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Abstract: We address the problem of finding a natural continuous time Markov type process—in
open populations—that best captures the information provided by an open Markov chain in discrete
time which is usually the sole possible observation from data. Given the open discrete time Markov
chain, we single out two main approaches: In the first one, we consider a calibration procedure
of a continuous time Markov process using a transition matrix of a discrete time Markov chain
and we show that, when the discrete time transition matrix is embeddable in a continuous time one,
the calibration problem has optimal solutions. In the second approach, we consider semi-Markov
processes—and open Markov schemes—and we propose a direct extension from the discrete time
theory to the continuous time one by using a known structure representation result for semi-Markov
processes that decomposes the process as a sum of terms given by the products of the random
variables of a discrete time Markov chain by time functions built from an adequate increasing
sequence of stopping times.

Keywords: Markov chains; open population Markov chain models; Semi-Markov processes

1. Introduction

After the first works introducing homogeneous open Markov population models in [1]
followed by those in [2] and then in [3], further expanded by several authors and exposed
in [4] and then in [5], the study of open populations in a finite state space in discrete time
with a Markov chain structure became well established.

Following the pioneering work of Gani, introducing in [6] what now is known as Cyclic
Open Markov population models, there were further extensions in [7], for non-homogeneous
Markov chains and then, for cyclic non-homogeneous Markov systems or equivalently
for non-homogeneous open Markov population processes, by the authors of [8,9]. Let
us stress that continuous time non-homogeneous Markov systems have been studied
lately in [10]. Furthermore, the recent work in [11] develops an approach to open Markov
chains in discrete time—allowing a particle physics interpretation—for which there is a
state space of the Markov chain—where distributions are studied by means of moment
generating functions—there is an exit reservoir, which is tantamount to a cemetery state
and, there is an incoming flow of particles, defined as a stochastic process in discrete time
whose properties—e.g., stationarity—condition the distribution law of the particles in the
state space.

Discrete time non-homogeneous semi-Markov systems or equivalently open semi-
Markov population models were introduced and studied in [12,13]. The study of open
populations in a finite state space in continuous time and governed by Markov laws,
has already been carried in [14] and the references therein, and extensions to a general
state space have been given in [15–17]. The continuous time framework has also been
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addressed, for instance, in [18–20], for the case of semi-Markov processes and for non-
homogeneous semi-Markov systems [21]. We may also refer a framework of open Markov
chains with finite state space—see in [22] and references therein—that has already seen
applications in Actuarial or Financial problems—as, for instance, in [23,24]—but also in
population dynamics (see [25]). The weaker formalism open Markov schemes, in discrete
time—developed in [26]—allows for influxes of new elements in the population to be given
as general time series models.

Another example was motivated by the study of a continuous time non homogeneous
Markov chain model for Long Term Care, based on an estimated Markov chain transition
matrix with a finite state space, in [27], by means of a method for calibrating the intensities
on the continuous time Markov chain using the discrete time transition matrix in the
context of usual existence theorems for ordinary differential equations (ODE); this method
will be considered, in Section 3.2, in the more general context of Caratheodory existence
theorems for ODE.

The main contribution of the present work is to extend results on open Markov chains
in discrete time to some continuous time process of Markov type using different methods
of associating a continuous process to an observed process in discrete time. One of these
methods—presented in Sections 3.2 and 3.3—is by calibration of the transition intensities.
Another method considered for open Markov schemes—in Section 4.2 and also, briefly, for
some particular cases, in Section 4.3—is to exploit a natural representation of the continuous
time Markov type process, in Formula (2) of Section 2.

2. From Discrete Time to Continuous Time via a Structural Approach

We present the main ideas on a structural representation for continuous time process of
Markov type that are crucial to our approach. The structure of continuous time processes—
for instance, Markov, semi-Markov, and Markov type schemes processes—allows us to
consider a fairly general representation formula—Formula (2)—decoupling the continuous
time process as a discrete time process and a sequence of time functions depending on the
sequence of the jump stopping times.

Consider a complete probability space (Ω,F ,P), a continuous time stochastic process
(Yt)t≥0 defined on this probability space and F = (Ft)t≥0 the natural filtration associated
to this process, that is, such that Ft := σ(Ys : s ≤ t) is the algebra-σ generated by the
variables of the process until time t. Consider also a sequence of random variables (Zn)n≥0
taking values in a finite state space Θ = {θ1, θ2, . . . , θr}, the sequence being adapted to the
filtration F and 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · an increasing sequence of F-stopping
times, denoted by T , satisfying the following hypothesis:

Hypothesis 1. Almost surely, limn→+∞ τn = +∞ and, for any T ∈ R+ and almost all ω ∈ Ω:

#{k ≥ 1 : τk(ω) ≤ T} < +∞. (1)

This hypothesis means that in every compact time interval [0, T], for almost all ω ∈ Ω,
there is only a finite number of stopping times realizations τk(ω) in this interval.

Hypothesis 2. The continuous time process (Yt)t≥0 admits a representation given, for t ≥ 0, by

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t), (2)

that is, a hypothesis on the structure of the continuous time process (Yt)t≥0.

It is well known—see in [28] (pp. 367–379) and in [29] (pp. 317–320)—that if (Zn)n≥0
is a Markov chain and the time intervals (τn+1 − τn)n≥0 are Exponentially distributed then
(Yt)t≥0 can be taken to be a continuous time homogeneous Markov chain. If (Zn)n≥0 is a
Markov chain and the time intervals (τn+1 − τn)n≥0 have a distribution that can depend
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on the present state as well as on the one visited next then (Yt)t≥0 can be taken to be a
semi-Markov process (see in [30] (pp. 261–262) and in [31] (pp. 295–299), for brief refer-
ences). In the case of a semi-Markov processes, a nice result of Ronald Pyke (see in [32]
(p. 1236)), reproduced ahead in Theorem A7, guarantees that when the state space is finite
the process is regular implying that almost all paths of such a semi-Markov process are
step-functions over [0,+∞[ and so, the paths satisfy Formula (1). In another important
case (see Theorems A5 and A6 ahead, or [30] (pp. 262–266) and [31] (pp. 195–244)), ade-
quate hypothesis on the distribution of the stopping times and on the sequence (Zn)n≥0
implies that (Yt)t≥0 will be a non homogeneous Markov chain process in continuous time,
whose trajectories are step functions also satisfying Formula (1). The representation in
Formula (2), thus covers the cases of homogeneous and non homogeneous Markov pro-
cesses in continuous time as well as semi-Markov processes, providing a desired connection
between a continuous time process and a discrete one that is a component of the former.
We observe that there is a practical justification for Hypothesis 1, namely, the identifiability
of the process; as can be read in [33] (p. 3): “. . . Actually, in real systems the transition from one
observable state into another takes some time.” Being so, the existence of accumulation points
in a compact interval would preclude estimation procedures for instance of the distribution
of the sequence (τn+1 − τn)n≥1.

3. From Discrete to Continuous Time Markov Chains: A Calibration Approach

In this section, we consider a calibration approach in order to determine a set of
probability densities that best approaches a sequence of discrete time transition matrices
with respect to a quadratic loss function. We then show that embeddable stochastic matrices,
according to Definition 1, are solutions of the calibration problem. For the reader’s con-
venience, we recall in the first appendix the most important results on continuous time
Markov chains with finite state space that are relevant for our study with emphasis on the
crucial non-accumulation property of the jump times of a continuous time Markov chain
(see Theorem A6 ahead). We will start by recalling the main information on embeddable
chains. We then present one of the main contributions of this work, that is, a general result
on the optimization problem of calibration and its relations with embeddable properties of
discrete time Markov chains.

3.1. The Embedding of a Discrete Time Markov Chain in a Continuous One

The embedding of the discrete time Markov chain in a continuous one following the
guidelines, for instance, in [34–40], can be considered as a method to connect a discrete
time process with a continuous one. For notations on non-homogeneous continuous time
Markov chains see Section 3.2.

Definition 1 (Embeddable stochastic matrix (see [38])). A stochastic matrix R is said to be
embeddable if there exists a time tR > 0 and a family of stochastic matrices P(s, t) continuously
defined in the set of times {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ tR} such that

P(s, t) = P(s, u)P(u, t) 0 ≤ s ≤ u ≤ t ≤ tR

P(s, s) = I 0 ≤ s ≤ tR.
P(0, tR) = R.

(3)

We observe that by Theorem A2 ahead, the condition in Formulas (3) is tantamount
to the definition of a continuous time Markov chain with transition probabilities given
by P(s, t).

Remark 1 (Intrinsic time for embeddable chains). Goodman in [41]—aiming at a more general
result for the Kolmogorov differential equations—showed that with the change of time given by
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ϕ(u) := − log det P(0, u)—which amounts to a change in the matrix coefficients of P(s, t)—we
have that

tR = − log det R. (4)

This remarkable representation for the embedding time tR will be useful for a result in
Section 3.2 devoted to the calibration approach. It has also been used for estimation in [42] (p. 330).

See the work in [35] for a definition similar to Definition 1 and for a summary of many
important results on this subject. The characterization of an embeddable stochastic matrix
in a form useful for practical purposes was recently achieved in [43]. More useful results
were obtained in [44]. The connections between this kind of embedding and the other
approaches, for the association of a discrete time Markov chain and a continuous time
process, deserve further study.

3.2. Continuous Time Markov Chains Calibration with a Discrete Time Markov Transition Matrix

The calibration of transition intensities of a non homogeneous Markov chain, with a
discrete time Markov chain transition matrix estimated from data, was proposed in [27].
In this section, we establish a general formulation of the existence a unicity result that
subsumes the approach and we establish a connection with the embedding approach of
Section 3.1. Notation and needed essential results on non-homogeneous Markov processes
in continuous time were recalled in Appendix A.

The procedure for calibration of intensities consists in finding the intensities of a non
homogeneous continuous time Markov chain using a probability transition matrix of a
discrete time Markov chain and a given loss function—having as arguments the transition
probabilities of the continuous time Markov chain and some function of the transition
matrix of the discrete time Markov chain—in such a way that the loss function is minimized.

Previously to the consideration of the theorem on the calibration of intensities we
discuss some motivation for this approach. It may happen that a phenomena that could be
dealt—due to its characteristics—with a continuous time Markov chain model can only be
observed at regularly spaced time intervals. This is the case of the periodic assessments
of the healthcare status of patients that can change at any time but are only object of
a comprehensive evaluation on, say, a weekly basis. With the data originated by these
observations we can only determine transition probabilities—for a defined period, say, a
week—and, most importantly we cannot determine the time stamps for the patient status
change. The question naturally poses itself: is it possible to associate—in some canonical
way—to an estimated discrete time Markov chain transition matrix a process in continuous
time that encompasses the discrete time process? First steps in this direction are provided
by Theorem 1 that we now present and the following Theorems 2 and 3.

We formulate Theorem 1 in the context of Caratheodory’s general existence theory of
solutions of ordinary differential equations that we briefly recall. One reason for this choice
is that according to [41] (p. 169) and we quote: “. . .This fact gives further evidence in support
of the view that Caratheodory equations occupy a natural place in the theory of non-stationary
Markov chains.” Another reason is the fact that Caratheodory existence theory is particularly
suited for regime switching models and these models are the object of Theorem 3 ahead.
Following the work in [45] (pp. 41–44), we consider the definition of an extended solution
for a Cauchy problem of a differential equation,

Y ′(t) = f (t, Y(t)), Y(0) = ξ, (5)

or formulated in an equivalent form,

Y(t) = ξ +
∫ t

0
f (s, Y(s))ds, (6)

for f (t, y) : I × D → R
r a non-necessarily continuous function, with I ⊂ [0,+∞[ and

D ⊂ Rr, to be an absolutely continuous function Y(t) (see [46], pp. 144–150) such that
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f (t, Y(t)) ∈ D for t ∈ I and Formula (5) is verified for all t ∈ I possibly with the exception
of a set of null Lebesgue measure. The well-known Caratheodory’s existence theorem
(see in [45], p. 43) ensures the existence of an extended solution with a given initial
condition—given in a neighborhood of the initial time—under the conditions that f (t, y) is
measurable in the variable t, for fixed y, and continuous in the variable y, for fixed t, and
moreover that there exists a Lebesgue integrable function m(t), defined on a neighborhood
of the initial time, let us say I, such that | f (t, y)| ≤ m(t) for (t, y) ∈ I ×D. The question
of unicity of the solution is dealt, usually, either directly using Theorem 18.4.13 in [47]
(p. 337) or using Osgood’s uniqueness theorem—as exposed, for instance, in [48] (p. 58) or
in [49] (pp. 149–151)—to conclude that the extended solution—that with Caratheodory’s
theorem we know to exist—is unique in the sense that two solutions may only differ on a
set of Lebesgue measure equal to zero. For our purposes we need an existence and unicity
theorem for ordinary differential equations with solutions depending continuously on a
parameter such as the general result of Theorem 4.2 in [45] (p. 53) with an omitted proof
that follows for a lengthy previous exposition of related matters. For completeness we
now establish a result that is suited to our purposes as it deals with the particular type of
Kolmogorov equations for continuous time Markov chains.

Theorem 1 (Calibration of intensities with Caratheodory’s type ODE existence theorem
hypothesis). Let, for 1 ≤ n ≤ N, Rτn =

[
r(τn)

ij

]
i,j=1,...,r

be the generic element of a sequence of

numerical transition matrices taken at sequence of increasing dates (τn)1≤n≤N . Consider a set of
intensities Q(t, λ) = [q(u, i, j, λ)]i,j=1,...,r—with λ ∈ Λ ⊂ Rd being a parameter and Λ being a
compact set—satisfying the following conditions:

1. For every fixed λ the functions q(u, i, j, λ) are measurable as functions of u.
2. For every fixed u the functions q(u, i, j, λ) are continuous as functions of λ.
3. There exists a locally integrable function M : [0,+∞[ 7→ [0,+∞[, such that for all λ ∈ Λ,

i ∈ I , u ∈ [0,+∞[ and 0 ≤ s ≤ t, the following conditions are verified:

− q(u, i, i, λ) ≤ M(u) and
∫ t

s
M(u)du < +∞. (7)

Then, we have

1. There exists P(s, t, λ) = [p(s, i, t, j, λ)]i,j=1,...,r a probability transition matrix, with entries
absolutely continuous in s and t, such that conditions in Definition A2, the Chapman–
Kolmogorov equations in Theorem A1 and Theorem A3 are verified.

2. For each fixed s0, consider the loss function

O(s0, λ) := ∑
i,j=1,...,r

N

∑
n=1

(
p(s0, i, τn, j, λ)− r(τn)

ij

)2
. (8)

Then, for the optimization problem infλ∈ΛO(s0, λ) there exists λ0 ∈ Λ such that

O(s0, λ0) = min
λ∈Λ
O(s0, λ), (9)

the unique minimum being attained at possibly several points λ0 ∈ Λ.

Proof. We will prove, simultaneously, the existence of the probability transition matrix,
the unicity in the extended solution sense and the continuous dependence of the parameter
λ ∈ Λ following the lines of the proof of the result denominated Hostinsky’s representation
(see in [29], pp. 348–349). As we suppose that Λ is compact, the continuity of P(s0, t, λ), as
a function of λ ∈ Λ for every fixed t, will be enough to establish the second thesis.
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We want to determine an extended solution of the Kolmogorov forward equation
given in Formula (A11), that is an extended solution of

P′t(s0, t, λ) = P(s0, t, λ)Q(t, λ)

P(t, t) = I,
(10)

an equation which, as seen in Formula (A12), can be read in integral form as,

P(s0, t, λ) = I +
∫
[s0,t]

P(s0, s, λ)Q(s, λ)ds. (11)

As previously said, we will now follow the general idea of successive approximations
in the proof of the Picard–Lindelöf theorem for proving existence and unicity of solutions
of ordinary differential equations for the forward Kolmogorov equation. By replacing
P(s0, s, λ) in the right-hand member of Equation (11) by this right-hand member we get,

P(s0, t, λ) = I +
∫
[s0,t]

Q(s, λ)ds +
∫
[s0,t]

∫
[s0,t1]

P(s0, t2, λ)Q(t1, λ)Q(t2, λ)dt2dt1

and, by induction, we obtain

P(s0, t, λ) = I +
∫
[s0,t]

Q(s, λ)ds +

+
k

∑
n=2

∫
[s0,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

Q(t1, λ)Q(t2, λ) · · ·Q(tn, λ)dtn · · · dt1 +

+
∫
[s0,t]

∫
[t1,t]
· · ·

∫
[tk−1,t]

P(s0, tk, λ)Q(t1, λ)Q(t2, λ) · · ·Q(tk, λ)dtk · · · dt1.

Now, considering the function M(t) in the third hypothesis stated above about the
intensity matrix, we have that, by Lemma A1 (see also Lemma 8.4.1 in [29], p. 348), since
M(t) is integrable over any compact set, considering the (i, j) component of the r× r matrix,
we have that∣∣∣∣∣

[∫
[s0,t]

∫
[t1,t]
· · ·

∫
[tk−1,t]

P(s0, tk, λ)Q(t1, λ)Q(t2, λ) · · ·Q(tk, λ)dtk · · · dt1

]
ij

∣∣∣∣∣ ≤
≤ rk

∫
[s0,t]

∫
[t1,t]
· · ·

∫
[tk−1,t]

M(t1)M(t2) · · ·M(tk)dtk · · · dt1 =

=

(
r
∫
[s0,t] M(s)ds

)k

k!
.

Finally, as

lim
k→+∞

(
r
∫
[s0,t] M(s)ds

)k

k!
= 0,

we have that the series for which the sum represents P(x, t, λ), that is,

P(s0, t, λ) = I +
+∞

∑
n=1

(∫
[s0,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

Q(t1, λ)Q(t2, λ) · · ·Q(tn, λ)dtn · · · dt1

)
,

is a series—of absolutely continuous functions of the variable t which are also continuous
as functions of the parameter λ ∈ Λ—converging normally and so the sum is an absolutely
continuous function of the variable t and continuous function of the parameter λ. With
a similar reasoning applied to the backward Kolmogorov equation we also have that
P(s, t0, λ) is absolutely continuous in the variable s and, obviously, continuous as a function
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of the parameter λ ∈ Λ. We observe that it was stated in [41], pp. 166–167 (with a reference
to a proof in [50] and proved also in [51]), that the separate absolute continuity of P(s, t, λ)
in the variables s and t ensures the uniqueness of the solution.

Remark 2 (An alternative path for the existence result). We observe that, for every fixed value
of the parameter λ, by a direct application of Caratheodory’s existence theorem to the forward
and backward Kolmogorov equations in Theorem A3, we obtain a probability transition matrix
P(s, t, λ) = [p(s, i, t, j, λ)]i,j=1,...,r, such that conditions in Definition A2 and the Chapman–
Kolmogorov equations in Theorem A1 are verified, that in addition has entries absolutely continuous
in s and t and such that Kolmogorov’s equations are satisfied almost everywhere. With this
approach the continuous dependence of the probability transition matrix on the parameter λ requires
further proof.

Remark 3 (On the parametrized intensities and transition probabilities). In a first application
to Long-Term Care of a simpler version of Theorem 1 presented in [27], we chose as intensities a
parametrized family—of Gompertz–Makeham type (see, for instance, in [52], p. 62)—with a three
dimensional parameter. We observe that, in its actual formulation, Theorem 1 contemplates the
case of a set of intensities—and of associated transition probabilities—not necessarily with the same
functional form with varying parameters but merely with a finite set of different functional forms
indexed by the parameters.

Remark 4 (Only one transition matrix observation). In the case where we only have one
estimated transition matrix R, we can consider the sequence of n step transition matrices given by
the n fold product of the matrix R by itself. This situation will be addressed in Theorem 2 ahead, in
the case of homogeneous Markov chains and in Theorem 3 for the non-homogeneous case.

We also observe that in the case of a multidimensional parameter set Λ—say r1—and even in
a reasonable state space of the discrete time Markov chain—say with r2 states—the optimization
problem of Formula (8) may require adequate algorithms to be solved as the number of variables
is of the order of r1 × r2 × (r2 − 1). In [27] we opted for a modified grid search coupled with the
numerical solutions of the Kolmogorov equations in order to recover the transition probabilities of
the continuous time Markov chain.

Remark 5 (On the unicity of the solution of the calibration problem). The unicity in law
of the solution of the calibration problem deserves discussion. If there are several minimizers of
the calibration problem, to each of these minimizers corresponds an intensity and to each intensity
a, possible, different law for the stopping times of the continuous time Markov chain, as these
laws are determined by the intensities (see Remark A2). The existence of criteria allowing to
identify a distribution of inter-arrival times that stochastically dominates all other solutions is an
open problem.

We can establish a connection between the approach in Section 3.1 and Theorem 1
on calibration above, showing first—in Theorem 2—that, if a matrix is embeddable in a
homogeneous continuous time Markov chain—with intensities depending continuously
on a parameter—for a fixed value of the parameter, then this continuous time Markov
chain solves the calibration problem in an optimum way. We recall that the continuous
time Markov chain is homogeneous if, for all 0 ≤ s, t the transition probabilities satisfy

P(s, s + t) = P(0, t),

and that the intensities matrix is constant as a function of time (see [41] (pp. 165–166) for
definitions in this context).

Theorem 2 (Discrete chains embeddable in homogeneous continuous chains can be op-
timally calibrated). Suppose that the matrix R is embeddable and let tR and the transition
probabilities P(s, t, λ1) satisfy Definition 1 in the case of a homogeneous continuous time Markov
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chain for some family of intensities Q(λ1) where λ1 ∈ Λ is a given parameter. Then, with
τn := ntR for n ≥ 1 and Rτn := R(n)—the n fold product of the matrix R by itself—we have that
the optimization problem, infλ∈ΛO(λ) with respect to the loss function given by Formula (8) has
an optimal solution P(s, t, λ1) such that

O(λ1) = min
λ∈Λ
O(λ) = 0.

Proof. It is enough to observe that by Formulas (3) in Definition 1 we have, as
τ2 − τ1 = τ1,

P(0, τ2, λ1) = P(0, τ1, λ1)P(τ1, τ2, λ1) = P(0, τ1, λ1)P(0, τ2 − τ1, λ1) =

= P(0, τ1, λ1)P(0, τ1, λ1) = R(2) = Rτ2 ,

and, by induction, that P(0, τn, λ1) = Rτn and so in Formula (8) we have that
O(λ1) = 0.

Remark 6 (On the skeletons of a homogeneous continuous time Markov chain). Another
possible way to extend results from discrete time to continuous time is the approach of skeletons
of Kingman and other authors (see [53,54], for instance). As we are more interested in non-
homogeneous continuous time Markov chains we do not pursue this approach in the present work.

We now address the case of non homogeneous Markov chain. In Theorem 3, we show
that if every element of a sequence, with no gaps, of matrix powers of a discrete time
Markov chain is embeddable then there is a regime switching process of Markov type that
solves optimally the calibration problem.

Theorem 3 (Discrete power-embeddable discrete chains can be optimally calibrated). Suppose
that all the powers R(n) =

[
r(n)ij

]
i,j=1,...,r

, for 1 ≤ n ≤ N, of a discrete time Markov chain transition

matrix R are embeddable and let Pn(s, t, λn) be the transition probabilities of the embedding
continuous time Markov chain for R(n) given in their intrinsic time—defined in Remark 1—in such
a way that the respective embedding times verifies tR(n) = −n log det R (according to Formula (4)).
We suppose that the intensities Qn(t, λn) for each of the transition probabilities Pn(s, t, λn) depend
on parameters λn ∈ Λ, possibly different but all in a common parameter set Λ. With the convention
tR(0) = 0, and

λ(t) := λn, tR(n−1) ≤ t ≤ tR(n) ,

let P̃(s, t, λ(t)) be defined by

P̃(s, t, λ(t)) := Pn(s, t, λn), 0 = tR(0) ≤ s ≤ tR(n) , tR(n−1) ≤ t ≤ tR(n) , s ≤ t, (12)

and thus satisfying P̃(0, tR(n) , λ(t)) = Pn(0, tR(n) , λn) = R(n). Then, we have that the optimiza-
tion problem, infλ∈ΛO(λ) with respect to the loss function given by

O(λ) := ∑
i,j=1,...,r

N

∑
n=1

(
P̃(0, tR(n) , λ(t))ij − r(n)ij

)2
, (13)

has an optimal solution P̃(s, t, λ(t)) such that

O(λ(t)) = min
λ∈Λ
O(λ) = 0.

Proof. We observe that the definition in Formula (12) is coherent—see Figure 1—and then
it is a simple verification with the definitions proposed.
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Remark 7 (An associated regime switching process). The function P̃(s, t, λ(t)) defined in
Formula (12) was obtained by superimposing different transition probabilities for different Markov
chains in continuous time. A natural question is to determine if there is—based on these different
transitions probabilities—a regime switching Markov chain in continuous time that bears some
connection with P̃(s, t, λ(t)). From a brief analysis of Figure 1 we can guess the natural definition
of a regime switching Markov chain based on the probabilities Pn(s, t, λn). Let

P(s, t, λ(t)) := Pn(s, t, λn), tR(n−1) ≤ s ≤ t ≤ tR(n) . (14)

Formula (14) has the following interpretation. For each 1 ≤ n ≤ N, consider continuous
time Markov chain processes (Xn

t )t∈[t
R(n−1) ,t

R(n) ]
with transition probabilities Pn(s, t, λn) defined

in the domainsRn := {(s, t) ∈ R2 : tR(n−1) ≤ s ≤ t ≤ tR(n)} with the convention tR(0) = 0. The
regime switching process (Yt)t∈[0,t

R(n) ]
is such that (compare with Formula (2)):

Yt = Xn
t , t ∈ [tR(n−1) , tR(n) ],

that is, the process (Yt)t∈[0,t
R(n) ]

is obtained by gluing together (Xn
t )t∈[t

R(n−1) ,t
R(n) ]

, the paths of the
processes which are bona fide continuous time Markov processes in each of their—non-random—time
intervals [tR(n−1) , tR(n) ]. It is clear that P(s, t, λ(t)) can be interpreted as a transition probability
only when restricted to some domainRn and that, in general, it will not be a transition probability
in the whole interval [0, tR(N) ].

=

Figure 1. A representation of P̃(s, t, λ(t)) in Formula (12) for the first three initial times.

Remark 8. The regime switching process defined in Remark 7 deserves further study. We may,
nevertheless, define transition probabilities P̂(s, t, λ(t)) for tR(k−1) ≤ s ≤ tR(k) ≤ t ≤ tR(k+1)—
with properties to be thoroughly investigated—by considering

P̂(s, t, λ(t)) := Pk(s, tR(k) , λk) · Pk+1(tR(k) , t, λk+1).

3.3. Conclusions on the Relations between Embeddable Matrices, Calibration, and Open Markov
Chain Models

From Theorems 1–3, the following conclusions can be drawn. Given a discrete time
Markov transition matrix,

• if the matrix is embeddable—according to Definition 1 of Section 3.1—there is an unique
in law homogeneous Markov chain in continuous time that solves the calibration



Mathematics 2021, 9, 1496 10 of 29

problem optimally; the unicity is a consequence of Remark A2 that shows that the laws
of the stopping times (τn)n≥0 in the representation of Formula (A13) only depend on
the intensities and these are uniquely determined whenever the discrete time Markov
chain is embeddable.

• if the matrix is power-embeddable—that is, if all the matrices of a finite sequence with no
gaps of powers of the matrix are embeddable—then there is an unique regime switch-
ing continuous time non-homogeneous Markov chain—in the sense of Remark 7—that
solves the calibration problem optimally. In this case, the unicity has a justification
similar to the previously referred case, that is, the laws of the stopping times only
depends on the intensities and these are determined by the fact that the matrix is
power-embeddable.

As a consequence, for our purposes, it appears of fundamental importance to deter-
mine if a discrete time Markov chain transition matrix is embeddable and to determine—if
possible, explicitly—the embedding continuous time Markov chain. Regarding this prob-
lem the results in [43,55] deserve further consideration.

Remark 9 (Aplying Theorems 1–3). Suppose that discrete time Markov chain transition matrix,
of a Markov chain process (Zn)n≥1 is embeddable in a continuous time Markov chain (Xt)t≥0. We
have, for this continuous time process and for a determined sequence of stopping times (τn)n≥1, the
representation given in Formula (A13) of Theorem A5, that is,

Xt =
+∞

∑
n=0

Xτn 1I[τn ,τn+1[
(t).

Now, as the Theorems referred to may consider that the process (Zn)n≥1 is suitably approximated
by (Xt)t≥0, we can also consider that the continuous time process defined by

X̃t :=
+∞

∑
n=0

Zτn 1I[τn ,τn+1[
(t), (15)

is an approximation of (Zn)n≥1 in continuous time. For processes with a structural representation
similar to the one of the process (X̃t)t≥0 we propose in Section 4.3 a method to extend from discrete
to continuous time the open populations methodology.

4. More on Open Continuous Time Processes from Discrete Ones

In this section, we discuss an extension of the formalism of open Markov chains to the
case of semi-Markov processes (sMp) and other continuous time processes, namely, the
open Markov chain schemes introduced in [26]. For the reader’s convenience we present
in Appendix B a short summary on sMp and in the next Section 4.1 a review of the main
results on the open Markov chain formalism for discrete time. Finally, we propose the
second main contribution of this work, that is, an extension of the open Markov chain
formalism in discrete time to continuous time in the case of sMp. We also briefly refer
the case of open Markov schemes that, in some particular instances, can be dealt as the
sMp case.

4.1. Open Markov Chain Modeling in Discrete Time: A Short Review

We now detail and comment the results that will be used in this paper on discrete
time open Markov chains. The study of open Markov chain models we will present next
relies on results and notations that were introduced in [56], further developed in [22] and
that we reproduce next, for the readers convenience. We will suppose that, in general, the
transition matrix of the Markov chain model may be written in the following form:

P =

[
K U1
0 V

]
(16)
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where K is a k× k transition matrix between transient states, U1 a k× (r − k) matrix of
transitions between the transient and the recurrent states, and V a (r− k)× (r− k) matrix
of transitions between the recurrent states. A straightforward computation then shows that

P(n) =

[
K(n) Un

0 V(n)

]
, n ∈ N

with Un = Un−1V + K(n−1)U1 = ∑n−1
i=0 K(i) U1 V(n−1−i). We write the vector of the initial

classification, for a time period i, as

cᵀi =
[
tᵀi
∣∣rᵀi ], i ∈ N (17)

with ti the vector of the initial allocation probabilities for the transient states and ri the
vector of the initial allocation probabilities for the recurrent states. We suppose that at each
epoch i ≥ 0 there is an influx of new elements in the classes of the population—population
that has its evolution governed by the Markov chain transition matrix—that is, a Poisson
distributed with parameter λi. It is a consequence of the randomized sampling principle
(see [57], pp. 216–217) that, if the incoming populations are distributed by the classes
according with the multinomial distribution, then the sub-populations in the transient
classes have independent Poisson distributions, with parameters given by the product of
the Poisson parameter by the probability of the incoming new member being affected to
the given class. With Formulas (16) and (17), we now notice that the vector of the Poisson
parameters, for the population sizes in each state at an integer time N, may be written as

λ++ᵀ
N =

[
N

∑
i=1

λit
ᵀ
i K(N−i)

∣∣∣∣∣ N

∑
i=1

λi

(
tᵀi UN−i + rᵀi V(N−i)

)]
. (18)

We observe that the first block corresponds to the transient states and the second
block, the one in the right-hand side, corresponds to the recurrent states. From now on, as
a first restricting hypothesis, we will also suppose that the transition matrix of the transient
states, K, is diagonalizable and so

K =
k

∑
j=1

ηjαjβ
ᵀ
j ,

with (ηj)j∈{1,...,k} the eigenvalues, (αj)j∈{1,...,k} the left eigenvectors and (βj)j∈{1,...,k} the
right eigenvectors of matrix K. We observe that j ∈ {1, . . . , k} corresponds to a transient
state if and only if | ηj |< 1. We may write the powers of K as

K(n) =
k

∑
j=1

ηn
j αjβ

ᵀ
j , (19)

and so, as a consequence of (18), for the vector of the Poisson parameters corresponding
only to the transient states, λ+ᵀ

N , we have

λ+ᵀ
N =

N

∑
i=1

λi tᵀi K(N−i) =
k

∑
j=1

N

∑
i=1

λi ηN−i
j tᵀi αjβ

ᵀ
j . (20)

The main result describing the asymptotic behaviour, established in [22], is the following.

Theorem 4 (Asymptotic behavior of Poisson parameters of an open Markov chain with
Poisson distributed influxes). Let a Markov chain driven system have a diagonalizable transition
matrix between the transient states K = ∑k

j=1 ηjαjβ
ᵀ
j , written in its spectral decomposition

form. Suppose the system to be fed by Poisson inputs with intensities (λi)i∈N and such that the
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vector of initial classification of the inputs in the transient states converges to a fixed value, that
is, limi→+∞ tᵀi = tᵀ∞ 6= 0. Then, with λ+ᵀ

n the vector of Poisson parameters of the transient
sub-populations, at date n ∈ N, we have the following:

1. If limn→+∞ λn = λ ∈ R+, then

λ+
∞ = lim

n→+∞
λ+ᵀ

n =
k

∑
j=1

λ

1− ηj
tᵀ∞αjβ

ᵀ
j . (21)

2. If limn→+∞ λn = +∞ and there exists a constant C > 0 such that

max
1≤i≤n

∣∣∣∣λi − λi+1

λn

∣∣∣∣ ≤ C

then

lim
n→+∞

λ+ᵀ
n

λn
=

k

∑
j=1

1
1− ηj

tᵀ∞αjβ
ᵀ
j . (22)

Remark 10. We observe that proportions in the Markov chain transient classes, on both statements
of the Theorem 4, only depend on the eigenvalues ηj, j = 1, . . . , k. In fact, whenever using
Formula (21) to compute proportions these proportions do not depend on the value of λ as we
have that

k

∑
j=1

λ

1− ηj
tᵀ∞αjβ

ᵀ
j = λ

[
tᵀ∞ ·

(
k

∑
j=1

1
1− ηj

αjβ
ᵀ
j

)]
,

and the term in the right-hand side multiplying λ is a vector with the dimension equal to the number
of transient classes k, which is equal to the dimension of the square matrix K. As so, when computing
proportions, by normalizing this vector with the sum of its components, λ 6= 0 disappears.

4.2. Open sMP from Discrete time Open Markov Chains

Let us suppose that the successive Poisson distributions of the influx of new members
in the population are independent of the random time at which the influx of new members
in the population occurs. For the notations used, see Appendix B. Consider a sMp given by
the representation in Formula (A17), that is,

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t),

in which (Zn)n≥0 is the embedded Markov chain and (τn)n≥0 are the jump times of the
process. We now propose a method to extend the known method to study open Markov
chains in discrete time to sMps.

(1) In applications we usually consider that we have the influx of new members in the
population being modeled by Poisson random variables that at each time t has a
parameter λ(t). Being so, Formula (20) may be rewritten as

λ+ᵀ
N =

i:ti≤N

∑
i=1

λ(ti) tᵀi K(N−i) =
k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j tᵀi αjβ

ᵀ
j , (23)

where usually we can take ti = i, as in a discrete time Markov chain, the actual time
stamp is irrelevant as we only consider the sequence of epochs i ≥ 0.

(2) In a sMp the only difference we have with respect to a discrete time Markov chain is
that the dates τi corresponding to each epoch i are random; altogether, the structure of
the changes in the sub-populations in the transient states is governed by the transition
matrix of the Markov chain. In a sMp, the only possible observable changes are
those that occur at the random times where it jumps; as so, we will suppose that the
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influxes of the new members of the population only occur at these random times.
As a consequence, we should have that the vector parameter of the Poisson parameters,
in the transient classes, is random since it depends on the random times in each we
consider influxes and so, Formula (23) becomes

λ+ᵀ
N (ω) =

i:τi(ω)≤N

∑
i=1

λ(τi(ω)) tᵀi K(N−i) =
k

∑
j=1

i:τi(ω)≤N

∑
i=1

λ(τi(ω)) ηN−i
j tᵀi αjβ

ᵀ
j . (24)

(3) The parameters of interest will be the expected values of the random variables
λ+ᵀ

N (ω)—with the correspondent asymptotic behavior of these expected values when
N grows indefinitely—and these expected values can be computed whenever the joint
laws of (τ0, τ1, . . . , τi) are known, for i ≥ 0. In fact, we observe that by Formula (24)
we have

E

[
λ+ᵀ

N |τ1, . . . τi . . .
]
= E

[
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j tᵀi αjβ

ᵀ
j |τ1, . . . τi . . .

]
=

=
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j tᵀi αjβ

ᵀ
j .

This formula has two consequences. The first one is that given an arbitrary strictly
increasing sequence of dates 0 = t0 < t1 < · · · < ti < . . . we have

E

[
λ+ᵀ

N |τ1 = t1, . . . τi = ti . . .
]
=

k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j tᵀi αjβ

ᵀ
j ,

thus justifying the assumption that given the strictly increasing of non accumulating
stopping times dates (τ1 = t1, . . . τi = ti . . . ) we can proceed as with the usual open
Markov chain model in discrete time. The second consequence deserving mention is
that in order to compute the expected value of the vector parameters of the transient
classes sub-populations, while preserving the Poisson distribution of the influx new
members, we compute

E

[
λ+ᵀ

N

]
= E

[
E

[
λ+ᵀ

N |τ1, . . . τi . . .
]]

= E

[
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j tᵀi αjβ

ᵀ
j

]
,

using the joint laws of (τ1, . . . , τi) for i ≥ 0, laws we will suppose to be given.

Theorem 6, in the following, is one possible extension of the open Markov chain
formalism to the sMp case taking as a starting point a discrete time Markov chain. To prove
this result we will need Theorem 5—a generalization of Lebesgue dominated convergence
theorem with varying measures—that we quote from Theorem 3.5 in [58] (p. 390).

Theorem 5 (Lebesgue dominated convergence theorem with varying measures). Consider
(X,B(X)) a locally compact, separable topological space endowed with its Borel σ-algebra. Suppose
that the sequence of probability measures (µn)n≥1—each one of them defined in (X,B(X))—
converges weakly to µ on (X,B(X)) and that the sequence of measurable functions ( fn)n≥1
converges continuously to f . Suppose additionally that, for some sequence of measurable functions
( fn)n≥1 defined on X:

1. For all t ∈ X and n ≥ 1, we have that | fn(t)| ≤ gn(t).
2. With the function g defined on X by

g(t) := inf
(tn)n≥1 , limn→+∞ tn=t

{
lim inf
n→+∞

gn(tn)

}
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we have that
lim sup
n→+∞

∫
gn(t)dµn(t) ≤

∫
g(t)dµ(t) < +∞.

Then, we have
lim

n→+∞

∫
fn(t)dµn(t) =

∫
f (t)dµ(t) < +∞.

As said, we will suppose that we only observe the influx of the new members of
the population into the sMp classes at the random times where it jumps—but, of course,
accounting the state before the jump and the state after the jump—which is a hypothesis
that makes sense under the perspective that we usually observe trajectories of the process.
We then have the following extension of Theorem 4 to the case of sMp.

Theorem 6 (On the stability of open sMp transient states). Let a sMp given by the representa-
tion in Formula (A17), that is,

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t),

in which (Zn)n≥0 is the embedded Markov chain and (τi)i≥0 are the jump times of the process. For
the embedded Markov chain (Zn)n≥0, consider the notations of Section 4.2 and of Theorem 4 in this
subsection. Suppose that the influx of new members in the population is modeled by Poisson random
variables that at each time t ∈ [0,+∞[ have a parameter λ(t), with λ a continuous function.
Suppose, furthermore, that the following hypothesis are verified.

1. The stopping times (τi)i≥0 are integrable, that is, E[τi] < +∞ for all i ≥ 1.
2. There exists λ∞ > 0 such that, for every sequence of positive real numbers (ti)i≥1 such that

limi→+∞ ti = +∞ we have
lim

i→+∞
λ(ti) = λ∞ (25)

Then, we have that the asymptotic behavior of the expected value vector of parameters of
Poisson distributed sub-populations in the transient classes of an open sMp, submitted to a Poisson
influx of new members at the jump times of the sMp, is given by

lim
N→+∞

E

[
λ+ᵀ

N

]
= lim

N→+∞
E

[
k

∑
j=1

i:τi≤N

∑
i=1

λ(τi) ηN−i
j tᵀi αjβ

ᵀ
j

]
=

k

∑
j=1

λ∞

1− ηj
tᵀ∞αjβ

ᵀ
j . (26)

Proof. For each n ≥ 1, let F(τ1,...,τn) be the joint distribution function of (τ1, . . . , τn). We
want to compute the following limit of expectations:

lim
N→+∞

E

[
λ+ᵀ

N

]
= lim

N→+∞
E

[
λ+ᵀ

N , τ1 < · · · < τi ≤ N
]
=

= lim
N→+∞

∫
0<t1<···<ti≤N

λ+ᵀ
N dF(τ1,...,τn)(t1, . . . , tn) =

= lim
N→+∞

∫
0<t1<···<ti≤N

(
k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j tᵀi αjβ

ᵀ
j

)
dF(τ1,...,τn)(t1, . . . , tn),

(27)

and we observe that by Theorem 4 and by the first hypothesis, for every sequence of
positive real numbers (ti)i≥1 such that limi→+∞ ti = +∞ and t1 < t2 < · · · < ti < . . . , we
have that

lim
N→+∞

(
k

∑
j=1

i:ti≤N

∑
i=1

λ(ti) ηN−i
j tᵀi αjβ

ᵀ
j

)
=

k

∑
j=1

λ∞

1− ηj
tᵀ∞αjβ

ᵀ
j . (28)

The limit in the last term of Formula (27) requires a result of Lebesgue convergence
theorem type but with varying measures. For the purpose of applying Theorem 5, we
introduce the adequate context and notations and then we will apply the referred theorem.
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Consider the space X = [0,+∞[ℵ0 defined to be the space of infinite sequences of numbers
in [0,+∞[, that is,

X = {t = (t1, . . . , ti, . . . ) : ∀i ≥ 1, ti ∈ [0,+∞[}.

Recall that with the metric d given by

∀t = (t1, . . . , ti, . . . ), t′ = (t′1, . . . , t′i, . . . ) ∈ X, d(t, t′) :=
+∞

∑
i=1

min(1,
∣∣ti − t′1

∣∣)
2i ,

X is a metric space, locally compact, separable and complete (see, for instance, in [59],
pp. 9–10). We will consider X = [0,+∞[ℵ0 endowed with the Borel σ-algebra B(X) gener-
ated by the family P f given by

P f =
{

Ai1 × Ai2 × · · · × Aip : p ≥ 1, Ai1 ∈ B([0,+∞[)
}

,

with B([0,+∞[) the Borel σ-algebra of [0,+∞[. We now take (τi)i≥0 the sequence of the
jump times of the process represented in Formula (A17). First, we define the sequence of
measures (µn)n≥1 where for each n ≥ 1 we have that µn is defined on the measurable space
([0,+∞[n,B([0,+∞[n)) by considering, for A1 × A2 × · · · An with Ai ∈ B([0,+∞[), that

µn(A1 × A2 × · · · An) = P[τ1 ∈ A1, . . . , τn ∈ An] =
∫

t1∈A1,...,tn∈An

dF(τ1,...,τn)(t1, . . . , tn). (29)

Being so, µn is the probability joint law of (τ1, . . . , τn) and the last integral in the
last term of Formula (27) is exactly an integration with respect to the measure µn. As a
consequence of Formula (29), the sequence (µn)n≥1 verifies the compatibility conditions
of Kolmogorov extension theorem (see [60], p. 46) and so there is a probability measure
µ, defined on (X,B(X)), having as finite dimensional distributions the measures of the
sequence (µn)n≥1.

Now, for each n ≥ 1, we can consider µ̃n the extension of µn to the measurable space
(X,B(X)) in the following way:

∀A ∈ B(X) µ̃n(A) =
∫
{t=(t1,...,ti ,... )∈A : t1,...,tn∈[0,+∞[}

dF(τ1,...,τn)(t1, . . . , tn). (30)

In fact, with this definition the restriction of µ̃n to B([0,+∞[n) is exactly µn. An important
observation is the following. Consider A := Ai1 × Ai2 × · · · × Aip ∈ P f . Then, for m ≥ ip
we have that

µ̃m(A) =
∫
{t=(t1,...,ti ,... )∈A : t1,...,tm∈[0,+∞[}

dF(τ1,...,τm)(t1, . . . , tm) =

=
∫
{t=(t1,...,ti ,... )∈A : t1,...,tip∈[0,+∞[}

dF(τ1,...,τip )
(t1, . . . , tip) =

= µ̃ip(A) = µip(A) = µ(A),

(31)

thus showing that for every A ∈ P f the sequence (µ̃m(A))m≥1 converges to µ(A). Now, by
Theorem 2.2 in [59] (p. 17), as P f is a π-system and every open set in the metric space (X, d)
is a countable union of elements of P f , we have that the sequence (µ̃m)m≥1 converges
weakly to µ. In order to apply Theorem 5 to compute the limit, we may consider two
approaches to deal with the fact that λ+ᵀ

N is a vector of finite dimension k. Either we
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proceed component wise or we consider norms. Let us follow the second path. Define, for
integer N, and some constant M,

fN(t) = fN(t1, . . . , ti, . . . ) :=
i:ti≤N

∑
i=1

λ(ti) ηN−i
j tᵀi αjβ

ᵀ
j ,

and also,

gN(t) ≡ g :=

∥∥∥∥∥ k

∑
j=1

λ∞

1− ηj
tᵀ∞αjβ

ᵀ
j

∥∥∥∥∥+ M,

in such a way that ‖ fN(t)‖ ≤ g; such choice of M is possible as a consequence of
Formula (28). We can verify that the sequence ( fN)N≥1 converges continuously to a
function f by using Theorem 4.1.1 in [22] (p. 373). In fact, let us consider a sequence
(tN)n≥1 converging to some (t∞ = (t∞

1 , . . . , t∞
i , . . . ) in the metric space (X, d). With

(tN = (tN
1 , . . . , tN

i , . . . ) we surely have that limN→+∞ tN
i = t∞

i for all i ≥ 1. As a conse-
quence of the continuity of λ and of Theorem 4.1.1 in [22] (p. 373), we have that

lim
N→+∞

fN(tN) = lim
N→+∞

i:tN
i ≤N

∑
i=1

λ(tN
i ) ηN−i

j tᵀi αjβ
ᵀ
j =

k

∑
j=1

λ(limi→+∞ t∞
i )

1− ηj
tᵀ∞αjβ

ᵀ
j =: f (t∞).

It is clear now that the sequences ( fN)N≥1, (gN)t≥1 and (µ̃n)n≥1 satisfy together with
µ the hypothesis of Theorem 5 and so the announced result in Formula (25) follows.

Remark 11 (Alternative proof for the weak convergence of the sequence (µ̃n)n≥1). There
is another proof the weak convergence of the sequence (µ̃m)m≥1 to µ that we now present. We
proceed by showing that the sequence (µ̃n)n≥1 is relatively compact—as a consequence of Prohorov
theorem (see [59], pp. 59–63)—because, as we will show next, this sequence is tight. Let an arbitrary
0 < ε < 1 be given and consider a sequence of positive numbers (ξi)i≥1 such that, by Tchebychev
inequality and using the fact that the stopping times τi have finite integrals,

P[τi > ξi] ≤
E[τi]

ξi
,

in such a way that
+∞

∑
i=1

E[τi]

ξi
< ε.

Now consider the Borel set Kε = ∏+∞
i=1 [0, ξi] ⊂ X which is compact by Tychonov theorem.

We now have that

µ̃n(Kε) =
∫
{t=(t1,...,ti ,... )∈Kε :t1,...,tn∈[0,+∞[}

dF(τ1,...,τn)(t1, . . . , tn) =

=
∫

∏n
i=1[0,ξi ]

dF(τ1,...,τn)(t1, . . . , tn) =

= P

[
(τ1, . . . , τn) ∈

n

∏
i=1

[0, ξi]

]
= P

[
n⋂

i=1

{τi ≤ ξi}
]
= 1−P

[
n⋃

i=1

{τi > ξi}
]
≥

≥ 1−
n

∑
i=1

E[τi]

ξi
≥ 1−

+∞

∑
i=1

E[τi]

ξi
≥ 1− ε,

thus showing that the sequence of probability measures (µ̃n)n≥1 is tight in the measurable space
(X,B(X)). As said, by Prokhorov’s theorem, this implies that the sequence (µ̃n)n≥1 is relatively
compact, that is, for every subsequence of (µ̃n)n≥1, there exists a further subsequence and a
probability measure such that this subsequence converges weakly to the said probability measure.
Now, as, by construction, the probability measure µ has, as finite dimensional distributions the
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probability measures (µ̃n)n≥1 we can say that for n ≥ 1, the finite dimensional distributions of
µ̃n converge weakly to the finite dimensional distributions of µ. As a consequence, following the
observation in [59] (p. 58), the sequence (µ̃n)n≥1 converges weakly to µ.

Remark 12 (Applying Theorem 6). If we manage to estimate a discrete time Markov chain
transition matrix and if we manage to fit some function f —such that limt→+∞ f (t) = λ∞—to the
number of new incoming members in the population at a set of non accumulating non-evenly spaced
dates (as done with a statistical procedure in [22] or, with a simple fitting in [25]) then, Theorem 6
allows us to get the asymptotic expected number of elements in the transient classes of a sMp having
as embedded Markov chain the estimated one.

4.3. Open Continuous Time Processes from Open Markov Schemes

We may follow the approach of open Markov schemes in [26] and define a process
in continuous time after getting a process in random discrete times describing, at least
on average, the evolution of the elements in each transient class. Let us briefly recall the
main idea. A population model is driven by a Markov chain defined by a sequence of
initial distributions given, for n ≥ 1, by (qn)ᵀ = (qn

1 , qn
2 , . . . , qn

r?) and a transition matrix
P = [pij], 1 ≤ i, j ≤ r . After the first transition, the new values of the proportions in all
states, after one transition, can be recovered from Pᵀq = (qᵀP)ᵀ and, after n transitions,
by (P(n))ᵀq = (qᵀP(n))ᵀ. We want to account for the evolution of the expected number of
elements in each class supposing that, at each random date τk, a random number Xτk of
new elements enters the population. Just after the second cohort enters the population, a
first transition occurs in the first cohort driven by the Markov chain law and so on and so
forth. Table 1 summarizes this accounting process in which, at each step k, we distribute
multinomially the new random arrivals Xτk according to the probability vector qk and the
elements in each class are redistributed according to the Markov chain transition matrix P.

Table 1. Accounting of n Markov cohorts each with an initial distribution.

Date τ1 τ2 . . . τn−1 τn

τ1 E[Xτ1 ](q
1)ᵀ E[Xτ1 ](q

1)ᵀP . . . E[Xτ1 ](q
1)ᵀP(n−2)

E[Xτ1 ](q
1)ᵀP(n−1)

τ2 – E[Xτ2 ](q
2)ᵀ . . . E[Xτ2 ](q

2)ᵀP(n−3)
E[Xτ2 ](q

2)ᵀP(n−2)

. . . . . . . . . . . . . . . . . .
τn – – – – E[Xτn ](q

n)ᵀ

At date τk, if we suppose that each new set of individuals in the population, a cohort,
evolves independently from any one of the already existing sets of individuals but, ac-
cordingly, to the same Markov chain model, we may recover the total expected number of
elements in each class at date τk by computing the sum:

Kn =
n

∑
k=1
E[Xτk ](q

k)ᵀ P(n−k). (32)

Each vector component corresponds precisely to the expected number of elements in
each class. In order to further study the properties of (Kn)n≥1, given the properties of a
stochastic processX = (Xτk )k≥1, we will randomize formula (32) by considering, instead,
for n ≥ 1:

Kn =
n

∑
k=1

Xτk (q
k)ᵀ P(n−k), (33)

and we observe that in any case E[K] = Kn. It is known that if the vector of classification
probabilities is constant ck = c and if theX is an ARMA, ARIMA, or SARIMA process, then
the populations in each of the transient classes can be described by a sum of a deterministic
trend, plus an ARMA process plus an evanescent process, that is a centered process (Yk)k≥1

such that limk→+∞E
[
|Yk|2

]
= 0 (see Theorems 3.1 and 3.2 in [26]).
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The step process in continuous time naturally associated with the discrete time one
would be then defined by for t ≥ 0 by

Kt :=
+∞

∑
n=0

Kn1I[τn ,τn+1[
(t) =

+∞

∑
n=0

(
n

∑
k=1

Xτk (q
k)ᵀ P(n−k)

)
1I[τn ,τn+1[

(t).

In order to study this process we will have to take advantage of the properties of X and of
the family of stopping times (τk)k≥0. It should be noticed that if the processX = (Xt)t≥0
is Poisson distributed and the laws of the sequence (τk)k≥0 are known and it possible to
determine the expected value of Kt for t ≥ 0 with a result similar to Theorem 6.

5. Conclusions

In this work, we studied several ways to associate, to an open Markov chain process
in discrete time—which is often the sole accessible fruit of observation—a continuous time
Markov or semi-Markov process that bears some natural relation with the discrete time
process. Furthermore, we expect that association to allow the extension of the study of
open populations from the discrete to the continuous time model. For that purpose, we
consider three approaches: the first, for the continuous time Markov chains; the second, for
the semi Markov case; and the third, for the open Markov schemes (see in [26]). For the
semi-Markov case, under the hypothesis that we only observe the influx of new individuals
in the population at the times of the random jumps, in the main result we determine the
expected value of the vector of parameters of the conditional Poisson distributions in
the transient classes when the influx of new members is Poisson distributed. The third
approach, dealing with open Markov schemes is similar to the second one whenever we
consider a similar context hypothesis, that is, distributed incoming new members of the
population with known distributions and observation of this influx of new individuals
at the times of the random jumps. In the case of the first approach, that is, for the case
of Markov chain in continuous time, we propose a calibration procedure for which the
embeddable Markov chains provide optimal solutions. In this case also, the study of open
populations models relies on the main result proved for the semi-Markov case approach.
Future work encompasses applications to real data and the determination of criteria to
assess the quality of the association of the continuous model to the observed discrete
time model.
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Appendix A. Some Essential Results on Continuous Time Markov Chains

In this exposition of the most relevant results pertinent to our purposes, we follow
mainly the references [29–31]. As this exposition is a mere reminder of needed notions and
results, the proofs are omitted unless the result is essential for our purposes.
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Definition A1 (Continuous time Markov chain). Let I be some finite set; for instance,
Θ = {θ1, θ2, . . . , θr} of Section 2. A stochastic process (Xt)t≥0 is a continuous time Markov
chain with state space I if and only if the following Markov property is verified, namely, for all
i0, i1, . . . in ∈ I and 0 = t0 < t1 < · · · < tn < · · · we have that

P
[
Xtn = in|Xtn−1 = in−1, . . . Xt1 = i1, Xt0 = i0

]
=

= P
[
Xtn = in|Xtn−1 = in−1

]
.

We observe that by force of the Markov property in Definition A1 the law of a continu-
ous time Markov chain depends only on the following transition probabilities. Let I be the
identity matrix with dimension #I the Kronecker’s delta be given by

δ
j
i =

{
0 i 6= j
1 i = j.

Definition A2 (Transition probabilities). Let I be the state space of (Xt)t≥0 a continuous time
Markov chain. The transition probabilities are defined by

∀i, j ∈ I , s < t, p(s, i, t, j) = P[Xt = j|Xs = i] and p(t, i, t, j) = δ
j
i .

Let L(R#I ) be the space of square matrices with coefficients in R. The transition probability
matrix function P : R+ ×R+ 7→ L(R#I ) is defined by

∀i, j ∈ I , s < t, P(s, t) = [p(s, i, t, j)]i,j∈I and P(t, t) = I. (A1)

Transition probabilities of Markov processes in general satisfy a very important func-
tional equation that results from the Markov property.

Theorem A1 (Chapman-Kolmogorov equations). Consider a NH-CT-MC as given in Definition A1.
Let P its transition probability matrix function as given in Definition A2. We then have

∀s, u, t, 0 ≤ s < u < t, P(s, t) = P(s, u)P(u, t) (A2)

As an application of the celebrated existence theorem of Kolmogorov (in the form
exposed in [61], pp. 8–10) we have that, under a set of natural hypothesis, there exists a
NH-CT-MC such as the one in Definition A1.

Theorem A2 (On the existence of NH-CT-MC). Let p0 be an initial probability over I . Consider
a matrix valued function P : R+ ×R+ 7→ L(R#I ) denoted by P(s, t) = [p(s, i, t, j)]i,j∈I and
satisfying Formulas (A3) and (A4) below, that is,

1. For all s < t and for all i ∈ I
∑
j∈I

p(s, i, t, j) = 1. (A3)

2. Formula (A2) in Theorem A1, namely,

∀s, u, t, s < u < t, P(s, t) = P(s, u)P(u, t). (A4)

Define, for all i0, i1, . . . in ∈ I and 0 = t0 < t1 < · · · < tn < · · · , the function

νt0,t1,...,tn(i0, i1, . . . , in) =

= p0(i0)p(t0, i0, t1, i1)p(t1, i1, t2, i2) · · · p(tn−1, in−1, tn, in),
(A5)
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and extend this definition to all possible t0, t1, . . . , tn, . . . by considering, with the adequate ordering
permutation σ of {0, 1, 2, . . . , #I} such that we have tσ(0) < tσ(1) < . . . ,< tσ(n),

νtσ(0),tσ(1),...,tσ(n)(i0, i1, . . . , in) = νt0,t1,...tn(iσ−1(0), iσ−1(1), . . . , iσ−1(n)). (A6)

Then, (νt0,t1,...,tn)t0,1,...,tn ,n≥1 is a family of probability measures satisfying the compatibility
conditions of Kolmogorov existence theorem and so, there exists P a probability measure over
the canonical probability space (Ω,A)—with Ω = IR+ and A = P(I)R+—such that if the
stochastic process (Xt)t≥0 is denoted by

∀ω = (it)t≥0 ∈ Ω, Xt(ω) = it,

then,
∀i, j ∈ I , s < t, p(s, i, t, j) = P[Xt = j|Xs = i] and p(t, i, t, j) = δ

j
i , (A7)

that is, (Xt)t≥0 has P(s, t) = [p(s, i, t, j)]i,j∈I—together with P(t, t) = I—as its transition
probabilities.

A natural and useful way of defining transition probabilities is by means of the
transition intensities that act like differential coefficients of transition probability functions.

Definition A3 (Transition intensities). Let L(R#I ) be the space of square matrices with coeffi-
cients inR. A function Q : R 7→ L(R#I ) denoted by

Q(t) = [q(t, i, j)]i,j∈I ,

is a transition intensity iff for almost all t ≥ 0 it verifies

(i) ∀i ∈ I , t ≥ 0, q(t, i, i) ≤ 0;
(ii) ∀i ∈ I , t ≥ 0, q(t, i, j)− q(t, i, i) ≥ 0;
(iii) ∀i ∈ I ∑j∈I q(t, i, j) = 0.

There is a way to write differential equations—the Kolmogorov backward and forward
equations—useful for recovering the transition probability matrix from the intensities
matrix and to study important properties of these transition probabilities.

Theorem A3 (Backward and Forward Kolmogorov equations). Suppose that P(s, t) is con-
tinuous at s, that is,

lim
t↓0

P(0, t) = I and lim
t↓s

P(s, t) = lim
t↑s

P(t, s) = I. (A8)

If there exists Q such that

Q(t) = lim
k+h→0+ ,k≡0∨h≡0

P(t− k, t + h)− I
k + h

= lim
h↓0,h>0

P(t, t + h)− I
h

=

= lim
k↓0,k>0

P(t− k, t)− I
k

,
(A9)

then we have the backward Kolmogorov (matrix) equation:

∂

∂s
P(s, t) = −Q(s)P(s, t), P(s, s) = I, (A10)

and the forward Kolmogorov (matrix) equation:

∂

∂t
P(s, t) = P(s, t)Q(s), P(t, t) = I. (A11)
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Remark A1. The general theory of Markov processes shows that the condition that P(s, t) is
continuous in both s and t is sufficient to ensure the existence of the matrix intensities Q given in
Formulas (A9) (see [31], p. 232). By means of a change of time Goodman (see [41]) proved that
the existence of solutions of Kolmogorov equations is amenable to an application of Caratheodory’s
existence theorem for differential equations.

Given transition intensities satisfying an integrability condition there are transition
probabilities uniquely associated with these transition intensities.

Theorem A4 (Transition probabilities from intensities). Let Q be a transition intensity as in
Definition A3 such that Theorem A3 holds. Then, we have that

P(s, t) = I +
∫ t

s
Q(u)P(u, t)du and P(s, t) = I +

∫ t

s
P(s, u)Q(u)du. (A12)

The existence of a NH-CT-MC can also be guaranteed by a constructive procedure
that we now present and that is most useful for simulation.

Remark A2 (Constructive definition). Given a transition intensity Q define

p?(t, i, j) =

 1−δ
j
i

−q(t,i,i) q(t, i, j) q(t, i, i) 6= 0

δ
j
i q(t, i, i) = 0.

1. Let X0 = i, according to some initial distribution on I ; the sequence (τn)n≥0 is defined by
induction as follows; τ0 ≡ 0.

2. τ1 time of first jump with Exponential distribution function:

Fτ1(t) = P[τ1 ≤ t] = 1− exp
(∫ t

0
q(u, i, i)du

)
,

and
P[Xs1 = j|τ1 = s1, X0 = i] = p?(s1, i, j),

and so Xt = i for 0 ≡ τ0 ≤ t < τ1. We note that this distribution of the stopping time
is mandatory as a consequence of a general result on the distribution of sojourn times of a
continuous time Markov chain (see Theorem 2.3.15 in [31], p. 221).

3. Given that τ1 = s1 and Xs1 = j, τ2 time of the second jump with Exponential distribu-
tion function

Fτ2|τ1=s1
(t) = P[τ2 ≤ t | τ1 = s1] = 1− exp

(∫ t

0
q(u + s1, j, j)du

)
and

P[Xs2 = k|τ1 = s1, X0 = i, τ2 = s2, Xs1 = j] = p?(s1 + s2, j, k),

and so Xt = j for τ1 ≤ t < τ2.

The following result ensures that the preceding construction yields the desired result.

Theorem A5 (The continuous time Markov chain). Let the intensities satisfy condition given
by Formula (A12) in Theorem A4. Then, given the times (τ0)n≥1, we have that with the sequence
(Yn)n≥1 defined by Yn = Xτn , the process defined by:

Xt =
+∞

∑
n=0

Yn1I[τn ,τn+1[
(t) =

+∞

∑
n=0

Xτn 1I[τn ,τn+1[
(t) (A13)
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is a continuous time Markov chain with transition probabilities P given by Definition A2 and
transition intensities Q given by Definition A3 and Theorem A3.

Proof. This theorem is stated and proved, in the general case of Markov continuous time
Markov processes in [31] (p. 229).

Lemma A1. Let q : R+ 7→ R a measurable function integrable over every bounded interval of
R+. Then, we have that

∫ t

s

∫ t

s1

· · ·
∫ t

sn−1

q(s1)q(s2) . . . q(sn)dsn . . . ds2ds1 =

(∫ t
s q(u)du

)n

n!
,

for all 0 ≤ s ≤ t, n ≥ 1.

Proof. Let us observe that, for n = 2, we have that(∫ t

s
q(u)du

)2
=
∫ t

s

∫ t

s
q(v)q(u)dudv =

=
∫ t

s

∫ t

s
1I{u≤v}q(v)q(u)dudv +

∫ t

s

∫ t

s
1I{v≤u}q(v)q(u)dudv.

By induction we have for all n ≥ 1, and for every permutation σ ∈ Sn(∫ t

s
q(u)du

)n
=

= ∑
σ∈Sn

∫ t

s
· · ·

∫ t

s
1I{uσ(1)≤uσ(2)≤···≤uσ(n)}q(u1) . . . q(u1)dun . . . du1 =

= n!
∫ t

s
· · ·

∫ t

s
1I{u1≤u2≤···≤un}q(u1) . . . q(u1)dun . . . du1 =

=
∫ t

s

∫ t

u1

· · ·
∫ t

un−1

q(u1)q(u2) . . . q(un)dun . . . du2du1,

as all the integrals in the sum are equal by the symmetry of the integrand function, and
then, by Fubini theorem.

Remark A3 (On a fundamental condition). The condition on q stated in Lemma A1 and
reformulated in Formula (7) is the key to the proof of important results. In fact we have that this
condition is sufficient to ensure that the associated Markov process has no discontinuities of the
second type (see [31], p. 227) and, most important for the goals in this work, that the trajectories of
the associated Markov process are step functions, that is, any trajectory has only a finite number
of jumps in any compact subinterval of [0,+∞[; we will detail this last part of the remark in
Theorem A6.

Under the perspective of our main motivation the following result is crucial.

Theorem A6 (The non accumulation property of the jump times of a Markov chain). Let the
intensities satisfy condition given by the statement of Lemma A1. Then, given the times (τn)n≥1,
we have that:

P

[
+∞

∑
n=1

τn = +∞

]
= 1, (A14)

and so the trajectories of the process are step functions.
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Proof. Property in Formula (A14) has non immediate proof. We present a proof based on
a result in [62] (p. 160), stating that the condition given by:

lim
h↓0

sup
t,i

∑
j 6=i

p(t, i, t + h, j) = 0, (A15)

guarantees that the process has a stochastic equivalent that is a step process, meaning
that for any trajectory ω the set of jumps of this trajectory has no limit points in the
interval [0, ζ(ω)[, with ζ(ω) being the end date of the trajectory. This result is based on
a thorough analysis (see [62], pp. 149–159) of the conditions for a Markov process not to
have discontinuities of the second type, meaning that the right-hand side and left-hand
side limits exists for every date point and every trajectory. Now, with,

q(t) := max
1≤i≤#I

|q(t, i, i)|,

by virtue of the condition on q in Lemma A1—that is reformulated more precisely in
Formula (7) of the statement in Theorem 1—we have that:

p(t, i, t + h, j) ≤
+∞

∑
k=1

(
#I
∫ t+h

t q(u)du
)k

k!
.

Therefore, for almost all t ∈ [0, T],

lim
h↓0

sup
t,i

∑
j 6=i

p(t, i, t + h, j) = (#I − 1) lim
h↓0

sup
t

+∞

∑
k=0

(
#I ·

∫ t+h
t q(u)du

)k

k!
=

= (#I − 1) lim
h↓0

sup
t

+∞

∑
k=0

(
h · #I · 1

h

∫ t+h
t q(u)du

)k

k!
= 0,

as the series is uniformly convergent and for almost all t ∈ [0, T],

lim
h↓0

1
h

∫ t+h

t
q(u)du = q(t),

by Lebesgue’s differentiation theorem.

Remark A4 (Negative properties). The following negative properties suggest the alternative
calibration approach that we propose in Section 3.2. Given(Xτn)n≥0, the successive states occupied
by the process, we observe that

• the times (τn)n≥1 are not independent;
• the sequence (Yn)n≥1 defined by Yn = Xτn is not a Markov chain.

Appendix B. Semi-Markov Processes: A Short Review

For the reader’s convenience we present a short summary of the most important results
semi-Markov processes (sMp), needed in this work, following [63] (pp. 189–200). The main
foundational references for the theory of sMp are [32,64,65]. Important developments can
be read in [33,66,67]. Among the many works with relevance for applications we refer, for
instance, [68–73]. Let us consider a complete probability space (Ω,F ,P). The approach
of Markov and semi-Markov processes via kernels if fruitful and so we are lead to the
following definitions and results for what we will now follow, mainly, the works in [67]
(pp. 7–15) and in [33]. Consider a general measurable state space (Θ,A(Θ)). The σ-algebra
A(Θ) may be seen as the observable sets of the state space of the process Θ.
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Definition A4 (Semi-Markov transition kernel). A map Q : Θ×A(Θ)× [0,+∞[→ [0, 1]
such that (x, B, t) 7→ Q(x, B, t) is a semi-Markov transition kernel if it satisfies the follow-
ing properties.

(i) Q(x, ·, t) is measurable with respect to A(Θ) × B([0,+∞[) with B([0,+∞[) the Borel
σ-algebra of [0,+∞[.

(ii) For fixed t > 0, Q(·, ·, t) : Θ×A(Θ)→ [0, 1] is a semistochastic kernel, that is,

(ii.1)For fixed θ ∈ Θ and t > 0, the map Q(θ, ·, t) : A(Θ) → [0, 1] is a measure and we
have Q(θ, Θ, t) ≤ 1; if Q(θ, Θ, t) = 1 we have that Q(·, ·, t) is a stochastic kernel.

(ii.2)For a fixed T ∈ Θ we have that Q(·, T, t) : Θ → [0, 1] is measurable with respect to
A(Θ).

(iii) For fixed (θ, T) ∈ Θ×A(Θ) we have that the function Q(θ, T, t) : [0,+∞[→ [0, 1] is a
nondecreasing function, continuous from the right and such that Q(θ, T, 0) = 0.

(iv) P(·, ·) : Θ×A(Θ)→ [0, 1] defined to be: P(·, ·) = Q(·, ·,+∞) = limt→+∞ Q(·, ·, t) is a
stochastic kernel.

(v) For any θ ∈ Θ we have that the function defined for t ∈ [0,+∞[ by Fθ(t) := Q(θ, Θ, t) is a
probability distribution function.

Now, consider Q a semi-Markov transition kernel, a continuous time stochastic process
(Yt)t≥0 defined on this probability space and F = (Ft)t≥0 the natural filtration associated
to this process, i.e., Ft := σ(Ys : s ≤ t) is the algebra-σ generated by the variables of the
process until time t. We now consider a sequence of random variables (Zn)n≥0—taking
values in a state space Θ, that for our purposes will, in general, be finite state space
Θ = {θ1, θ2, . . . , θr} and sometimes an infinite one Θ = {θ1, θ2, . . . , θr, . . . }—the sequence
being adapted to the filtration F. We consider also 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · an
increasing sequence of F-stopping times, denoted by T and ∆n := τn − τn−1 for n ≥ 1.

Definition A5 (Markov renewal process). A two dimensional discrete time process (Zn, ∆n)n≥0
with state space Θ× [0,+∞[ verifying,

P
[
Zn+1 = θj, ∆n ≤ t|Z0, . . . , Zn, ∆1, ∆2, . . . , ∆n

]
= P

[
Zn+1 = θj, ∆n ≤ t|Zn

]
,

for all θj ∈ Θ, t ≥ 0 and almost surely that is, an homogeneous two dimensional Markov Chain, is
a Markov renewal process if its transition probabilities are given by:

Q(θ, T, t) = P[Zn+1 ∈ T, ∆n ≤ t|Zn = θ].

Remark A5 (Markov chains and Markov renewal processes). The transition probabilities of a
Markov renewal process do not depend on the second component; as so, a Markov renewal process
is a process of different type of a two dimensional Markov chain process. The first component of a
Markov renewal process is a Markov chain, denoted the embedded Markov chain, with transition
probabilities given by:

P(θ, T) = Q(θ, T,+∞) = lim
t→+∞

Q(θ, T, t) = P[Zn+1 ∈ T|Zn = θ].

Definition A6 (Markov renewal times). The Markov renewal times of the Markov renewal
process (τn)n≥0 are defined by

τn =
n

∑
k=1

∆k,

and the probability distribution functions Fθ of the Markov renewal times depend on the states of
the embedded Markov chain, as, by definition we have

Fθ(t) := Q(θ, Θ, t) = P[∆n ≤ t|Zn = θ].
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Proposition A1. Consider a general measurable state space (Θ,A(Θ)). Let Q be a semi-Markov
transition kernel and P the associated stochastic kernel according to Definition A4. Then, there
exists a function Fθ(γ, t) such that:

Q(θ, T, t) =
∫

T
Fθ(γ, t)P(θ, dγ). (A16)

Proof. As we have for θ ∈ Θ and T ∈ A(Θ)) that P(θ, T) = Q(θ, T,+∞), we may
conclude that Q(θ, T,+∞) ≤ P(θ, T) and so, the measure Q(θ, ·,+∞) is absolutely contin-
uous with respect to the probability measure P(θ, ·) on (Θ,A(Θ)) and so, by the Radon–
Nicodym theorem, there exists a density Fθ(γ, t) verifying Formula (A16).

Remark A6 (Semi-Markov kernel for discrete space state). In the case of a discrete state space,
say Θ = {θ1, θ2, . . . , θr, . . . }, we may consider A(Θ) = P(Θ) the maximal σ-algebra of all the
subsets of Θ) and, with this condition, a semi-Markov kernel Q is defined by a matrix function
Q = [q(i, j, t)]i,j≥1,t≥0 such that

(i) For i, j ≥ 1 fixed the function q(i, j, ·) : [0,+∞[→ [0, 1] is nondecreasing.
(ii) For i ≥ 1 fixed the function Fi(t) := ∑j≥1 q(i, j, t) is a probability distribution function.
(iii) The matrix P = [p(i, j)]i,j≥1,t≥0 with p(i, j) := q(i, j,+∞) = limt→+∞ q(i, j, t) is a stochas-

tic matrix.

Definition A7 (Semi-Markov process). The process (Yt)t≥0 is a semi-Markov process if:

(i) The process admits a representation given, for t ≥ 0, by

Yt =
+∞

∑
n=0

Zn1I[τn ,τn+1[
(t). (A17)

(ii) For n ≥ 0 we have that Zn = Yτn .
(iii) The process (Zn, τn)n≥0 is a Markov renewal process (Mrp), that is, it verifies

P
[
Zn+1 = θj, τn+1 − τn ≤ t|Z0, . . . , Zn, τ1, τ2, . . . .τn

]
=

= P
[
Zn+1 = θj, τn+1 − τn ≤ t|Zn

]
,

(A18)

for all θj ∈ Θ, t ≥ 0 and almost surely—as it is a conditional expectation.

Proposition A2 (The sMp as a Markov chain). The process (Zn, τn)n≥0 is a Markov chain with
state space Θ× [0,+∞[ and with semi-Markov transition kernel given by:

q(i, j, t) := P
[
Zn+1 = θj, τn+1 − τn ≤ t|Zn = θi

]
. (A19)

Proposition A3 (The embedded Markov chain of the Mrp). The process (Zn)n≥0 is a Markov
chain with state space Θ with transition probabilities given by:

p(i, j) := q(i, j,+∞) = P
[
Zn+1 = θj|Zn = θi

]
, (A20)

and is denoted as the embedded Markov chain of the Mrp.

Proposition A4 (The conditional distribution function of the time between two successive
jumps). Let Q = [q(i, j, t)]i,j∈{1,2,...r},t≥0 be the semi-Markov kernel as in Proposition A20. Let
the times between successive jumps be ∆n := τn − τn−1 have the conditional distribution function
of the time between two successive jumps be given by

Fij(t) := P
[
∆n ≤ t|Zn = θi, Zn+1 = θj

]
. (A21)
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Then, the semi-Markov kernel verifies,

q(i, j, t) := P
[
Zn+1 = θj, ∆n ≤ t|Zn = θi

]
= p(i, j)Fij(t), (A22)

with p(i, j) as defined in Proposition A3.

Proof. It is a consequence of Proposition A1.

Remark A7 (Homogeneous Markov chains as semi Markov processes). Let (Xt)t≥0 be a
homogeneous Markov chain in continuous time with state space Θ = {θ1, θ2, . . . , θr, . . . } and
with—time independent—transition intensities given by Q(t) = [q(i, j)]i,j≥1 (see Definition A3).
Then, by the well known results on homogeneous Markov chains (see [29] pp. 317, 318) and by the
representation given by Formula (A22), we have that

q(t, i, j) =

{ q(i,j)
−q(i,i)

(
1− eq(i,i)t

)
i 6= j,

0 i = j or q(i, i) = 0 ,
(A23)

is the semi Markov kernel of a sMp. Being so, comparing Formula (A23) with Formulas (A21)
and (A22), we can see that the main difference between a sMp and a continuous time Markov
process is the fact that in the sMp case the conditional distribution function of the time between two
successive jumps depend not only on the initial state of the jump but also on the final state, while in
the homogeneous Markov chain case the dependence is only on the initial state of the jump.

Definition A8 (The sojourn time distribution in a state). The sojourn time distribution in
the state θi ∈ Θ = {θ1, θ2, . . . , θr, . . . }, is defined by:

Hi(t) :=
+∞

∑
j=1

q(i, j, t) =
+∞

∑
j=1

p(i, j)Fij(t). (A24)

Its mean value represent the mean sojourn time in state θi of the sMP (Yt)t≥0.

Definition A9 (Regular sMp). A sMP (Yt)t≥0 is regular, with N(t) the number of jumps of the
process in the time interval ]0, t] given by:

N(t) := sup{n ≥ 0 : τn ≤ t}, (A25)

defined for t > 0 verifies for all θi ∈ Θ,

Pi[N(t) < +∞] := P[N(t) < +∞|Z0 = θi] = 1. (A26)

Proposition A5 (Jumps times of a regular sMp do not have accumulation points). Let the
sMP (Yt)t≥0 be regular. Then, almost surely, limn→+∞ τn = +∞ and, for any T ∈ R+ and
almost all ω ∈ Ω:

#{k ≥ 1 : τk(ω) ≤ T} < +∞. (A27)

This means that in every compact time interval [0, T], for almost all ω ∈ Ω there is only a finite
number of times τk(ω) in this interval.

The following fundamental theorem ensures that for sMp with finite state space the
sequence of stopping times do not accumulate in a compact interval.

Theorem A7 (A sufficient condition for regularity of a sMp). Let α > 0 and β > 0 be
constants such that or every state θi the sojourn time distribution in this state Hi(t) defined in
Definition A8 verifies:

Hi(α) < 1− β.
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Then, the sMp is regular. In particular, any sMp with a finite state space is regular.

Proof. See in [74] (p. 88).

Remark A8 (On the estimation of sMp). The estimation of sMp is dealt, for instance, in [75,76].
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63. Iosifescu, M.; Limnios, N.; Oprişan, G. Introduction to Stochastic Models; Applied Stochastic Methods Series; Translated from the

2007 French original by Vlad Barbu; ISTE: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [CrossRef]
64. Pyke, R. Markov renewal processes with finitely many states. Ann. Math. Statist. 1961, 32, 1243–1259. [CrossRef]
65. Feller, W. On semi-Markov processes. Proc. Nat. Acad. Sci. USA 1964, 51, 653–659. [CrossRef]
66. Kurtz, T.G. Comparison of semi-Markov and Markov processes. Ann. Math. Statist. 1971, 42, 991–1002. [CrossRef]

http://dx.doi.org/10.1214/aoms/1177704863
http://dx.doi.org/10.1007/978-94-011-4625-8
http://dx.doi.org/10.1007/BF00531768
http://dx.doi.org/10.1007/BF00532720
http://dx.doi.org/10.1112/jlms/s2-8.2.345
http://dx.doi.org/10.1007/BF00356104
http://dx.doi.org/10.1239/jap/1389370090
http://dx.doi.org/10.1016/j.spl.2016.04.020
http://dx.doi.org/10.1007/BF00534594
http://dx.doi.org/10.2307/270745
http://dx.doi.org/10.1103/PhysRevE.93.032135
http://dx.doi.org/10.1080/03610926.2021.1921806
http://dx.doi.org/10.1090/gsm/140
http://dx.doi.org/10.1080/10920277.2006.10597413
http://dx.doi.org/10.1112/plms/s3-13.1.593
http://dx.doi.org/10.1090/S0002-9939-1967-0203819-6
http://dx.doi.org/10.1111/1467-9965.00114
http://dx.doi.org/10.7151/dmps.1101
http://dx.doi.org/10.1002/9780470316962
http://dx.doi.org/10.1017/9781108591034
http://dx.doi.org/10.1002/9781118623220
http://dx.doi.org/10.1214/aoms/1177704864
http://dx.doi.org/10.1073/pnas.51.4.653
http://dx.doi.org/10.1214/aoms/1177693327


Mathematics 2021, 9, 1496 29 of 29

67. Korolyuk, V.; Swishchuk, A. Semi-Markov random evolutions. In Mathematics and its Applications; Translated from the 1992
Russian original by V. Zayats and revised by the authors; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995;
Volume 308. [CrossRef]

68. Janssen, J.; de Dominicis, R. Finite non-homogeneous semi-Markov processes: Theoretical and computational aspects. Insur.
Math. Econ. 1984, 3, 157–165. [CrossRef]

69. Janssen, J.; Limnios, N. (Eds.) Semi-Markov Models and Applications; Selected papers from the 2nd International Symposium on
Semi-Markov Models: Theory and Applications held in Compiègne, December 1998; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 1999. [CrossRef]

70. Janssen, J.; Manca, R. Applied Semi-Markov Processes; Springer: New York, NY, USA, 2006.
71. Janssen, J.; Manca, R. Semi-Markov Risk Models for Finance, Insurance and Reliability; Springer: New York, NY, USA, 2007.
72. Barbu, V.S.; Limnios, N. Semi-Markov chains and hidden semi-Markov models toward applications. In Lecture Notes in Statistics;

Springer: New York, NY, USA, 2008; Volume 191.
73. Grabski, F. Semi-Markov Processes: Applications in System Reliability and Maintenance; Elsevier: Amsterdam, The Netherlands, 2015.
74. Ross, S.M. Applied Probability Models with Optimization Applications; Reprint of the 1970 original; Dover Publications, Inc.: New

York, NY, USA, 1992.
75. Moore, E.H.; Pyke, R. Estimation of the transition distributions of a Markov renewal process. Ann. Inst. Stat. Math. 1968, 20, 411.

[CrossRef]
76. Ouhbi, B.; Limnios, N. Nonparametric Estimation for Semi-Markov Processes Based on its Hazard Rate Functions. Stat. Inference

Stoch. Process. 1999, 2, 151–173. [CrossRef]

http://dx.doi.org/10.1007/978-94-011-1010-5
http://dx.doi.org/10.1016/0167-6687(84)90057-X
http://dx.doi.org/10.1007/978-1-4613-3288-6
http://dx.doi.org/10.1007/BF02911654
http://dx.doi.org/10.1023/A:1009946129290

	Introduction
	From Discrete Time to Continuous Time via a Structural Approach
	From Discrete to Continuous Time Markov Chains: A Calibration Approach
	The Embedding of a Discrete Time Markov Chain in a Continuous One
	Continuous Time Markov Chains Calibration with a Discrete Time Markov Transition Matrix
	Conclusions on the Relations between Embeddable Matrices, Calibration, and Open Markov Chain Models

	More on Open Continuous Time Processes from Discrete Ones
	Open Markov Chain Modeling in Discrete Time: A Short Review
	Open sMP from Discrete time Open Markov Chains
	Open Continuous Time Processes from Open Markov Schemes

	Conclusions
	Some Essential Results on Continuous Time Markov Chains
	Semi-Markov Processes: A Short Review
	References

