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Abstract: When a machine tool is used for a long time, its bearing experiences wear and failure due
to heat and vibration, resulting in damage to the machine tool. In order to make the machine tool
stable for processing, this paper proposes a smart bearing diagnosis system (SBDS), which uses a
gradient-weighted class activation mapping (Grad-CAM)-based convolutional neuro-fuzzy network
(GC-CNFN) to detect the bearing status of the machine tool. The developed GC-CNFN is composed
of a convolutional layer and neuro-fuzzy network. The convolutional layer can automatically
extract vibration signal features, which are then classified using the neuro-fuzzy network. Moreover,
Grad-CAM is used to analyze the attention of the diagnosis model. To verify the performance of
bearing fault classification, the 1D CNN (ODCNN) and improved 1D LeNet-5 (I1DLeNet) were
adopted to compare with the proposed GC-CNFN. Experimental results showed that the proposed
GC-CNFN required fewer parameters (20K), had a shorter average calculation time (117.7 s), and
had a higher prediction accuracy (99.88%) in bearing fault classification. The proposed SBDS can
not only accurately classify bearing faults, but also help users understand the current status of the
machine tool.

Keywords: convolutional neural network; bearing fault diagnosis; neuro-fuzzy network; smart
manufacturing; deep learning

1. Introduction

According to the induction machine failure reports compiled by the Japan Electrical
Manufacturers’ Association and IEEE Industry Applications Society, bearing failure is the
most common type of machine failure and accounts for 30–40% of all machine failures [1–4].
Rolling bearings are an indispensable component in induction machines that must function
under extreme operating temperatures, under heavy loads, and in harsh high-speed envi-
ronments. Therefore, rolling bearings are vulnerable to various types of damage. Damage
to rolling bearings negatively affects the working of mechanical systems and leads to high
financial losses and maintenance costs. To ensure the stable operation of machines, the
early detection of new bearing faults is crucial. Data acquisition and mining are helpful to
establish the bearing fault diagnosis prediction model [5]. Currently, several bearing fault
diagnosis methods, including model-based, signal analysis, and data-driven methods have
been proposed.

In model-based fault diagnosis methods, system identification techniques or physical
principles are adopted to establish a fault diagnosis system according to the input and
output of the practical system. Afshari et al. [6] presented a fault detection technique
for rolling-element bearings. This technique involves using a detection filter [7] to detect
bearing faults in the inner and outer raceways. Moreover, a sliding mode detector [8] is
used to reduce the effects of noise. The simulation results indicated that the aforementioned
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method can be successfully used to monitor bearing faults. Adams [9] adopted the La-
grange method [10] to establish a mathematical model of a motor system with 29 degrees of
freedom for analyzing bearing failure. To validate and parameterize the established model,
Adams performed an experiment on a motor. The system response results indicated that
the aforementioned model could detect the type of a bearing fault. Jalan [11] developed
a fault diagnosis method for rotor bearing systems by using the residual generation tech-
nique [12]. Due to the influence of residual vibration, the bearing system was unbalanced
and misaligned. The residual force can be analyzed using the equivalent theoretical forces
generated by the rotor bearing faults to detect the location and condition of the faults.
However, the model-based approach requires experts to design complex mathematical
models, and the generalization of developed models is poor.

Signal-based methods usually involve using a vibration signal for bearing fault diagno-
sis. When a fault occurs, information regarding the fault is reflected in the vibration signal.
The faults of a system can be diagnosed by extracting the features of vibration signals. In
general, signal-based methods for bearing fault diagnosis can be divided into three cate-
gories: time domain, frequency domain, and time–frequency domain methods. Vibration
signals can be analyzed in terms of factors such as mean, standard deviation, amplitude,
peak, root mean square (RMS), kurtosis, and spectrum. Nikolaou and Antoniadis [13]
proposed a wavelet packet analysis with high computational ability and flexibility for
identifying faults in rolling-element bearings. Cocconcelli et al. [14] used a short-time
Fourier transform (STFT) to analyze residual signals for highlighting the fault effect in
the time–frequency domain. A fault was indicated when the sum of the STFT coefficients
exceeded the damage threshold. Van et al. [15] developed a hybrid method that combines
nonlocal means (NLM) [16,17] and empirical mode decomposition (EMD) [18] for the
diagnosis of faults in rolling-element bearings. NLM is used for eliminating noise from the
original vibration signal; then, EMD is conducted to detect local faults in rolling bearings.
The aforementioned hybrid method was demonstrated to be more efficient than the EMD
and discrete wavelet transform methods. Fu et al. [19] employed adaptive fuzzy c-means
clustering to recognize different types of bearing faults. First, they extracted vibration
signals as eigenvectors that contained information on the RMS, skewness, kurtosis, crest
factor, and variance in the time domain. Five parameters were then selected to identify the
bearing fault by using fuzzy c-means clustering. The results indicated that adaptive fuzzy
c-means clustering can be used to detect the condition of bearings quickly and accurately.
Although the aforementioned methods can identify bearing faults, the presence of high
noise levels in real environments leads to poor system stability and unfavorable robustness.

Data-driven methods involve using historical data to model systems. In general,
data-driven methods require the use of a large quantity of data for model training. In
data-driven methods, a model can be established using not only statistical methods but
also machine learning methods. Yuwono et al. [20] designed an automatic diagnosis system
by using a hidden Markov model (HMM) and swarm rapid centroid estimation for bearing
fault identification. The frequency features extracted through wavelet kurtogram analysis
and cepstral liftering were used to diagnose bearing faults according to the HMM. The ex-
perimental results of the aforementioned authors indicated that their system can effectively
diagnose fault types. Ali et al. [21] presented a monitoring system for the diagnosis of faults
in rolling bearings. This system performs feature extraction according to the EMD energy
entropy. The extracted features are then used to train an ANN for classifying bearings
faults. The results of Ali et al. indicated that their monitoring system can reliably categorize
bearing faults and ensure the steadiness of machinery. Ertunc et al. [22] compared the bear-
ing fault detection performance of the ANN and adaptive neuro-fuzzy inference system
(ANFIS) [23] models. They used different filters, such as bandpass and low-pass filters,
to capture the characteristics of the vibration signal in the time and frequency domains
for training the ANN and ANFIS models. Test results revealed that the fault diagnosis
accuracy of the ANFIS model was higher than that of the ANN model. Devisi et al. [24]
used zSlice type-2 fuzzy sets to overcome the shortcomings of type-1, which cannot deal
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with uncertainty problems. On the other hand, it also improves the complexity of the
traditional type 2 fuzzy logic system and the huge computational requirements. Although
the aforementioned methods are more accurate and flexible than model- and signal-based
methods are, the aforementioned methods rely on manual feature extraction, which is
tedious and considerably affects the final result. If the quality of the extracted features is
poor, the accuracy of the model is low.

Some scholars have used deep learning for bearing fault detection. The most com-
monly used deep learning architecture is the CNN, which comprises a convolution layer,
pooling layer, and fully connected layer. Zhang et al. [25] designed a deep CNN with
wide first-layer kernels for bearing fault diagnosis. The influence of different convolutional
kernel sizes on the accuracy was also investigated in the aforementioned research. The
aforementioned authors revealed that the accuracy increased with kernel size; however, a
large kernel size is unsuitable for extracting local features. Wen et al. [26] adopted LeNet-5
for bearing fault diagnosis. They converted one-dimensional (1D) time-domain raw vi-
bration signals into two-dimensional (2D) images by using a signal-to-image conversion
method developed by them. The converted images, which were 64 × 64 pixels in size, were
used for training LeNet-5. The results indicated that LeNet-5 had a higher fault prediction
accuracy than did other traditional methods, such as support vector machine [27], sparse
filter [28], and deep belief network approaches [29]. In addition, Wen et al. indicated
that deep learning involves the use of a large number of parameters, which makes the
training process time-consuming. Xie et al. [30] designed a 1D CNN (ODCNN) to detect
faults in rolling bearings. Their experimental results indicated that the ODCNN achieved
high accuracy in bearing fault classification. Wan et al. [31] proposed and compared the
bearing fault diagnosis performance of the improved 1D LeNet-5 (I1DLeNet) and im-
proved 2D LeNet-5 (I2DLeNet) models. The I1DLeNet model uses raw vibration signals
as inputs. The I2DLeNet model uses grayscale images transformed from raw vibration
signals through histogram equalization as inputs. The Case Western Reserve University
(CWRU) bearing dataset was used to verify the aforementioned two models. The results
indicated that the I1DLeNet model is superior to the I2DLeNet model for the diagnosis of
faults in rolling-element bearings. Numerous studies have indicated that compared with
traditional methods, deep learning methods have superior automatic feature extraction
and provide more accurate predictions. Nevertheless, the existence of a large number of
trainable parameters in deep learning methods means that expensive GPU hardware is
required to accelerate calculations.

The aforementioned literature methods indicate that bearing failure can be successfully
diagnosed. However, those methods have certain disadvantages, such as that (1) system
stability and robustness are poor, (2) experts are required to extract features manually,
and (3) users spend a lot of time training huge network parameters. How to design a
bearing fault diagnosis system that is fast, effective, and has few hardware resources was
the aim of this study. In this study, a smart bearing diagnosis system (SBDS) based on
the Grad-CAM-based CNFN (GC-CNFN) for bearing fault diagnosis is proposed. The
contributions of this study include the following:

(1) A novel SBDS was developed to diagnose the health of bearing.
(2) A high-precision GC-CNFN model with fewer parameters is proposed to identify

bearing faults.
(3) The proposed GC-CNFN can automatically perform feature extraction from and

modeling with the original raw vibration signal without the need for expert experience
and knowledge.

(4) By referring to the model attention maps generated by the GC-CNFN, users can deter-
mine the region in which the model focuses on the vibration signal and understand
the basis of the model’s classification.

The remainder of this paper is organized as follows. Section 2 describes the related
works of CNN and Grad-CAM. The designed SBDS is described for bearing fault diagnosis
in Section 3. Section 4 presents the experimental results obtained when using the designed
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SBDS. Finally, Section 5 presents the conclusions of this study and recommendations for
future research.

2. Related Work
2.1. Convolutional Neural Network (CNN)

In this section, the classic CNN architecture of LeNet-5 [32], which was invented by
LeCun, is described. The architecture of LeNet-5 is displayed in Figure 1. As displayed
in Figure 1, LeNet-5 comprises two convolution layers, two pooling layers, a flatten layer,
and two fully connected layers.
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The operation of each layer is described in detail as follows:

• Convolution layer

A convolution layer [33,34] contains several convolution kernels for convolving input
local regions. The convolved results are passed through a sigmoid function to obtain
feature maps. The convolution operation involves performing an element-wise product
operation on the input and the convolution kernel in a sliding window. The equation of
the convolution operation is presented in Equation (1).

Cj
xy = σ

(
∑n

i=1∑kh−1
u=0 ∑kw−1

v=0 Ii
((x+u),(y+v))w

ij
(u,v) + bj

)
(1)

σ(x) =
1

1 + e−x (2)

where Cj
xy presents the jth feature map at position (x, y); n is the number of input channels;

kh and kw are the height and width of the convolution kernel, respectively; Ii is the ith
channel of input image; wij

(u,v) is the jth convolution kernel at position (u, v); bj is the bias;
and σ(x) is the sigmoid activation function. The calculation of the sigmoid function is a
considerably time-consuming process. Therefore, most scholars use the rectified linear unit
(ReLU) function to replace the sigmoid function. The equation of the ReLU function f (·) is
as follows:

f (x) = max(0, x) (3)

• Pooling layer

The pooling layer [35,36], which is also called the downsampling layer, is used to
reduce the spatial size of the feature map. This layer retains crucial information and
discards irrelevant details. Generally, max pooling and average pooling are the most
common operations in CNNs. Max pooling involves reducing the resolution of a feature
map by selecting the largest value in each pooling region as the output. Conversely, the
average function is used in the average pooling operation. The max pooling and average
pooling operations are expressed in Equations (4) and (5), respectively.

Pk
xy = max(u,v)∈Rxy xk

uv (4)
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Pk
xy =

1∣∣Rxy
∣∣∑(u,v)∈Rxy xk

uv (5)

where Pk
xy denotes the output of the kth feature map after the pooling operation, xk

uv is the
input feature map,Rxy is the pooling region, and

∣∣Rxy
∣∣ is the pooling region size.

• Flatten layer

The flatten layer converts 2D feature maps to 1D vectors. Each feature map is vector-
ized through a row-major order scan [37]; then, all the vectors are concatenated to a long
vector, which is input into the fully connected layer. The operation of the flatten layer is
expressed in Equations (6) and (7).

Fi → xk
uv (6)

i = k× (r× c) + (c× u + v) (7)

where Fi → xk
uv indicates that Fi stands for the ith vector converted in the kth feature map

at position (u, ν), denoted by xk
uv; xk

uv is the kth feature map at position (u, v); r is the total
row number of the feature map; c is the total column number of the feature map.

2.2. Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al. proposed using Grad-CAM to generate a color visualization map for
analyzing the region of interest of the CNN model. Grad-CAM [38] is an improvement
on traditional CAM [39]. Due to the fact that CAM requires a CNN based on the global
average pooling (GAP) [40] architecture, this method is difficult to apply in other CNN
architectures. Different from the common pooling method, in the GAP method, which is
designed to change the fully connected layer, an average function is adopted to compress
each 2D feature map into a 1D vector and then classify it using the softmax function. The
GAP operation is illustrated in Figure 2 and expressed in Equation (8).

zc =
1

H ×W ∑H
i=1∑W

j=1uc(i,j) (8)

where zc is the cth 1D feature after the GAP operation; H and W are the height and width
of the 2D feature map, respectively; and uc is the cth convolved feature map at position
(i, j). The CAM architecture is depicted in Figure 2. As displayed in Figure 2, the attention
map of the model is produced from the sum of convolved feature maps and weights
that are between the GAP layer and output. The detailed CAM operation is expressed in
Equation (9).

Lc
(x,y) = ∑kwc

k Ak(x,y) (9)

where Lc
(x,y) is the class activation map in category c, wc

k is the weight of the kth feature
map, and Ak(x,y) is the kth convolved feature map at position (x, y). For overcoming
the drawbacks of CAM, Grad-CAM improves the structure of the method in order to
generalize various CNNs. First, the output score of each category is calculated using the
following equation:

Sc =
1

H ×W ∑kwc
k Ak (10)

where Sc is the score of the model output in category c; H and W are the height and width
of the feature map, respectively; wc

k is the weight of the kth feature map in category c;
and Ak is the kth feature map. The gradient between the output score Sc and the feature
map Ak is calculated using the following equation to acquire the category discrimination
positioning map.

δc
k =

∂Sc

∂Ak
(11)

Gc = ReLU(∑kδc
k Ak) (12)
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where δc
k denotes the weight of the kth feature map and Gc is the normalized heat map of

category c. The architecture and examples of Grad-CAM are displayed in Figures 3 and 4,
respectively. The benefit of Grad-CAM is that its operation is based on output results
and feature maps. Therefore, the structure of the CNN does not influence the Grad-
CAM operation.

Mathematics 2021, 9, 1502 5 of 21 
 

 

𝑃 = max( , )∈ℛ 𝑥   (4)

𝑃 = ℛ ∑ 𝑥( , )∈ℛ   (5)

where 𝑃  denotes the output of the kth feature map after the pooling operation, 𝑥  is 
the input feature map, ℛ  is the pooling region, and ℛ  is the pooling region size. 
• Flatten layer 

The flatten layer converts 2D feature maps to 1D vectors. Each feature map is vector-
ized through a row-major order scan [37]; then, all the vectors are concatenated to a long 
vector, which is input into the fully connected layer. The operation of the flatten layer is 
expressed in Equations (6) and (7). 𝐹 → 𝑥  (6)𝑖 = 𝑘 × (𝑟 × 𝑐) + (𝑐 × 𝑢 + 𝑣) (7)

where 𝐹𝑖 → 𝑥𝑢𝑣𝑘  indicates that 𝐹𝑖 stands for the ith vector converted in the kth feature 
map at position (𝑢, 𝑣), denoted by 𝑥 ; 𝑥  is the kth feature map at position (𝑢, 𝑣); 𝑟 is 
the total row number of the feature map; 𝑐 is the total column number of the feature map. 

2.2. Gradient-Weighted Class Activation Mapping (Grad-CAM) 
Selvaraju et al. proposed using Grad-CAM to generate a color visualization map for 

analyzing the region of interest of the CNN model. Grad-CAM [38] is an improvement on 
traditional CAM [39]. Due to the fact that CAM requires a CNN based on the global aver-
age pooling (GAP) [40] architecture, this method is difficult to apply in other CNN archi-
tectures. Different from the common pooling method, in the GAP method, which is de-
signed to change the fully connected layer, an average function is adopted to compress 
each 2D feature map into a 1D vector and then classify it using the softmax function. The 
GAP operation is illustrated in Figure 2 and expressed in Equation (8). 𝑧 = × ∑ ∑ 𝑢 ( , )  (8)

where 𝑧  is the cth 1D feature after the GAP operation; 𝐻 and 𝑊 are the height and 
width of the 2D feature map, respectively; and 𝑢  is the cth convolved feature map at 
position (𝑖, 𝑗). The CAM architecture is depicted in Figure 2. As displayed in Figure 2, the 
attention map of the model is produced from the sum of convolved feature maps and 
weights that are between the GAP layer and output. The detailed CAM operation is ex-
pressed in Equation (9). 

 
Figure 2. CAM architecture. Figure 2. CAM architecture.

Mathematics 2021, 9, 1502 6 of 21 
 

 

𝐿( , ) = ∑ 𝑤 𝐴 ( , )  (9)

where 𝐿( , ) is the class activation map in category 𝑐, 𝑤  is the weight of the kth feature 
map, and 𝐴 ( , ) is the kth convolved feature map at position (𝑥, 𝑦). For overcoming the 
drawbacks of CAM, Grad-CAM improves the structure of the method in order to gener-
alize various CNNs. First, the output score of each category is calculated using the follow-
ing equation: 𝑆 = × ∑ 𝑤 𝐴   (10)

where 𝑆  is the score of the model output in category 𝑐; 𝐻 and 𝑊 are the height and 
width of the feature map, respectively; 𝑤  is the weight of the kth feature map in category 𝑐; and 𝐴  is the kth feature map. The gradient between the output score 𝑆  and the fea-
ture map 𝐴  is calculated using the following equation to acquire the category discrimi-
nation positioning map. 𝛿 =   (11)

𝐺 = 𝑅𝑒𝐿𝑈(∑ 𝛿 𝐴 )  (12)

where 𝛿  denotes the weight of the kth feature map and 𝐺  is the normalized heat map 
of category 𝑐. The architecture and examples of Grad-CAM are displayed in Figures 3 and 
4, respectively. The benefit of Grad-CAM is that its operation is based on output results 
and feature maps. Therefore, the structure of the CNN does not influence the Grad-CAM 
operation. 

 
Figure 3. Grad-CAM architecture. 

 
Figure 4. Examples of Grad-CAM. 

Figure 3. Grad-CAM architecture.

Mathematics 2021, 9, 1502 6 of 21 
 

 

𝐿( , ) = ∑ 𝑤 𝐴 ( , )  (9)

where 𝐿( , ) is the class activation map in category 𝑐, 𝑤  is the weight of the kth feature 
map, and 𝐴 ( , ) is the kth convolved feature map at position (𝑥, 𝑦). For overcoming the 
drawbacks of CAM, Grad-CAM improves the structure of the method in order to gener-
alize various CNNs. First, the output score of each category is calculated using the follow-
ing equation: 𝑆 = × ∑ 𝑤 𝐴   (10)

where 𝑆  is the score of the model output in category 𝑐; 𝐻 and 𝑊 are the height and 
width of the feature map, respectively; 𝑤  is the weight of the kth feature map in category 𝑐; and 𝐴  is the kth feature map. The gradient between the output score 𝑆  and the fea-
ture map 𝐴  is calculated using the following equation to acquire the category discrimi-
nation positioning map. 𝛿 =   (11)

𝐺 = 𝑅𝑒𝐿𝑈(∑ 𝛿 𝐴 )  (12)

where 𝛿  denotes the weight of the kth feature map and 𝐺  is the normalized heat map 
of category 𝑐. The architecture and examples of Grad-CAM are displayed in Figures 3 and 
4, respectively. The benefit of Grad-CAM is that its operation is based on output results 
and feature maps. Therefore, the structure of the CNN does not influence the Grad-CAM 
operation. 

 
Figure 3. Grad-CAM architecture. 

 
Figure 4. Examples of Grad-CAM. Figure 4. Examples of Grad-CAM.

The traditional CNN architecture of LeNet-5 mainly uses the convolutional layer to
extract the features of the input data and apply the fully connected layer to classify the
features. The convolutional layer convolved the input data and convolution kernels with a
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restricted region of the visual field, known as the receptive field, to automatically extract
features without the need for expert experience and knowledge. However, this network
architecture has the following shortcomings: (1) it is difficult for users to understand the
basis of model feature extraction and (2) the use of a fully connected layer makes the
network generate a large number of parameters, which requires a lot of computing time
and expensive hardware costs. To improve these problems, the neuro-fuzzy network was
adopted to replace the fully connected layer in the CNN network in this study. It reduces
a large number of learnable parameters and improves the classification performance of
the network by imitating the fuzzy logic of the human logic mechanism. In addition, by
introducing the Grad-CAM method, which can generate a separate visualization image
for each class, users can clearly understand the basis of network classification and provide
model interpretation.

3. Problem Definition

In this section, the designed SBDS is described for bearing fault diagnosis. The
proposed GC-CNFN is used to establish a predictive model for bearing fault diagnosis.
This network can not only predict the current state of a bearing according to the vibration
signal, but also provide gradient-weighted class activation maps of the GC-CNFN model.
By merging the class activation maps and original signal images, users can understand the
attention region of the vibration signal model and interpret the model. The flowchart of
the proposed GC-CNFN is shown in Figure 5.Mathematics 2021, 9, 1502 8 of 21 
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3.1. Structure of the GC-CNFN

The GC-CNFN is described in this subsection. The detailed structure of the GC-
CNFN is displayed in Figure 6. As depicted in Figure 6, the GC-CNFN, which enables
the prediction of bearing faults and the generation of model attention maps, combines
Grad-CAM and a CNFN. To obtain a model attention map, first, the CNFN is trained to
classify bearing states according to the bearing fault signal. Subsequently, Grad-CAM and
a trained CNFN are used to produce the attention map of the vibration signal for analyzing
the attention region of the CNFN model.
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The architecture of the proposed GC-CNFN is described in detail as follows:

• Convolutional layer

In this study, the 1D convolution operation was used to extract the features of the
vibration signal. The convolution operation involves performing an element-wise product
operation on the input and the receptive field of the convolution kernel in a sliding window.
The convolution operation is expressed as follows:

C f i = ∑s−1
v=0 Ii+v

⊗
k( f ,v) (13)

where C f i denotes position i of the f th feature map after the convolution operation, I
represents the 1D input data, s represents the convolution kernel size,

⊗
is the convolution

operator, and k is the convolution kernel at position ( f , v).

• Pooling layer

All the convolution feature maps are downsampled using the pooling operation. In
the pooling layer, max pooling, which involves selecting the maximum value from each
pooling kernel of a feature map, is adopted to reduce the number of parameters and avoid
overfitting. The max pooling operation is expressed as follows:

Pf j = max
j≤i≤z−1

C f i (14)

where Pf j represents the f th pooling feature map at position j, z is the pooling kernel size,
and C is the convolution feature map.
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• Flatten layer

After the feature extraction operation is completed, the flatten operation is performed
to concatenate each feature map to a 1D vector. The flatten operation is expressed as follows:

Pf j → ui (15)

i = f × r + j (16)

where ui is the 1D vector at position i, P is the pooling feature map, and r is the total
number of rows in the pooling feature map.

• Fuzzification layer

In the fuzzification layer, the IF–THEN rule is used to perform the fuzzy operation.
The IF–THEN rule is defined as follows:

Rj: IF u1 is S1j . . . and un is Snj, THEN yj = wj

where Rj denotes the fuzzy rule, Sij represents a fuzzy set, and wj is the zero-order Takagi–
Sugeno–Kang weight. Herein, the Gaussian membership function is adopted to improve
the classification result. The Gaussian membership function is expressed as follows:

Sij = exp

{
−
(
ui −mij

)2

2σ2
ij

}
(17)

where S is the Gaussian membership function; exp(·) is the exponential function; and mij
and σij are the mean and derivation of the Gaussian membership function, respectively.

• Rule layer

The fuzzy rule firing strength is obtained from the product of each membership
function. The algebraic product operator is expressed as follows:

Rj = ∏n
i=1Sij (18)

• Defuzzification layer

The result of each rule is calculated by the defuzzification operator to obtain the
crisp value. Then, the softmax function is used to acquire the output probability. The
defuzzification and softmax operators are defined as follows:

zi = ∑r
j=1Rjwij (19)

yi = so f tmax(zi) (20)

δ(zi) =
ezi

∑n
k=1 ezk

(21)

where z is the crisp value obtained by the defuzzifier, R is the firing strength of the fuzzy
rule, w is the weight, yi is the output probability of the ith category, and δ(·) is the softmax
activation function that performs exponential normalization for normalizing the output
value between 0 and 1.

3.2. Parameter Learning Phase

In the learning process, the back-propagation algorithm is used to update the pa-
rameters of the CNFN. By minimizing the loss function, the gradient of each neuron can
be computed. In this subsection, the cross-entropy loss function is used to complete a
multiclass classification task. The cross-entropy loss function L is defined as follows:

L = −∑iti log(yi) (22)



Mathematics 2021, 9, 1502 10 of 19

where ti is the real category and yi is the model prediction result. The trainable parameters
in the CNFN include wij, mij, σij, and k f ,v. These parameters are adjusted by the back-
propagation learning algorithm to minimize the loss function. The updated parameters are
defined as follows:

wij(t + 1) = wij(t)− ηw∆wij (23)

where
∆wij =

∂L
∂wij

=
∂L
∂ŷ

∂ŷ
∂wij

mij(t + 1) = mij(t)− ηm∆mij (24)

where

∆mij =
∂L

∂mij
=

∂L
∂sij

∂sij

∂mij

σij(t + 1) = σij(t)− ησ∆σij (25)

where

∆σij =
∂L
∂σij

=
∂L
∂sij

∂sij

∂σij

k f ,v(t + 1) = k f ,v(t)− ηk∆k f ,v (26)

where

∆k f ,v =
∂L

∂k f ,v
=

∂L
∂C f i

∂C f i

∂k f ,v

where ηw, ηm, ησ, and ηk are the learning rates of the weight, mean and derivation of
the Gaussian membership function, and convolution kernel, respectively. After network
construction is completed, the CNFN is trained using vibration signals and applied in fault
classification tasks. The trained CNFN and Grad-CAM methods are used to generate the
attention map of the model, facilitating the analysis of the vibration signal region that the
model focuses on.

4. Experimental Results

In this section, the performance of the GC-CNFN is described. First, the CWRU
bearing dataset [41] was used to train the proposed GC-CNFN and verify its efficiency.
The input of the GC-CNFN was the raw vibration signal, and its output was the current
state of the bearing. Next, the CNFN attention map was generated through Grad-CAM. By
merging the attention map and raw vibration signal to create a classification visualization,
the classification of bearing faults could be better understood. The procedure and results
of the conducted experiment are described in detail in the following text.

4.1. Data Preprocessing

The CWRU bearing dataset was adopted to train the GC-CNFN model. The CWRU
bearing dataset includes normal and faulty bearing vibration signals, which were collected
through electrical discharge machining (EDM). The machine used for EDM has an electric
motor, a drive-end bearing, a torque transducer, and a dynamometer, as displayed in
Figure 7a. The bearing database covers four states: normal, ball fault, inner race fault, and
outer race fault. The CWRU database includes vibration signals that were collected under
sampling frequencies of 12 kHz and 48 kHz and motor loads of 0, 1, 2, and 3 horsepower.
The diameters of the normal, ball fault, inner race fault, and outer race fault states are 0,
0.007, 0.014, 0.021, and 0.028 inches, respectively. The corresponding motor speeds of the
four loads are 1797, 1772, 1750, and 1730 rpm, respectively. Considering the fault location
corresponding to the load zone, the outer race faults are divided into three categories:
centered, orthogonal, and opposite outer race faults. Centered outer race faults are located
at 6 o’clock (@6), orthogonal outer race faults are located at 3 o’clock (@3), and opposite
outer race faults are located at 12 o’clock (@12). The structure of the rolling bearing is
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shown in Figure 7b. As depicted in Figure 7b, the rolling bearing is generally composed
of an inner ring, an outer ring, and steel balls. In the experiment, we focused on the data
corresponding to a sampling frequency of 12 kHz and did not consider motor load and
motor speed. Thus, 16 bearing conditions were used to establish a bearing fault diagnosis
system. For example, all inner race faults that had a diameter of 0.007 inches, irrespective
of the motor load and motor speed, were assumed to be in one category. The health
conditions corresponding to different bearing vibration signals are presented in Table 1,
where the symbol “—” indicates that data were unavailable. The 16 status conditions
were labeled as Normal, IR_07, IR_14, IR_21, IR_28, B_07, B_014, B_21, B_28, OR@6_07,
OR@6_14, OR@6_21, OR@3_07, OR@3_14, OR@12_07, and OR@12_21.
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Table 1. Status conditions corresponding to different bearing vibration signals.

Fault
Diameter

Motor
Load

Motor
Speed Normal Inner Race Ball

Outer Race (Fault Position)
@6 @3 @12

0

0 1797

Normal — — — — —
1 1772

2 1750

3 1730

0.007

0 1797

— IR_07 B_07 OR@6_07 OR@3_07 OR@12_07
1 1772

2 1750

3 1730

0.014

0 1797
—

IR_14 B_14 OR@6_14 OR@3_14 —
1 1772

2 1750

3 1730

0.021

0 1797

— IR_21 B_21 OR@6_21 — OR@12_21
1 1772

2 1750

3 1730

0.028

0 1797

— IR_28 B_28 — — —
1 1772

2 1750

3 1730
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To identify the status of a bearing, the 12-kHz CWRU dataset was preprocessed to
establish a bearing fault diagnosis model. The total number of 12 kHz driver fault records
was 64. Each health condition had four vibration signal records. Each record was split
into several nonoverlapping fragment samples, each of which contained 1024 points. A
processed data segment is illustrated in Figure 8. The number of samples in each fault
category is listed in Table 2. As presented in Table 2, the normal, ball fault, inner race fault,
and outer race fault states contained 1657, 1893, 1894, and 3324 samples, respectively. These
processed data were used to train the CNN model for bearing fault diagnosis.

Mathematics 2021, 9, 1502 12 of 21 
 

 

Table 1. Status conditions corresponding to different bearing vibration signals. 

Fault Diameter Motor Load Motor Speed Normal Inner Race Ball 
Outer Race (Fault Position) 
@6 @3 @12 

0 

0 1797 

Normal — — — — — 
1 1772 
2 1750 
3 1730 

0.007 

0 1797 

— IR_07 B_07 OR@6_07 OR@3_07 OR@12_07 
1 1772 
2 1750 
3 1730 

0.014 

0 1797 

— IR_14 B_14 OR@6_14 OR@3_14 — 
1 1772 
2 1750 
3 1730 

0.021 

0 1797 

— IR_21 B_21 OR@6_21 — OR@12_21 
1 1772 
2 1750 
3 1730 

0.028 

0 1797 

— IR_28 B_28 — — — 
1 1772 
2 1750 
3 1730 

To identify the status of a bearing, the 12-kHz CWRU dataset was preprocessed to 
establish a bearing fault diagnosis model. The total number of 12 kHz driver fault records 
was 64. Each health condition had four vibration signal records. Each record was split into 
several nonoverlapping fragment samples, each of which contained 1024 points. A pro-
cessed data segment is illustrated in Figure 8. The number of samples in each fault cate-
gory is listed in Table 2. As presented in Table 2, the normal, ball fault, inner race fault, 
and outer race fault states contained 1657, 1893, 1894, and 3324 samples, respectively. 
These processed data were used to train the CNN model for bearing fault diagnosis. 

 
Figure 8. Processed data segment. 

  

Figure 8. Processed data segment.

Table 2. Number of samples in each fault category.

Fault
Diameter Normal Inner

Race Ball
Outer Race (Fault Position)

@6 @3 @12

0 1657 — — — — —

0.007 — 476 473 475 474 476

0.014 — 472 475 474 475 —

0.021 — 474 475 476 — 474

0.028 — 471 471 — — —

4.2. Bearing Fault Diagnosis and Evaluation for CWRU Dataset

This subsection describes the results of bearing fault diagnosis when using the pro-
posed GC-CNFN. The detailed architecture and parameters of the GC-CNFN are presented
in Table 3. As presented in Table 3, the GC-CNFN contains two convolutional layers, one
max pooling layer, one fuzzy layer, and one defuzzification layer. To obtain the attention
map of the GC-CNFN model, the padding operation was used for maintaining the dimen-
sions of the convolutional feature map in the first layer. The first and second convolution
layers contained kernels with sizes of 32 × 1 and 16 × 1, respectively, and the channel sizes
were 5 and 3, respectively. The size of the max pooling kernel was 10 × 1. The number of
fuzzy rules was set as 32. The output was one of the 16 bearing fault conditions. A total of
8768 vibration signals were used to train the GC-CNFN. The vibration signal data were
split as follows: 80% for training, 10% for validation, and 10% for testing; thus, the total
numbers of training, validation, and testing samples were 7014, 877, and 877, respectively.

To evaluate the stability and generalization performance of the GC-CNFN effec-
tively, 10 training processes were adopted in the experiment. The k-fold cross-validation
method [40] was also used to verify the model efficiency for different subsets. The perfor-
mance of the GC-CNFN was compared with that of the ODCNN and improved 1D LeNet-5
(I1DLeNet). The detailed network structures of the ODCNN and I1DLeNet are presented
in Table 4. The ODCNN contains two sets of convolution, pooling, and fully connected
layers. I1DLeNet contains four sets of convolution and pooling layers as well as two sets of
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fully connected layers. For the pooling layer, mode A and mode B indicate average pooling
and max pooling, respectively.

Table 3. Architecture of the GC-CNFN.

Layer Parameter

Input 1024 × 1
Conv1D (size, channel) 32 × 1, 5
Conv1D (size, channel) 16 × 1, 3

Max-pooling (size, stride) 10 × 1, 1
Fuzzy (rule) 32

Defuzzifier (Output) 16

Table 4. ODCNN and I1DLeNet structures.

Model
Layer ODCNN I1DLeNet

Convolutional 1 (size, channel) 10 × 1, 50 6 × 64, 50
Pooling 1 (size, stride, mode) 2 × 1, A 8 × 1, 8, M

Convolutional 2 (size, channel) 20 × 50, 5 16 × 1, 16
Pooling 2 (size, stride, mode) 2 × 1, A 2 × 1, 1, M

Convolutional 3 (size, channel) — 32 × 1, 8
Pooling 3 (size, stride, mode) — 2 × 1, 1, M

Convolutional 4 (size, channel) — 32 × 1, 4
Pooling 4 (size, stride, mode) — 2 × 1, 1, M

Fully connected (neuron) 200 120
Fully connected (neuron) 200 84

Output 16 16

The implementation of GC-CNFN was done by using Tensorflow 1.14, Keras 2.3.0, and
Python 2.7. Due to the fact that obtaining sufficient GPU computing resources in a factory is
difficult, a 3.00-GHz Intel Core i5-8500 central processing unit with six cores computer was
adopted in the experiment to evaluate the computing performance of the three compared
models. A total of 50 epochs were used to train each model. The results obtained for each
model after ten training processes are presented in Table 5. The evaluation variables in the
experiment included accuracy, standard deviation (SD), total number of parameters, and
average training time.

As presented in Table 5, the ODCNN and GC-CNFN had the highest accuracy rates
of 99.62% and 99.75%, respectively. The proposed GC-CNFN had the highest average
accuracy and lowest SD. The aforementioned results indicate that the proposed method
is relatively stable for bearing fault diagnosis. The number of parameters and calculation
times were also determined to evaluate the computation efficiency of each model. The
ODCNN had the largest number of parameters (up to 1.07 million) because it used a large
number of neurons in the fully connected layer. The I1DLeNet used fewer neurons in the
fully connected layer and therefore required 2.87 times fewer parameters and exhibited a
computation time that was 1.45 times shorter than ODCNN. In the proposed GC-CNFN,
the neuro-fuzzy network replaces the traditional fully connected layer, which considerably
reduces the number of parameters and the required computation resources. Compared with
the ODCNN and I1DLeNet, the GC-CNFN required 53.2 and 18.5 times fewer parameters,
respectively, and computation times that were 1.88 and 1.28 times shorter, respectively.
The confusion matrices of each model are shown in Figure 9. The ODCNN classified a
small number of ball faults with a diameter of 0.021 inches (B_21) as ball faults with a
diameter of 0.007 inches (B_07) and inner race faults with a diameter of 0.017 inches (IR_14).
The I1DLeNet model classified some ball faults with a diameter of 0.021 inches (B_21) as
ball faults with a diameter of 0.007 inches (B_07) and inner race faults with a diameter
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of 0.017 inches (IR_14), respectively. A small number of outer race faults, which were
located at 6 o’clock with a diameter of 0.14 inches (OR@6_14) were also classified as inner
race faults with a diameter of 0.017 inches (IR_14). The proposed GC-CNFN misclassified
partial ball faults with a diameter of 0.021 inches (B_21) as ball faults with a diameter of
0.007 inches (B_07). This result indicates that the characteristics of B_07 and B_21 were
similar, which resulted in model classification errors.

Table 5. Training results of each model.

Evaluation Item
Model ODCNN [28] I1DLeNet [29] GC-CNFN

Training

Best accuracy 0.9962 0.9949 0.9975

Worst accuracy 0.9922 0.9913 0.9924

Average
accuracy 0.9947 0.9835 0.9955

Standard
deviation 0.0028 0.0040 0.0019

Total parameters 1,078,146 375,122 20,248

Average training time (s) 217.6 141.5 117.7

Testing accuracy 0.9931 0.9874 0.9988

4.3. Model Attention Map for Vibration Signals

After the training process, the GC-CNFN was used to generate a model attention
map to analyze the region, in which the model focused on vibration signals. First, the
activation map of the model was obtained using the convolution kernel. Then, the vibration
signal was combined with the activation map to obtain a model attention map. The model
attention maps of different types of bearing faults are displayed in Figure 10. Figure 10a
illustrates the vibration signal in the normal state. The amplitude of the vibration signal in
the normal state was between 0.2 and −0.2, which was smaller than the amplitude of other
fault states. The activation map focused on the vibration signal with larger amplitudes,
which indicated that the GC-CNFN had learned the characteristics of the vibration signal in
the normal state. The vibration signals of the four types of inner ring fault states contained
many waves with different amplitudes, as displayed in Figure 10b. An analysis of the
model attention maps indicated that the GC-CNFN principally focused on large-amplitude
waveforms. As depicted in Figure 10c, the B_07 and B21 ball failure states were highly
similar; therefore, the GC-CNFN was prone to misclassify these failure states. The vibration
signal amplitude of B_28 was larger than those of other fault signals, which were between
7.5 and −7.5. Figure 10d illustrates the vibration signals of outer race faults in three failure
positions. Different fault states exhibited different waveforms. The model attention maps
indicate that the proposed GC-CNFN can automatically extract feature information on
different fault signals. Thus, the GC-CNFN achieves high accuracy in fault classification.

In the experimental results (Table 5), we found that the parameters of ODCNN and
I1DLeNet using the fully connected layer were surprisingly large, exceeding 1 million and
300,000 respectively. On the contrary, the proposed GC-CNFN adopted the neuro-fuzzy
network to replace the fully connected layer, which not only greatly reduced the number of
network parameters, but also increased the classification accuracy. This indicates that the
neural-fuzzy network, which combines the human reasoning mechanism of fuzzy logic
and nonlinear mapping of NN, has a greater superiority to the fully connected layer. From
the model attention map (Figure 10), we observed that some bearing defects were classified
incorrectly due to similar vibration signal characteristics, such as B_07 and B_21. The three
network architectures (ODCNN, I1DLeNet, and GC-CNFN) in the experiment encountered
this problem. In future studies, we will consider introducing the attention mechanism to
improve the problem of bearing fault misclassifications due to similar fault signals.
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5. Conclusions

In this study, an SBDS was developed for diagnosing bearing faults of tool machines.
Considering that traditional modeling methods rely on experts for tedious manual feature
extraction, the SBDS uses the designed GC-CNFN, which can automatically perform
feature extraction from the original raw vibration signal to establish a predictive model
for bearing fault diagnosis. The proposed GC-CNFN applies the neuro-fuzzy network to
replace the fully connected layer in order to reduce the number of network parameters
and improve the classification accuracy. Simultaneously, the proposed GC-CNFN also
introduces the Grad-CAM method to generate the model attention maps that provide
users with the ability to understand the basis of model classification of bearing faults. The
experimental results indicated that the GC-CNFN required fewer parameters (20K), had a
shorter average calculation time (117.7s), and had a higher prediction accuracy (99.88%)
than ODCNN and I1DLeNet-5 models. Inevitably, the proposed GC-CNFN model has
limitations. For example, the number of parameters and fuzzy rules in the GC-CNFN
model depends on user experience or trial and error. In future works, the automatic
selection of parameters and fuzzy rules in the GC-CNFN model will be considered to
improve the model’s effectiveness. Simultaneously, different bearing databases will also
be considered to verify the stability and robustness of the classification model. Finally, in
order to achieve high-speed operation in real-time applications, the GC-CNFN model will
also be implemented on a field programmable gate array.
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