisfies the equation

ψ∆2
(t) = Hψ(t) + gψ(t), t ∈ J κ2

. (13)

Let ai = ψ∆i
(a), i = 0, 1. By Theorem 1, ψ satisfies the integral equation

ψ(t) = a0 + a1(t− a)−
∫ t

a
(s− t + µ(s))(Hψ(s) + gψ(s))∆s. (14)
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By (C), there exists a solution φ of (1) with φ∆i
(a) = ai, i = 0, 1, that is, by Corollary 1,

φ(t) = a0 + a1(t− a)−
∫ t

a
(s− t + µ(s))Hφ(s)∆s. (15)

Subtracting (15) from (14), we find, for all t ∈ J ,

‖ψ(t)− φ(t)‖ 6 ‖
∫ t

a
(s− t + µ(s))gψ(s)∆s‖+ ‖

∫ t

a
(s− t + µ(s))Q(s)(ψ(s)− φ(s))∆s‖

+ ‖
∫ t

a
(s− t + µ(s))[G(s, ψ(s), h(ψ(s)))− G(s, φ(s), h(φ(s)))]∆s‖.

(16)

Taking into account (B), we get

‖ψ(t)− φ(t)‖ 6 (b− a)
∫ t

a
‖gψ(s)‖∆s +

∫ t

a
(b− a)‖Q(s)(ψ(s)− φ(s))‖∆s

+
∫ t

a
(b− a)β[‖ψ(s)− φ(s)‖+ ‖h(ψ(s))− h(φ(s))‖]∆s

6 (b− a)
∫ t

a
‖gψ(s)‖∆s +

∫ t

a
(b− a)‖Q(s)(ψ(s)− φ(s))‖∆s

+
∫ t

a
(b− a)β[‖ψ(s)− φ(s)‖+ γ‖ψ(s)− φ(s)‖]∆ s

6 (b− a)
∫ t

a
‖gψ(s)‖∆s +

∫ t

a
(b− a)‖Q(s)(ψ(s)− φ(s))‖∆s

+
∫ t

a
(b− a)β(1 + γ)‖ψ(s)− φ(s)‖∆s.

Hence,

‖ψ(t)− φ(t)‖ 6 (b− a)
∫ t

a
‖gψ(s)‖∆s +

∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s. (17)

Since ‖gψ(t)‖ 6 ε holds for t ∈ J , we have

‖ψ(t)− φ(t)‖ 6 ε(b− a)2 +
∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s.

Thus, by Gronwall’s inequality, ([33] Corollary 6.7), we conclude that

‖ψ(t)− φ(t)‖ ≤ ε(b− a)2e(b−a)[|Q|+β(1+γ)](b, a). (18)

Therefore, (1) has Hyers–Ulam stability with HUS constant L given in (12).

Theorem 4. If (A), (B), and (D) hold, then (1) has Hyers–Ulam stability with HUS constant

L :=
(b− a)2

1− α
. (19)

Proof. Let ε > 0 and ψ ∈ C2
rd(J ,X) such that (10) holds. Set gψ(t) as in (9). Then ψ

satisfies (13). Let ai = ψ∆i
(a), i = 0, 1. By Theorem 1, (14) holds. By Theorem 2, there exists
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a unique solution φ of (1) with φ∆i
(a) = ai, i = 0, 1. By Corollary 1, φ(t) is as in (15). By

subtracting (15) from (14) and as in the proof of Theorem 3, we get

‖ψ(t)− φ(t)‖ 6 ε(b− a)2 +
∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s

6 ε(b− a)2 + (b− a)‖ψ− φ‖∞

∫ t

a
[|Q(s)|+ β(1 + γ)]∆s

6 ε(b− a)2 + α‖ψ− φ‖∞, t ∈ J .

This implies that

‖ψ− φ‖∞ ≤
(b− a)2

1− α
ε. (20)

Therefore, (1) has Hyers–Ulam stability with HUS constant L given in (19).

4. Hyers–Ulam–Rassias Stability

In this section, we introduce the Hyers–Ulam–Rassias Stability of (1).

Definition 3 (Hyers–Ulam–Rassias stability). Let N be a family of positive rd-continuous
functions on J . We say that Equation (1) has Hyers-Ulam-Rassias stability of type N if there exist
a constant L > 0, a so-called HURSN constant, with the following property. For any ω ∈ N ,
if ψ ∈ C2

rd(J ,X) is such that

‖gψ(t)‖ 6 ω(t) f or all t ∈ J κ2
, (21)

then there exists a solution φ : J → X of (1) such that

‖ψ(t)− φ(t)‖ 6 Lω(t) f or all t ∈ J . (22)

We note that Hyers–Ulam–Rassias stability yields Hyers–Ulam stability, when

N = {lε : ε > 0},

where lε(t) = ε, t ∈ J . We use the notations (8) and (9),

N ∗ := {ω ∈ Crd(J , (0, ∞)) : ω is nondecreasing} (23)

and for Λ > 1, δ > 0

N δ
Λ :=

{
ω ∈ Crd(J , (0, ∞)) :

∫ t

a
ωΛ(s)∆s ≤ δ ωΛ(t) for all t ∈ J

}
. (24)

The following theorem is concerned with Hyers–Ulam–Rassias stability.

Theorem 5. If (A), (B), and (C) hold, then (1) has Hyers–Ulam–Rassias stability of type N ∗
with HURSN ∗ constant

L := (b− a)2e(b−a)[|Q|+β(1+γ)](b, a). (25)

Proof. Let ω ∈ N ∗ and ψ ∈ C2
rd(J ,X) be such that (21) holds. Then ψ satisfies (13). Let

ai = ψ∆i
(a), i = 0, 1. By Theorem 1, (14) holds. By (C), there exists a solution φ of (1)

that satisfies φ∆i
(a) = ai, i = 0, 1. Then, (15) holds. Subtracting (15) from (14), we obtain

inequality (16), and by taking into account (B), we get inequality (17).
Since ‖gψ(t)‖ ≤ ω(t) for t ∈ J , we get

‖ψ(t)− φ(t)‖ ≤ (b− a)2ω(t) +
∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s.
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Using Gronwall’s inequality, ([33] Theorem 6.4), and by ([33] Theorem 2.39), we get,
for all t ∈ J ,

‖ψ(t)− φ(t)‖ ≤ (b− a)2ω(t)

+
∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))(b− a)2ω(s)(b− a)[|Q(s)|+ β(1 + γ)]∆s

6 (b− a)2ω(t)

+ (b− a)2ω(t)
∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))(b− a)[|Q(s)|+ β(1 + γ)]∆s

6 (b− a)2ω(t)

+ (b− a)2ω(t)
(

e(b−a)[|Q|+β(1+γ)](t, a)− e(b−a)[|Q|+β(1+γ)](t, t)
)

6 (b− a)2e(b−a)[|Q|+β(1+γ)](b, a)ω(t).

Therefore, (1) has Hyers–Ulam–Rassias stability of type N ∗ with a constant L defined
by (25).

Theorem 6. If (A), (B), and (C) hold, then (1) has Hyers–Ulam–Rassias stability of type N ∗ ∩
N δ

1 with HURSN ∗∩N δ
1

constant

L := δ(b− a)e(b−a)[|Q|+β(1+γ)](b, a). (26)

Proof. Let ω ∈ N ∗ ∩N δ
1 and ψ ∈ C2

rd(J ,X) be such that (21) holds. Then ψ satisfies (13).

Let ai = ψ∆i
(a), i = 0, 1. By Theorem 1, (14) holds. By (C), there exists a solution φ of (1)

that satisfies φ∆i
(a) = ai, i = 0, 1. By Corollary 1, (15) holds. Subtracting (15) from (14), we

obtain inequality (16), and by taking into account (B), we get inequality (17).
Since ‖gψ(t)‖ ≤ ω(t) for t ∈ J , we get, for all t ∈ J ,

‖ψ(t)− φ(t)‖ ≤ (b− a)
∫ t

a
ω(s)∆s +

∫ t

a
|s− t + µ(s)|‖Q(s)(ψ(s)− φ(s))‖∆ s

+
∫ t

a
|s− t + µ(s)|[β‖ψ(s)− φ(s)‖+ ‖h(ψ(s))− h(φ(s))‖]∆ s.

≤ (b− a)
∫ t

a
ω(s)∆s +

∫ t

a
(b− a)‖Q(s)(ψ(s)− φ(s))‖∆ s

+
∫ t

a
(b− a)β(1 + γ)‖ψ(s)− φ(s)‖∆ s

≤ δ(b− a)ω(t) +
∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s.

Applying Gronwall’s inequality, ([33] Theorem 6.4), and by ([33] Theorem 2.39), we get,
for all t ∈ J ,

‖ψ(t)− φ(t)‖ ≤ δ(b− a)ω(t)

+
∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))(b− a)δω(s)(b− a)[|Q(s)|+ β(1 + γ)]∆s

6 δ(b− a)ω(t)

+ δ(b− a)ω(t)
∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))(b− a)[|Q(s)|+ β(1 + γ)]∆s

6 δ(b− a)ω(t)

+ δ(b− a)ω(t)
(

e(b−a)[|Q|+β(1+γ)](t, a)− e(b−a)[|Q|+β(1+γ)](t, t)
)

6 δ(b− a)e(b−a)[|Q|+β(1+γ)](b, a)ω(t).
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Therefore, (1) has Hyers–Ulam–Rassias stability of type N ∗ ∩N δ
1 with a constant L given

in (26).

Theorem 7. Let Λ > 1 and Γ := Λ/(Λ− 1). If (A), (B), and (C) hold, then (1) has Hyers–
Ulam–Rassias stability of type N ∗ ∩N δ

Λ with HURSN ∗∩N δ
Λ

constant

L := δ
1
λ (b− a)

Γ+1
Γ e(b−a)[|Q|+β(1+γ)](b, a). (27)

Proof. Let ω ∈ N ∗ ∩N δ
Λ and ψ ∈ C2

rd(J ,X) be such that (21) holds. Then ψ satisfies (13).

Let ai = ψ∆i
(a), i = 0, 1. By Theorem 1, (14) holds. By (C), there exists a solution φ of (1)

that satisfies φ∆i
(a) = ai, i = 0, 1. By Corollary 1, (15) holds. Subtracting (15) from (14), we

obtain inequality (16), and by taking into account (B), we get inequality (17).
Since ‖gψ(t)‖ ≤ ω(t) for t ∈ J , we get, for all t ∈ J ,

‖ψ(t)− φ(t)‖ 6 (b− a)
∫ t

a
ω(s)∆s + (b− a)

∫ t

a
‖Q(s)(ψ(s)− φ(s))‖∆s

+ (b− a)β(1 + γ)
∫ t

a
‖ψ(s)− φ(s)‖∆s

6 (b− a) Γ
√

t− a Λ

√∫ t

a
ωΛ(s)∆s + (b− a)

∫ t

a
‖Q(s)(ψ(s)− φ(s))‖∆s

+ (b− a)β(1 + γ)
∫ t

a
‖ψ(s)− φ(s)‖∆s

6 δ
1
Λ (b− a)

Γ+1
Γ ω(t) +

∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s,

where we have used the Hölder inequality, ([33] Theorem 6.13). Thus, by applying Gron-
wall’s inequality, ([33] Theorem 6.4), and by applying ([33] Theorem 2.39), we get, for all
t ∈ J ,

‖ψ(t)− φ(t)‖ ≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

+
∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))δ

1
Λ (b− a)

Γ+1
Γ ω(s)(b− a)[|Q(s)|+ β(1 + γ)]∆ s

≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

+ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))(b− a)[|Q(s)|+ β(1 + γ)]∆ s

≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

+ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

(
e(b−a)[|Q|+β(1+γ)](t, a)− e(b−a)[|Q|+β(1+γ)](t, t)

)
6 δ

1
Λ (b− a)

Γ+1
Γ e(b−a)[|Q|+β(1+γ)](b, a)ω(t).

Therefore, Equation (1) has Hyers–Ulam–Rassias stability of type N ∗ ∩ N δ
Λ with

constant L defined in (27) .

Theorem 8. Let Λ > 1 and Γ := Λ/(Λ− 1). If (A), (B), and (C) hold, then (1) has Hyers–
Ulam–Rassias stability of type N δ

Λ with HURSN δ
Λ

constant

L := δ
1
Λ (b− a)

Γ+1
Γ

(
1 + δ

1
λ (b− a)

Γ+1
Γ [‖Q‖∞ + β(1 + γ)]e(b−a)[|Q|+β(1+γ)](b, a)

)
. (28)

Proof. Let ω ∈ N δ
Λ and ψ ∈ C2

rd(J ,X) be such that (21) holds. Then ψ satisfies (13). Let

ai = ψ∆i
(a), i = 0, 1. By Theorem 1, (14) holds. By (C), there exists a unique solution φ of
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(1) that satisfies φ∆i
(a) = ai, i = 0, 1. By Theorem 1, (15) holds. Subtracting (15) from (14),

we obtain inequality (16), and by taking into account (B), we get inequality (17). Since
‖gψ(t)‖ ≤ ω(t) for t ∈ J , we obtain, for all t ∈ J ,

‖ψ(t)− φ(t)‖ 6 (b− a)
∫ t

a
ω(s)∆s +

∫ t

a
|s− t + µ(s)|‖Q(s)(ψ(s)− φ(s))‖∆ s

+
∫ t

a
|s− t + µ(s)|β[‖ψ(s)− φ(s)‖+ ‖h(ψ(s))− h(φ(s))‖]∆ s.

6 (b− a) Γ
√

t− a Λ

√∫ t

a
ωΛ(s)∆s + (b− a)

∫ t

a
‖Q(s)(ψ(s)− φ(s))‖∆s

+ (b− a)β(1 + γ)
∫ t

a
‖ψ(s)− φ(s)‖∆s

6 δ
1
Λ (b− a)

Γ+1
Γ ω(t) +

∫ t

a
(b− a)[|Q(s)|+ β(1 + γ)]‖ψ(s)− φ(s)‖∆s,

where we have applied the Hölder inequality, ([33] Theorem 6.13). Thus, by using Gron-
wall’s inequality, ([33] Theorem 6.4), and by applying ([33] Theorem 2.39), we get, for all
t ∈ J ,

‖ψ(t)− φ(t)‖ ≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

+
∫ t

a
e(b−a)[|Q|+β(1+γ)](t, σ(s))δ

1
Λ (b− a)

Γ+1
Γ ω(s)(b− a)[|Q(s)|+ β(1 + γ)]∆ s

≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

+ δ
1
Λ (b− a)

2Γ+1
Γ [‖Q‖∞ + β(1 + γ)]e(b−a)[|Q|+β(1+γ)](b, a)

∫ t

a
ω(s)∆ s

≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t)

+ δ
1
Λ (b− a)

2Γ+2
Γ [‖Q‖∞ + β(1 + γ)]e(b−a)[|Q|+β(1+γ)](b, a)

(∫ t

a
ωΛ(s)∆s

) 1
Λ

≤ δ
1
Λ (b− a)

Γ+1
Γ ω(t) + δ

2
Λ (b− a)

2Γ+2
Γ [‖Q‖∞

+ β(1 + γ)]e(b−a)[|Q|+β(1+γ)](b, a)ω(t)

= Lω(t).

Therefore, Equation (1) has Hyers–Ulam–Rassias stability of typeN δ
Λ with constant L given

in (28).

Remark 1. Since condition (D) implies condition (C), all results in Sections 3 and 4 are true,
if we replace (C) by (D).

Example 1. Now, we give an example for which conditions (A), (B) and (D) are satisfied. Let
T := ∪∞

k=0[2k, 2k + 1]. Let m ∈ N, a = 0 and b = 2m+ 1. Fix α ∈ (0, 1) and β ∈ (0,
α

2(2m + 1)2 ).

Assume f ∈ Crd, G(t, x, y) = β(cos x + y), and h(x) = sin x. Choose a positive number C such

that C ≥ 2mem+1(2m + 1)
α− 2β(2m + 1)2 . Take Q(t) = e1(t, 0)

C
. Equation (1) takes the form

ψ∆2
(t) =

e1(t, 0)
C

ψ(t) + β(cos(ψ(t)) + sin(ψ(t))) + f (t).
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Clearly, condition (A) holds. Additionally, condition (B) is true, since G and h satisfy Lips-
chitz conditions with constants β and γ = 1, respectively. Finally, we check that (D) holds. Indeed,

∫ b

0
Q(s)∆s =

1
C
(e1(b, 0)− 1)

≤ 1
C

e1(b, 0)

=
1
C

e1(2m + 1, 0)

=
1
C

2mem+1

≤ α− 2β(2m + 1)2

2mem+1(2m + 1)
2mem+1

=
α− 2β(2m + 1)2

2m + 1

where according to ([33] Example 2.58), we have e1(2m + 1, 0) = 2mem+1.
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