
mathematics

Article

Definite Integral of Logarithmic Functions in Terms of the
Incomplete Gamma Function

Robert Reynolds *,† and Allan Stauffer †

����������
�������

Citation: Reynolds, R.; Stauffer, A.

Definite Integral of Logarithmic

Functions in Terms of the Incomplete

Gamma Function. Mathematics 2021,

9, 1506. https://doi.org/10.3390/

math9131506

Academic Editor: Jaan Janno

Received: 25 May 2021

Accepted: 24 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada;
stauffer@yorku.ca
* Correspondence: milver@my.yorku.ca; Tel.: +1-416-319-8383
† These authors contributed equally to this work.

Abstract: In this article we derive some entries and errata for the book of Gradshteyn and Ryzhik
which were originally published by Bierens de Haan. We summarize our results using tables for easy
reading and referencing.

Keywords: entries of Gradshteyn; Bierens de Haan; incomplete gamma function; definite integral;
Cauchy’s integral

1. Introduction

In 1867, David Bierens de Haan [1] published his famous volume containing a vast
number of interesting definite integrals. In this work, we focus on deriving entries from his
book whose closed forms are in terms of the incomplete gamma function. We will apply
our contour integral method [2] and derive a definite logarithmic integral in terms of the
incomplete gamma function. Specifically, we will derive the equations given by∫ ∞

0
(x + 1)−n logk(a(x + 1))dx (1)

∫ 1

0

(
1
x

)2−n
logk

( a
x

)
dx (2)

∫ 1

0

(
1
x

)2−n
(a + log(x))−kdx (3)

in terms of the incomplete gamma function where the proof is carried out in Section 5.
We then use this formulae to derive several entries in [1,3] and summarize our results in
Tables 1 and 2. The derivation of the definite integral follows the method used by us in [2],
which involves Cauchy’s generalized integral formula. The generalized Cauchy integral
formula is given by

Γ(k + 1)
2πi

∫
C

ewy

wk+1 dw = yk (4)

or equivalently
Γ(k + 1)

2πi

∫
C

ewy

(yw)k+1 ydw = 1 (5)

By using the substitution z = wy, we see that an equality of the form

Γ(k + 1)
2πi

∫
C

ez

zk+1 dz = lim
R→∞

Γ(k + 1)
2πi

∫ ω+iR

ω−iR

ez

zk+1 dz = 1 (6)
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with ω > 0 should be established. Consider the situation that 0 < k < 1. Then by replacing
C with a Hankel loop or, what amounts to the same, a keyhole curve, and by invoking
Cauchy’s integral theorem, the following equalities can be deduced:

Γ(k + 1)
2πi

∫
C

ez

zk+1 dz =
Γ(k + 1)

2πi

∫
C

ez − 1
zk+1 dz

=
Γ(k + 1)

2πi

∫ ∞

0

1− et

tk+1 dt(eikπ − e−ikπ)

=
Γ(k + 1) sin(kπ)

π

∫ ∞

0

1− e−t

tk+1 dt.

(7)

For 0 < k < 1 and y ≥ 0, put

f (k, y) =
∫ ∞

0

1− e−yt

tk+1 dt (8)

The, n f (k, 0) = 0 and

∂

∂y
f (k, y) =

∫ ∞

0
t−ke−tydt = yk−1

∫ ∞

0
t−ke−tdt = yk−1Γ(1− k). (9)

Hence, for 0 < k < 1 and y > 0, the next equalities show up

f (k, y) =
∫ ∞

0

1− e−yt

tk+1 dt =
yk

k
Γ(1− k). (10)

The equalities in (7) and (10) entail

Γ(k + 1)
2πi

∫
C

ez

zk+1 dz =
Γ(k + 1) sin(kπ)

π

∫ ∞

0

1− e−t

tk+1 dt

=
Γ(k + 1) sin(kπ)

π
f (k, 1) =

Γ(k + 1) sin(kπ)

π

Γ(1− k)
k

(11)

applying the reflection formula for the Gamma function in combination with Γ(k + 1) =
kΓ(k) = 1. From the analyticity in k, it follows that the first expression in (11) is equal to 1
for Re(k) > 0. By interpreting the complex integral in this first expression as a symmetric
limit, it seems that the equality is also valid for Re(k) > −1.

By writing, for 0 < k < 1,

1 =
Γ(k + 1)

2πi

∫
C

ez

zk+1 dz =
Γ(k + 1)

2πi

∫
C

ez + e−z − 2
zk+1 dz

=
Γ(k + 1)

2πi

∫ i∞

−i∞

ez + e−z − 2
zk+1 dz

=
2Γ(k + 1) sin(kπ/2)

π

∫ ∞

0

1− cos(t)
tk+1 dt.

(12)

where C is, in general, an open contour in the complex plane with a bilinear concomitant [2]
that has the same value at the end points of the contour and is such that this integral
makes sense. More precisely, the equality in Equation (5) is valid when k belongs to
N = 0, 1, 2, 3, . . . and C = Cω,R takes the of form t→ ω + it, −R ≤ t ≤ R, where ω > 0 is
fixed and R→ ∞. If ω < 0 is fixed and R→ ∞, then this integral vanishes. An application
of Cauchy’s residue calculus yields the equality in Formula (5). In item (5), some of
these problems are averted by assuming that k is complex. In appropriate domains, the
corresponding functions are analytic. See Equation (18) as well.

This method involves using a form of Equation (5) and then multiplying both sides by
a function, then taking a definite integral of both sides. This yields a definite integral in
terms of a contour integral. A second formulae for the incomplete gamma function in terms
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of the contour integral is derived by multiplying Equation (5) by a different function and
performing some substitutions and integrating so that the contour integrals are the same.

Table 1. Table of definite integrals in work of Gradshteyn and Ryzhik.

f (x)
∫ 1

0 f (x)dx Restrictions

log(a− log(x)) log(a) + eaΓ(0, a) a ≤ 0
log(a + log(x)) log(a) + e−aΓ(0,−a) a ≥ 0
(a + log(x))−n e−a(−1)−nΓ(1− n,−a) Im(a) > 0

1
a+log(x) −e−aΓ(0,−a) a ≥ 0

1
a−log(x) eaΓ(0, a) a ≤ 0

1
(a+log(x))2 e−aΓ(−1,−a) a ≥ 0

1
(log(x)−a)2 eaΓ(−1, a) a ≤ 0

log(x)
(a+log(x))2

1
a +

e−a(log
(
e−a)+ 1

)
Γ(−1,−a)

a ≥ 0

log(x)
(a−log(x))2 − 1

a + aeaΓ(−1, a)+ eaΓ(−1, a) a ≤ 0

(a− log(x))−k eaΓ(1− k, a) a ≤ 0, k > 0
1

a2+log2(x)
ie−ia(e2iaΓ(0,ia)−Γ(0,−ia))

2a
a ≤ 0

1
a2−log2(x) − e−aΓ(0,−a)−eaΓ(0,a)

2a a ≤ 0
log(x)

a2+log2(x)
1
2

(
−e−iaΓ(0,−ia)− eiaΓ(0, ia)

)
a ≤ 0

log(x)
a2−log2(x)

1
2
(
e−aΓ(0,−a) + eaΓ(0, a)

)
a ≤ 0

Table 2. Table of definite integrals in Gradshteyn and Ryzhik.

f (x)
∫ 1

0 f (x)dx Restrictions

(a− log(x))−k eaΓ(1− k, a) a = 0, k > 0
1

a2+log2(x)
ie−ia(e2iaΓ(0,ia)−Γ(0,−ia))

2a
a ≤ 0

1
a2−log2(x) − e−aΓ(0,−a)−eaΓ(0,a)

2a a ≤ 0
log(x)

a2+log2(x)
1
2

(
−e−iaΓ(0,−ia)− eiaΓ(0, ia)

)
a ≤ 0

log(x)
a2−log2(x)

1
2
(
e−aΓ(0,−a) + eaΓ(0, a)

)
a ≤ 0

1
(a2+log2(x))

2 e−ia((a−i)Γ(0,−ia)+(a+i)e2iaΓ(0,ia))
4a3

a ≤ 0
1

(a2−log2(x))
2 e−a((−a−1)Γ(0,−a)−(a−1)e2aΓ(0,a))

4a3
a ≤ 0

log(x)

(a2+log2(x))
2 − iae−iaΓ(0,−ia)−iaeiaΓ(0,ia)+2

4a2 a ≤ 0
log(x)

(a2−log2(x))
2 −−

2
a−e−aΓ(0,−a)+eaΓ(0,a)

4a
a ≤ 0

1
a4−log4(x)

−e−aΓ(0,−a)−ie−iaΓ(0,−ia)+ieiaΓ(0,ia)+eaΓ(0,a)
4a3 a ≤ 0

log(x)
a4−log4(x)

e−aΓ(0,−a)−e−ia(Γ(0,−ia)+e2iaΓ(0,ia))+eaΓ(0,a)
4a2

a ≤ 0
log2(x)

a4−log4(x) − e−aΓ(0,−a)−ie−iaΓ(0,−ia)+ieiaΓ(0,ia)−eaΓ(0,a)
4a

a ≤ 0
log3(x)

a4−log4(x)
1
4

(
e−aΓ(0,−a) + e−iaΓ(0,−ia) + eiaΓ(0, ia) + eaΓ(0, a)

)
a ≤ 0

2. Definite Integral of the Contour Integral

We used the method in [2]. Using Equation (5), we replace y by log(a(x + 1)) and
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then multiply by (x + 1)−n. Next, we take the infinite integral over x ∈ [0, ∞) to obtain

1
k!

∫ ∞

0
(x + 1)−n logk(a(x + 1))dx

=
1

2πi

∫ ∞

0

∫
C

aww−k−1(x + 1)w−ndwdx

=
1

2πi

∫
C

∫ ∞

0
aww−k−1(x + 1)w−ndxdw

=
1

2πi

∫
C

aww−k−1

n− w− 1
dw

(13)

where Re(n− w) > 1. We are able to switch the order of integration over x and w using
Fubini’s theorem since the integrand is of bounded measure over the space C×R.

3. The Incomplete Gamma Function

The incomplete gamma functions [4], γ(a, z) and Γ(a, z), are defined by

γ(a, z) =
∫ z

0
ta−1e−tdt (14)

and
Γ(a, z) =

∫ ∞

z
ta−1e−tdt (15)

where Re(a) > 0. The incomplete gamma function has a recurrence relation given by

γ(a, z) + Γ(a, z) = Γ(a) (16)

where a 6= 0,−1,−2, . . . The incomplete gamma function is continued analytically by

γ(a, ze2mπi) = e2πmiaγ(a, z) (17)

and
Γ(a, ze2mπi) = e2πmiaΓ(a, z) + (1− e2πmia)Γ(a) (18)

where m ∈ Z, γ∗(a, z) = z−a

Γ(a)γ(a, z) is entire in z and a. When z 6= 0, Γ(a, z) is an entire
function of a and γ(a, z) is meromorphic with simple poles at a = −n for n = 0, 1, 2, ... with
residue (−1)n

n! . These definitions are listed in Section 8.2(i) and (ii) in [4].

4. Incomplete Gamma Function in Terms of the Contour Integral

In this section, we will once again use Cauchy’s generalized integral formula,
Equation (5), and take the infinite integral to derive equivalent sum representations for the
contour integrals. We proceed using Equation (5) and replace y by log(a) + y and multiply
both sides by e(1−n)y and simplify to obtain

ey−ny(log(a) + y)k

Γ(k + 1)
=

1
2πi

∫
C

aww−k−1ey(−n+w+1)dw (19)

Next, we take the definite integral over y ∈ [0, ∞) and simplify it in terms of the
incomplete gamma function to obtain



Mathematics 2021, 9, 1506 5 of 15

an−1(n− 1)−k−1Γ(k + 1, (n− 1) log(a))
Γ(k + 1)

=
1

2πi

∫ ∞

0

∫
C

aww−k−1ey(−n+w+1)dwdy

=
1

2πi

∫
C

∫ ∞

0
aww−k−1ey(−n+w+1)dydw

= − 1
2πi

∫
C

aww−k−1

−n + w + 1
dw

(20)

from Equation (3.351.2) in [3] where Re(w − n + 1) < 1. Note that Equation (20) can
be derived from the simple change in variable t = (n− 1)(y + log(a)) after integrating
Equation (19) as suggested by the reviewer.

5. Definite Integral in Terms of the Incomplete Gamma Function

In this section, we derive definite integrals in terms of the incomplete gamma function.
In Equations (21) and (22), we experience difficulties when k is a negative integer and a
is a positive integer and (n− 1) log(a) ≤ 0. This is also true for Equation (23) when k is a
positive integer and a(1− n) ≤ 0. In these derivations, we employ analytic continuation to
extend the domain of the evaluations of the given analytic functions.

Theorem 1. For all k, a ∈ C, Re(n) > 1,∫ ∞

0
(x + 1)−n logk(a(x + 1))dx = an−1(n− 1)−k−1Γ(k + 1, (n− 1) log(a)) (21)

Proof. Since the right-hand side of Equations (13) and (20) are equal, we can equate the
left-hand sides to yield the stated result.

Corollary 1.

∫ 1

0

(
1
t

)2−n
logk

( a
t

)
dt = an−1(n− 1)−k−1Γ(k + 1, (n− 1) log(a)) (22)

Proof. Use Equation (21) with the transformation t = 1
1+x and change the integration

limits to t ∈ [0, 1].

Corollary 2.

∫ 1

0

(
1
t

)2−n
(a + log(t))−kdt = (−1)−k(e−a)n−1

(n− 1)k−1Γ(1− k, a− an) (23)

Proof. Use Equation (22) and set k = −k, a = e−a factor and simplify the left-hand side.

Note: the equations in Theorem 1 may also be written in the forms given by

∫ ∞

0

(log(a(x + 1)))k

(x + 1)n dx =
an

nk+1 Γ(k + 1, n log(a))

∫ 1

0
xn−1

(
log

a
x

)k
dx =

an

nk+1 Γ(k + 1, n log(a))

∫ 1

0
xn−1

(
a + log

1
x

)−k
dx = enank−1Γ(−k + 1, na)
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6. Derivation of a Few Entries in Table 4.229 in Work of Gradshteyn and Ryzhik

In this section, we will derive a few entries in terms of the incomplete gamma function.

6.1. Derivation of Entry 4.229.5 in Gradshteyn and Ryzhik

Use Equation (22) and set a = e−a, then take the first partial derivative with to respect
k, then set k = 0, n = 2 and simplify to obtain∫ 1

0
log(a + log(x))dx = log(a) + e−aΓ(0,−a) (24)

where a ∈ C.

6.2. Derivation of Entry 4.229.6 in Gradshteyn and Ryzhik

Use Equation (22) and set a = ea, then take the first partial derivative with respect to
k, then set k = 0, n = 2 and simplify to obtain∫ 1

0
log(a− log(x))dx = log(a) + eaΓ(0, a) (25)

where a ∈ C.

7. Derivation of Table 4.212 in Gradshteyn and Ryzhik

In this section, we will derive a few entries in terms of the incomplete gamma function.

7.1. Derivation of Entry 4.212.1 in Work of Gradshteyn and Ryzhik

Use Equation (23) and set k = 1, n = 2 and simplify to obtain∫ 1

0

1
a + log(x)

dx = −e−aΓ(0,−a) (26)

where Im(a) 6= 0. Note that when a < 0, this equality experiences difficulty in evaluation.

7.2. Derivation of Entry 4.212.2 in Gradshteyn and Ryzhik

Use Equation (23) and set k = 1, n = 2, a = −a and simplify to obtain∫ 1

0

1
a− log(x)

dx = eaΓ(0, a) (27)

where a ∈ C.

7.3. Derivation of Entry 4.212.3 in Gradshteyn and Ryzhik

Use Equation (23) and set k = n = 2 and simplify to obtain∫ 1

0

1
(a + log(x))2 dx = e−aΓ(−1,−a) (28)

where Im(a) 6= 0.

7.4. Derivation of Entry 4.212.4 in Gradshteyn and Ryzhik

Use Equation (23) and set k = n = 2, a = −a and simplify to obtain∫ 1

0

1
(log(x)− a)2 dx = eaΓ(−1, a) (29)

where a ∈ C. Note that when a < 0, this equality experiences difficulty in evaluation.
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7.5. Derivation of Entry 4.212.5 in Gradshteyn and Ryzhik

Use Equation (23) and take the first partial derivative with respect to n then set
k = n = 2, a = a and simplify to obtain∫ 1

0

log(x)
(a + log(x))2 dx =

1
a
+ e−a(log

(
e−a)+ 1

)
Γ(−1,−a) (30)

where Im(a) 6= 0.

7.6. Derivation of Entry 4.212.6 in Gradshteyn and Ryzhik

Use Equation (23) and take the first partial derivative with respect to n then set
k = n = 2, a = a and simplify to obtain∫ 1

0

log(x)
(a− log(x))2 dx = −1

a
+ aeaΓ(−1, a) + eaΓ(−1, a) (31)

where a ∈ C. Note that when a < 0, this equality experiences difficulty in evaluation.

7.7. Derivation of Entry 4.212.8 in Gradshteyn and Ryzhik

Use Equation (23) and set n = 2, k = n and simplify to obtain∫ 1

0
(a + log(x))−ndx = e−a(−1)−nΓ(1− n,−a) (32)

where a ∈ C. Note that (−1)−k = e−iπk when k is not an integer.

7.8. Derivation of Entry 4.212.9 in Gradshteyn and Ryzhik

Use Equation (23) and set n = 2, a = −a and simplify to obtain∫ 1

0
(a− log(x))−kdx = eaΓ(1− k, a) (33)

where k, a ∈ C.

8. Derivation of Entries for Table 4.213 in Work of Gradshteyn and Ryzhik

In this section, we will derive a few entries in terms of the incomplete gamma function.
We will derive two integrals that will be used in this section.

We use Equation (23) and set k = 1 to form the first equation. Using Equation (23) and
setting k = 1, a = e−a to form the second equation. We take the difference of these two
equations to obtain

∫ 1

0

xn−2

a2 − log2(x)
dx =

(ea)n−1Γ(0, a(n− 1))− (e−a)
n−1Γ(0, a− an)

2a
(34)

and add them to obtain∫ 1

0

xn−2 log(x)
a2 − log2(x)

dx =
1
2

((
e−a)n−1Γ(0, a− an) + (ea)n−1Γ(0, a(n− 1))

)
(35)

Note that when a ∈ R this equality experiences difficulty in evaluation.

8.1. Derivation of Entry 4.213.1 in Gradshteyn and Ryzhik

Use Equation (34) and set n = 2, a = ai and simplify to obtain

∫ 1

0

1
a2 + log2(x)

dx =
ie−ia(e2iaΓ(0, ia)− Γ(0,−ia)

)
2a

(36)
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where a ∈ C. Note that when a is purely imaginary this equality experiences difficulty
in evaluation.

8.2. Derivation of Entry 4.213.2 in Gradshteyn and Ryzhik

Use Equation (34) and set n = 2 and simplify to obtain

∫ 1

0

1
a2 − log2(x)

dx = − e−aΓ(0,−a)− eaΓ(0, a)
2a

(37)

where a ∈ C. Note that when a ∈ R, this equality experiences difficulty in evaluation.

8.3. Derivation of Entry 4.213.3 in Gradshteyn and Ryzhik

Use Equation (35) and set n = 2, a = ai and simplify to obtain∫ 1

0

log(x)
a2 + log2(x)

dx =
1
2

(
−e−iaΓ(0,−ia)− eiaΓ(0, ia)

)
(38)

where a ∈ C. Note that when a is purely imaginary, this equality experiences difficulty
in evaluation.

8.4. Derivation of Entry 4.213.4 in Gradshteyn and Ryzhik

Use Equation (38) and set a = ai and simplify to obtain∫ 1

0

log(x)
a2 − log2(x)

dx =
1
2
(
e−aΓ(0,−a) + eaΓ(0, a)

)
(39)

where a ∈ C. Note that when a ∈ R, this equality experiences difficulty in evaluation.

8.5. Derivation of Entry 4.213.5 in Gradshteyn and Ryzhik

Use Equation (36) and take the first partial derivative with respect to a and simplify
to obtain ∫ 1

0

1(
a2 + log2(x)

)2 dx =
e−ia((a− i)Γ(0,−ia) + (a + i)e2iaΓ(0, ia)

)
4a3 (40)

where a ∈ C. Note that when a is purely imaginary, this equality experiences difficulty
in evaluation.

8.6. Derivation of Entry 4.213.6 in Gradshteyn and Ryzhik

Use Equation (39) and take the first partial derivative with respect to a and simplify
to obtain ∫ 1

0

1(
a2 − log2(x)

)2 dx =
e−a((−a− 1)Γ(0,−a)− (a− 1)e2aΓ(0, a)

)
4a3 (41)

where Im(a) 6= 0. Note that when a ∈ R, this equality experiences difficulty in evaluation.

8.7. Derivation of Entry 4.213.7 in Gradshteyn and Ryzhik

Use Equation (38) and take the first partial derivative with respect to a and simplify
to obtain ∫ 1

0

log(x)(
a2 + log2(x)

)2 dx = − iae−iaΓ(0,−ia)− iaeiaΓ(0, ia) + 2
4a2 (42)

where a ∈ C. Note that when a is purely imaginary, this equality experiences difficulty
in evaluation.
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8.8. Derivation of Entry 4.213.8 in Gradshteyn and Ryzhik

Use Equation (39) and take the first partial derivative with respect to a and simplify
to obtain ∫ 1

0

log(x)(
a2 − log2(x)

)2 dx = −
− 2

a − e−aΓ(0,−a) + eaΓ(0, a)
4a

(43)

where a ∈ C. Note that when a ∈ R, this equality experiences difficulty
in evaluation.

9. Derivation of Table 4.214 in Work of Gradshteyn and Ryzhik
9.1. Derivation of Entry 4.214.1 in Gradshteyn and Ryzhik

Use Equations (40) and (41) and simplify to obtain

∫ 1

0

1

a4 − log4(x)
dx =

−e−aΓ(0,−a)− ie−iaΓ(0,−ia) + ieiaΓ(0, ia) + eaΓ(0, a)
4a3 (44)

where Re(a) 6= 0, Im(a) 6= 0.

9.2. Derivation of Entry 4.214.2 in Gradshteyn and Ryzhik

Use Equations (42) and (43) and simplify to obtain

∫ 1

0

log(x)
a4 − log4(x)

dx =
e−aΓ(0,−a)− e−ia(Γ(0,−ia) + e2iaΓ(0, ia)

)
+ eaΓ(0, a)

4a2 (45)

where Re(a) 6= 0, Im(a) 6= 0.

9.3. Derivation of Entry 4.214.3 in Gradshteyn and Ryzhik

Use Equations (40) and (41) and take their difference and simplify to obtain

∫ 1

0

log2(x)
a4 − log4(x)

dx = − e−aΓ(0,−a)− ie−iaΓ(0,−ia) + ieiaΓ(0, ia)− eaΓ(0, a)
4a

(46)

where Re(a) 6= 0, Im(a) 6= 0.

9.4. Derivation of Entry 4.214.4 in Gradshteyn and Ryzhik

Use Equations (42) and (43) and take their difference and simplify to get

∫ 1

0

log3(x)
a4 − log4(x)

dx =
1
4

(
e−aΓ(0,−a) + e−iaΓ(0,−ia) + eiaΓ(0, ia) + eaΓ(0, a)

)
(47)

where Re(a) 6= 0, Im(a) 6= 0.

10. Derivation of Table 125 in Bierens de Haan in Terms of the Incomplete
Gamma Function

In this section, we note that difficulties in evaluation arise when q > 0, q ∈ R or q is
purely imaginary.

10.1. Derivation of Entry BI(125)(1) in Bierens de Haan

Bierens de Haan Use Equation (23) and set k = 1, a = q, n = p + 1 and simplify to
obtain ∫ 1

0

xp−1

q + log(x)
dx = −

(
e−q)pΓ(0,−pq) (48)

where p, q ∈ C.
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10.2. Derivation of Entry BI(125)(2) in Bierens de Haan

Use Equation (23) and set k = 1, a = −q, n = p + 1 and simplify to obtain

∫ 1

0

xp−1

q− log(x)
dx = (eq)pΓ(0, pq) (49)

where 0 < Re(p) < 1, q ∈ C.

10.3. Derivation of Entry BI(125)(3) in Bierens de Haan

Use Equations (48) and (49) and add together, simplifying the left-hand side to obtain

∫ 1

0

xp−1

q2 + log2(x)
dx =

i
((

eiq)pΓ(0, ipq)−
(
e−iq)pΓ(0,−ipq)

)
2q

(50)

where 0 < Re(p) < 1, q ∈ C.

10.4. Derivation of Entry BI(125)(4) in Bierens de Haan

Use Equations (48) and (49) and taking their difference simplifying the left-hand side
to obtain ∫ 1

0

xp−1 log(x)
q2 + log2(x)

dx =
1
2

((
e−iq

)p
(−Γ(0,−ipq))−

(
eiq
)p

Γ(0, ipq)
)

(51)

where 0 < Re(p) < 1, q ∈ C.

10.5. Derivation of Entry BI(125)(5) in Bierens de Haan

Use Equation (50) and set q = qi and simplify to obtain

∫ 1

0

xp−1

q2 − log2(x)
dx =

(eq)pΓ(0, pq)− (e−q)
pΓ(0,−pq)

2q
(52)

where 0 < Re(p) < 1, q ∈ C.

10.6. Derivation of Entry BI(125)(6) in Bierens de Haan

Use Equation (52) and take the first partial derivative with respect to p and simplify
to obtain ∫ 1

0

xp−1 log(x)
q2 − log2(x)

dx

=
1

2pq

(
epq(e−q)p − e−pq(eq)p − p

(
e−q)p log

(
e−q)Γ(0,−pq) + p(eq)p log(eq)Γ(0, pq)

) (53)

where 0 < Re(p) < 1, q ∈ C.

10.7. Derivation of Entry BI(125)(7) in Bierens de Haan

Use Equations (50) and (52) and take their difference to obtain

∫ 1

0

xp−1

q4 − log4(x)
dx

= −
(e−q)

pΓ(0,−pq) + i
(
e−iq)pΓ(0,−ipq)− i

(
eiq)pΓ(0, ipq)− (eq)pΓ(0, pq)

4q3 (54)

where 0 < Re(p) < 1, q ∈ C.
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10.8. Derivation of Entry BI(125)(8) in Bierens de Haan

Use Equation (54) and take the first partial derivative with respect to p and simplify
to obtain

∫ 1

0

xp−1 log(x)
q4 − log4(x)

dx

=
epq(e−q)

p

4pq3 +
ieipq(e−iq)p

4pq3 −
ie−ipq(eiq)p

4pq3 − e−pq(eq)p

4pq3 − (e−q)
p log(e−q)Γ(0,−pq)

4q3

−
i
(
e−iq)p log

(
e−iq)Γ(0,−ipq)
4q3 +

i
(
eiq)p log

(
eiq)Γ(0, ipq)

4q3 +
(eq)p log(eq)Γ(0, pq)

4q3 (55)

where 0 < Re(p) < 1, q ∈ C.

10.9. Derivation of Entry BI(125)(9) in Bierens de Haan

Use Equations (50) and (52) and add together to obtain

∫ 1

0

xp−1 log2(x)
log4(x)− q4

dx

=
1
4q

((
e−q)pΓ(0,−pq)− i

(
e−iq

)p
Γ(0,−ipq) + i

(
eiq
)p

Γ(0, ipq)− (eq)pΓ(0, pq)
)

(56)

where 0 < Re(p) < 1, q ∈ C.

10.10. Derivation of Entry BI(125)(10) in Bierens de Haan

Use Equation (56) and take the first partial derivative with respect to p and simplify
to obtain

∫ 1

0

xp−1 log3(x)
q4 − log4(x)

dx =
epq(e−q)

p

4pq
−

ieipq(e−iq)p

4pq
+

ie−ipq(eiq)p

4pq
− e−pq(eq)p

4pq

− (e−q)
p log(e−q)Γ(0,−pq)

4q
+

i
(
e−iq)p log

(
e−iq)Γ(0,−ipq)
4q

−
i
(
eiq)p log

(
eiq)Γ(0, ipq)

4q
+

(eq)p log(eq)Γ(0, pq)
4q

(57)

where 0 < Re(p) < 1, q ∈ C.

10.11. Derivation of Entry BI(125)(11) in Bierens de Haan

Use Equation (23) and set k = 2, a = q, n = p + 1 to obtain

∫ 1

0

xp−1

(q + log(x))2 dx = p
(
e−q)pΓ(−1,−pq) (58)

where 0 < Re(p) < 1, q ∈ C.

10.12. Derivation of Entry BI(125)(12) in Bierens de Haan

Use Equation (58) and take the first partial derivative with respect to p and simplify
to obtain

∫ 1

0

xp−1 log(x)
(q + log(x))2 dx

=
epq(e−q)

p

pq
+
(
e−q)pΓ(−1,−pq) + p

(
e−q)p log

(
e−q)Γ(−1,−pq) (59)
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where 0 < Re(p) < 1, q ∈ C.

10.13. Derivation of Entry BI(125)(13) in Bierens de Haan

Use Equation (23) and set k = 2, a = −q, n = p + 1 to obtain

∫ 1

0

xp−1

(q− log(x))2 dx = p(eq)pΓ(−1, pq) (60)

where 0 < Re(p) < 1, q ∈ C.

10.14. Derivation of Entry BI(125)(14) in Bierens de Haan

Use Equation (60) and take the first partial derivative with respect to p and simplify
to obtain

∫ 1

0

xp−1 log(x)
(q− log(x))2 dx = − e−pq(eq)p

pq
+ (eq)pΓ(−1, pq) + p(eq)p log(eq)Γ(−1, pq) (61)

where 0 < Re(p) < 1, q ∈ C.

10.15. Derivation of Entry BI(125)(15) in Bierens de Haan

Use Equation (50) and take the first partial derivative with respect to q simplify
to obtain

∫ 1

0

xp−1(
q2 + log2(x)

)2 dx = −
ieipq(e−iq)p

4q3 +
ie−ipq(eiq)p

4q3 +
p
(
e−iq)pΓ(0,−ipq)

4q2

−
i
(
e−iq)pΓ(0,−ipq)

4q3 +
p
(
eiq)pΓ(0, ipq)

4q2 +
i
(
eiq)pΓ(0, ipq)

4q3 (62)

where 0 < Re(p) < 1, q ∈ C.

10.16. Derivation of Entry BI(125)(16) in Bierens de Haan

Use Equation (62) and take the first partial derivative with respect to p simplify
to obtain

∫ 1

0

xp−1 log(x)(
q2 + log2(x)

)2 dx

=

(
e−iq)pE1(−ipq)

4q2 +

(
eiq)pE1(ipq)

4q2 +
p
(
e−iq)p log

(
e−iq)E1(−ipq)

4q2

−
i
(
e−iq)p log

(
e−iq)E1(−ipq)

4q3 +
p
(
eiq)p log

(
eiq)E1(ipq)

4q2

+
i
(
eiq)p log

(
eiq)E1(ipq)

4q3 +
ieipq(e−iq)p

4pq3 −
ie−ipq(eiq)p

4pq3 −
ieipq(e−iq)p log

(
e−iq)

4q3

+
ie−ipq(eiq)p log

(
eiq)

4q3 (63)

where 0 < Re(p) < 1, q ∈ C.

10.17. Derivation of Entry BI(125)(17) in Bierens de Haan

Use Equation (62) and take the second partial derivative with respect to p simplify
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to obtain

∫ 1

0

xp−1 log2(x)(
q2 + log2(x)

)2 dx

=
p
(
e−iq)p log2(e−iq)E1(−ipq)

4q2 −
i
(
e−iq)p log2(e−iq)E1(−ipq)

4q3

+
p
(
eiq)p log2(eiq)E1(ipq)

4q2 +
i
(
eiq)p log2(eiq)E1(ipq)

4q3

+

(
e−iq)p log

(
e−iq)E1(−ipq)
2q2 +

(
eiq)p log

(
eiq)E1(ipq)

2q2

−
ieipq(e−iq)p

4p2q3 +
ie−ipq(eiq)p

4p2q3 −
eipq(e−iq)p

2pq2 −
e−ipq(eiq)p

2pq2

−
ieipq(e−iq)p log2(e−iq)

4q3 +
ie−ipq(eiq)p log2(eiq)

4q3

+
ieipq(e−iq)p log

(
e−iq)

2pq3 −
ie−ipq(eiq)p log

(
eiq)

2pq3 (64)

where 0 < Re(p) < 1, q ∈ C.

10.18. Derivation of Entry BI(125)(18) in Bierens de Haan

Use Equation (62) and set q = qi simplify to obtain

∫ 1

0

xp−1(
q2 − log2(x)

)2 dx

= − p(e−q)
pE1(−pq)
4q2 − (e−q)

pE1(−pq)
4q3 − p(eq)pE1(pq)

4q2 +
(eq)pE1(pq)

4q3

− epq(e−q)
p

4q3 +
e−pq(eq)p

4q3 (65)

where 0 < Re(p) < 1, q ∈ C.

10.19. Derivation of Entry BI(125)(19) in Bierens de Haan

Use Equation (65) and take the first partial derivative with respect to p and simplify
to obtain

∫ 1

0

xp−1 log(x)(
q2 − log2(x)

)2 dx

= − (e−q)
pE1(−pq)
4q2 − (eq)pE1(pq)

4q2 − p(e−q)
p log(e−q)E1(−pq)

4q2

− (e−q)
p log(e−q)E1(−pq)

4q3 − p(eq)p log(eq)E1(pq)
4q2 +

(eq)p log(eq)E1(pq)
4q3

+
epq(e−q)

p

4pq3 − e−pq(eq)p

4pq3 − epq(e−q)
p log(e−q)

4q3 +
e−pq(eq)p log(eq)

4q3 (66)

where 0 < Re(p) < 1, q ∈ C.

10.20. Derivation of Entry BI(125)(20) in Bierens de Haan

Use Equation (65) and take the second partial derivative with respect to p simplify
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to obtain

∫ 1

0

xp−1 log2(x)(
q2 − log2(x)

)2 dx

= − p(e−q)
p log2(e−q)E1(−pq)

4q2 − (e−q)
p log2(e−q)E1(−pq)

4q3 − p(eq)p log2(eq)E1(pq)
4q2

+
(eq)p log2(eq)E1(pq)

4q3 − (e−q)
p log(e−q)E1(−pq)

2q2 − (eq)p log(eq)E1(pq)
2q2

− epq(e−q)
p

4p2q3 +
e−pq(eq)p

4p2q3 +
epq(e−q)

p

2pq2 +
e−pq(eq)p

2pq2 − epq(e−q)
p log2(e−q)

4q3

+
e−pq(eq)p log2(eq)

4q3 +
epq(e−q)

p log(e−q)

2pq3 − e−pq(eq)p log(eq)

2pq3 (67)

where 0 < Re(p) < 1, q ∈ C.

10.21. Derivation of Entry BI(125)(21) in Bierens de Haan

Use Equation (23) and set k = a, a = q, n = p + 1 to obtain∫ 1

0
xp−1(q + log(x))−adx = (−1)−a pa−1(e−q)pΓ(1− a, q− (p + 1)q) (68)

where 0 < Re(p) < 1, q ∈ C.

10.22. Derivation of Entry BI(125)(22) in Bierens de Haan

Use Equation (23) and set k = a, a = −q, n = p + 1 to obtain∫ 1

0
xp−1(q− log(x))−adx = pa−1(eq)pΓ(1− a, pq) (69)

where 0 < Re(p) < 1, q ∈ C.

11. Discussion

In this article, we demonstrate an exercise in integration theory using our contour
integral method [2] to derive definite integrals of Bierens De Haan [1] in terms of the
incomplete gamma function. We were able to provide errata and extend the range of
computation through analytic continuation of the incomplete gamma function. We will
be applying our method to other integrals tabled in [1] to derive other known and new
integral forms in terms of other special functions.
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