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Abstract: We developed two models for real-time monitoring and forecasting of the evolution of the
COVID-19 pandemic: a non-linear regression model and an error correction model. Our strategy
allows us to detect pandemic peaks and make short- and long-term forecasts of the number of
infected, deaths and people requiring hospitalization and intensive care. The non-linear regression
model is implemented in an expert system that automatically allows the user to fit and forecast
through a graphical interface. This system is equipped with a control procedure to detect trend
changes and define the end of one wave and the beginning of another. Moreover, it depends on only
four parameters per series that are easy to interpret and monitor along time for each variable. This
feature enables us to study the effect of interventions over time in order to advise how to proceed in
future outbreaks. The error correction model developed works with cointegration between series
and has a great forecast capacity. Our system is prepared to work in parallel in all the Autonomous
Communities of Spain. Moreover, our models are compared with a SIR model extension (SCIR) and
several models of artificial intelligence.

Keywords: artificial intelligence; machine learning; non-linear regression; error correction model;
SIR

1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the so-called SARS-CoV-2 virus,
has spread throughout the world leading to a terrible pandemic. Starting in China in
December 2019, the following two countries were Italy and Spain. The infection’s high
transmissibility led some regions to suffer a special impact. Such is the case of the Au-
tonomous Region of Madrid in Spain. On March 11, the World Health Organization (WHO)
declared COVID-19 a pandemic. On the same date, Madrid was already in an extremely
serious situation and all educational centers were closed. Three days later, on March 14,
the state of alarm was declared throughout the country. On March 30, freedom of activity
outside the home was reduced to essential services. These conditions were relaxed on April
13, with the permission of some non-essential activities. From April 26, children could go
outside for 1 h every day, and one week later this measure was extended to the general
population. Measures of varying magnitude have been taken in the following three waves
that have followed one after the other so far.

Mathematical models to track changes in the behavior and patterns of infection appear
to be essential tools for making future decisions.
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Some authors (see, e.g., [1,2]) were pioneers in collecting solutions based on artifi-
cial intelligence and expert knowledge, among the thousands of articles published on
the subject.

Artificial intelligence is useful to monitor the evolution of the pandemic even in
real time, either through expert systems or with a predictive approach based on machine
learning. Researchers have been able to validate the effectiveness of these models with
different illnesses. For example, through a dynamic neural network, it was possible to
understand the evolution of Zika (see [3]). The same has happened with Ebola or the
common flu. Currently, models are being retrained with new data related to the COVID-19
(see [4]). Abhari et al. [5] used a previously developed agent-based artificial intelligence
simulation platform (EnerPol) coupled with big data.

It is worth highlighting the need for artificial intelligence tools to be easy to use by
those who want to operate with them. This is why, around the idea of monitoring and
forecasting, projects have been generated to visualize the information collected. With this
approach, in [6], we can find an ordered list of the most interesting sites with dashboards:
UpCode, NextStrain, CSSE (Johns Hopkins), Thebaselab, the BBC, the New York Times,
HealthMap and COVID-19 Tracker (Microsoft).

The SIR model (“Susceptible”, “Infected”, “Recovered”) and its extensions are tradi-
tional epidemiological models. They are compartmental models of differential equations
that relate the variations of different population groups (compartments) through the infec-
tion rate and the average infectious period. Most recent studies are based on modifications
of the SIR model (see, e.g., [7–9]). The underlying idea is to model the waves of a pandemic
as exponential increases and decreases to the left and right of a peak of maximum incidence.
In Spain, it is worth highlighting the work carried out by the Interdisciplinary Group
of Complex Systems at UC3M [10] and the work carried out by the MOMAT Group at
UCM [11]. For comparisons purposes, we implement the SIR model extension developed
by Castro et al. [10], SCIR: a SIR model with “confinement”.

In this paper, we approach the problem from another point of view: non-linear
regression predictive models. Researchers from the Andalusian School of Public Health
of Granada have developed a predictive model of the COVID-19 epidemic in Spain with
an adjustment to a Gompertz curve [12]. For the adjustment of the Gompertz curve to the
observed accumulated data of cases and deaths, they used the Nelter–Mead algorithms [13]
implemented by Nash [14]. The software used for the calculations was R via drc package.
Our strategy extends this approach by allowing greater flexibility in fitting to Gompertz
curves, especially in the distribution tails. Another Gompertz approximation was proposed
by Català et al. [15]. Our expert system automatically chooses the best fit from a variety of
models, including the Gaussian, double exponential and double Pareto curves. In addition,
all programming, the optimization algorithm and the heuristic are original.

Moreover, we develop an Error Correction Model (ECM). This approximation belongs
to a category of multiple time series models for data where the underlying variables have a
long-run common stochastic trend.

Our research group registered in the “Mathematical action against coronavirus”, a
cooperative prediction initiative of the Spanish Mathematics Committee (CEMat). (A
meta-predictor has been built to provide authorities with information on the short-term
behavior of variables of great interest in the spread of the COVID-19 virus. The method
uses the predictions from different models/algorithms, provided by the participating re-
searchers, and constructs optimized combinations of them, disaggregated by Autonomous
Communities.) Within this initiative, we have participated together with other research
groups in the “Cooperative Prediction” action [16], providing daily predictions with our
preliminary model since March 2020, during the entire first wave of the pandemic. All
models that participate in the construction of the metapredictor developed by the coopera-
tive prediction action promoted by the CEMat have been validated continuously since the
beginning of the pandemic.



Mathematics 2021, 9, 1485 3 of 34

The results obtained in this paper are reproducible using the code from our public
repository. The code for the developed graphical interface that allows the user to interact
with our system is also included in: https://github.com/mikiNadal/covid19_article_
reproducible (accessed on 22 June 2021).

Section 2 introduces the non-linear regression model. Section 3 introduces the error
correction model. Section 4 introduces the SCIR model. Section 5 compares the three
models with different metrics. Finally, the conclusions are presented in Section 6.

2. Non-Linear Regression Model

We aim to develop a theoretical framework that allows us to detect peaks and make
short- and long-term monitoring and forecasting of the number of people infected, people
requiring hospitalization and deaths during an infectious disease. With short-term predic-
tion, we refer to the task that we performed for the CEMat during the first wave, consisting
of giving predictions every day with a horizon of 8 days. From the second wave, we were
asked for predictions every week with a horizon of 14 days. With long-term forecast, we
refer to the prediction of the peak, the total number of infected at the end of a wave under
study and giving commitment dates for which only a small percentage of the area under
the model remains. These values are monitored day by day and are an indication, for
example, of when a wave is exhausted.

This model is implemented with an expert system of artificial intelligence based on
non-linear regression and is extremely useful to estimate the effectiveness of the interven-
tions prompted by the governments and to advise on how to proceed in future outbreaks.
Furthermore, the machine learning algorithm developed allows parallel running and
introduction of new data in real time, and it is scalable.

Our model is based on directly estimating the distribution function of each of the series
under study and on the duality between the distribution function and the density function.
Since those two functions fully characterize the probability distribution of a continuous
variable, our model is able to capture the main characteristics of epidemic outbreaks. To this,
we can add its simplicity, since it is formulated only through three parameters. Hereinafter,
we refer to our first proposed epidemiological model as the MATGEN model in honor of
our group enrolled in the Mathematical action against coronavirus [16], an initiative of CEMat
(Spanish Mathematics Committee).

2.1. The Model

The notation employed in this work is as follows:
Let the well-known density function of a normal variable of mean be µ and variance

σ2, N(µ, σ) (see Figure 1a), given by

f (t) =
1

σ
√

2π
e−

1
2

(
t−µ

σ

)2

and both its distribution function and the right tail as follows:

F(t) =
∫ t

−∞

1
σ
√

2π
e−

1
2 (

x−µ
σ )

2

dx

1− F(t) =
∫ ∞

t

1
σ
√

2π
e−

1
2 (

x−µ
σ )

2

dx

Note that the density peak of N(µ, σ) is reached in µ, and it is a point of inflection of
its distribution function. Furthermore, it verifies that F(t) = 1− F(t) = 0.5.

For a review of the properties of the distribution function, the density function, the
characteristic function of a random variable and the relationships between them, see the
work of Quesada and Pardo [17].

https://github.com/mikiNadal/covid19_article_reproducible
https://github.com/mikiNadal/covid19_article_reproducible
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(a) Normal probability distribution: N(0,1). (Left) density function. (Right) distribution function

(b) Blue, normal; green, double exponential; red, Gompertz; orange, double Pareto.

Figure 1. Probability distributions for pandemic wave modeling

Data series of COVID-19 in Spain include day by day the cumulative number of people
infected, people requiring hospitalization and deaths. These data can be downloaded from
ISCIII [18].

We denote both the relative and cumulative frequencies at time t as follows:

Nt cumulative per day,

nt = Nt − Nt−1 new cases per day,

ft =
nt

n
,

Ft =
t

∑
i=1

fi,

where n is the total number of cases at the end of the pandemic.
Furthermore, we introduce the average of the cumulative frequencies at time t

given by

Avt =
1
t

t

∑
i=1

Fi.
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In this context, we work with the following non-linear regression model:

Fi = F(i) + εi, εi ∼ N(0, τ), i = 1, · · · , t,

where the parameters n, µ and σ are estimated by the least squares method.
For an introduction to frequentist and bayesian regression, see the work of Gómez

Villegas [19].

2.2. Other Wave Models

The next subsections detail a basic guide for the correct implementation of the least
squares method and the algorithm designed for the detection of pandemic peaks.

2.3. The Algorithm: Peak Detection

Initialize t in t0, the current moment.
Compute the mean squared error as follows:

ECM(t, n, µ, σ|n1, . . . , nt) =
1
t

t

∑
i=1

(F(i)− Fi)
2,

the total variance

SCT(t, n, µ, σ|n1, . . . , nt) =
1
t

t

∑
i=1

(Fi − Avt)
2

and the coefficient of determination

R2(t, n, µ, σ|n1, . . . , nt) = 1− ECM(t, n, µ, σ|n1, . . . , nt)

SCT(t, n, µ, σ|n1, . . . , nt)
.

In statistics, the coefficient of determination is the proportion of the variance in
the dependent variable Fi that is predictable from the independent variable F(i). It is
a statistic used in the context of goodness of fit and provides a measure of how well
observed outcomes are replicated by the model, based on the proportion of total variation
of outcomes explained by the model. This coefficient takes values between 0 and 1, and,
between two models, the one with the highest determination coefficient is preferred.
Furthermore, with this criterion, the best model is the one that maximizes the coefficient of
determination within a plausible family of models:

max
n,µ,σ

R2(t, n, µ, σ|n1, . . . , nt) .

On the other hand, we control at the same time the adjustment of the observed
frequencies by means of the theoretical density function. To this end, the criterion that we
follow is to perform a linear regression

fi
f (i)

= a + bi + ei, ei ∼ N(0, ν), i = 1, . . . , t,

and to introduce the constraint

p− value(Fobs) = P(F1,t−2 > Fobs) > 0.1,

where Fobs is the observed value of the test statistic for testing H0 : b = 0 vs. H1 : b 6= 0
and F1,t−2 is its theoretical distribution under H0, that is a Snedecor’s F distribution with 1
and t− 2 degrees of freedom.

We propose to solve the multicriteria optimization problem by obtaining the values of
n(t), µ(t) and σ(t), so that

max
n,µ,σ

R2(t, n, µ, σ|n1, . . . , nt) ,
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under the constraint

p− value(Fobs) = P(F1,t−2 > Fobs) > 0.1.

Now, stop if F(t) = Ft = 0.5, otherwise incorporate the data t1, do t = t1 and repeat.
In parallel, fit a model for each of the series, namely the number of new positive cases

per day, the number of new deaths per day and the number of new ICU admissions per
day, and choose the model that simultaneously maximizes the three values of R2.

Stop when F(t) = Ft = 0.5 is accomplished in all three series.
It is important to note that the algorithm allows the introduction of new data in real

time, and it is scalable.

2.4. The Algorithm: Commitment Dates

Let tp be the first day that F
(
tp
)
= Ftp = 0.5, and n

(
tp
)
, µ
(
tp
)

and σ
(
tp
)

are the
optimal values of the parameters at that time point.

If ftp+1 ≥ ftp , do µ = tp + 1 and compute n and σ so that F
(
tp + 1

)
= Ftp+1 = 0.5.

Otherwise, determine the value of tmax so that ftmax = maxt≤tp ft , do µ = tmax and
compute n y σle f t so that F(tmax) = Ftmax = 0.5 and σright fit the series for t ≥ tmax.

Finally, the percentiles qnorm0.99 and qnorm0.999 of the normal probability distribu-
tion N(tmax, σright) are the commitment dates to lift the restrictions from least to most
conservative.

2.5. The Heuristic

To perform an effective optimization, we opt for an ambitious heuristic that we
detail below.

Let σ = σ0, starting at σ0 = 15.
Move σ between σ0 − 14 and σ0 + 14.
At this point, it is important to note that the incubation period of the disease is between

2 and 14 days (see [20]). In addition, the delay between the time of infection and the report
as a positive case is considered.

Let µ = µ0, starting at µ0 = t0, t0 being the current moment.
Move µ between the first day of each of the series and t0 + 2σ0. For example, the first

day of the series of the number of people infected in the Region of Madrid is Day 26, which
corresponds to February 25.

Generate k = 10,000 values of a uniform random variable between 0 and 1.
Compute n = Np for each value p generated in the last step; N = approximately

6,550,000 in the Region of Madrid.
Discard the values of n < Nt0 .
Find the feasible models with p-value > 0.1 for the noise and select the one with the

largest R2 of the fit in the cumulative frequencies.
In practice, the running of the heuristic generates a .csv file that contains several

columns. The columns corresponding to the fitted parameters, µ, σ and n, the coefficient
of determination and the p-value are included. Moreover, two columns are added to
register every day the moment of the real peak, which corresponds with the day with
the highest frequency observed to date, and the day when the cutoff between the models
fitted to both sides is observed, i.e., when the distribution becomes positively skewed. The
algorithm tries to match the value of the real peak, the cutoff and the parameter µ. It also
allows fitting a different σ to the left and right of the cutoff. The last two columns include
the commitment dates corresponding to percentiles qnorm0.99 and qnorm0.999 of the fitted
model to the right.

In the next subsections, we present the results that are obtained from the run of the
previous algorithm programmed through our expert system. To do this, we consider the
data series of COVID-19 in Spain, which are published in [18]. Specifically, we study the
case of the Region of Madrid.
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2.6. COVID-19 Data Sets

It is necessary to consider the time required to test the presence of the infection and
obtain a report to test positive for the virus. This is especially relevant when there are
problems with access to care and with bottlenecks in laboratory testing. At some moments,
this led the health system in Madrid to test only people with severe symptoms. In addition,
the delay of up to several weeks in the notification of positive cases by the laboratories
led to changes in the data history depending on the day the data were downloaded (see
Tables 1 and 2).

Table 1. The .csv file with the data (continues in Table 2).

Cases Cases Cases Deaths ICUs
11/05/2020 18/05/2020 21/05/2020 11/05/2020 21/05/2020

25/02/2020 26 1 2 2
26/02/2020 27 5 6 6
27/02/2020 28 9 10 10
28/02/2020 29 19 20 20
29/02/2020 30 26 27 27
01/03/2020 31 51 53 53
02/03/2020 32 93 96 96
03/03/2020 33 139 142 142
04/03/2020 34 193 199 199
05/03/2020 35 305 311 311
06/03/2020 36 508 515 515
07/03/2020 37 729 738 738
08/03/2020 38 992 1003 1003 16 61
09/03/2020 39 1495 1508 1508 21 120
10/03/2020 40 2198 2213 2213 31 184
11/03/2020 41 2922 2943 2943 56 238
12/03/2020 42 3705 3732 3732 81 307
13/03/2020 43 4645 4672 4672 86 370
14/03/2020 44 5544 5576 5576 213 469
15/03/2020 45 6356 6392 6392 213 566
16/03/2020 46 7615 7653 7653 355 702
17/03/2020 47 9561 9601 9601 390 850
18/03/2020 48 11,309 11,356 11,356 498 1011
19/03/2020 49 13,353 13,399 13,399 628 1196
20/03/2020 50 15,676 15,722 15,722 804 1401
21/03/2020 51 17,346 17,397 17,397 1021 1532
22/03/2020 52 18,848 18,900 18,900 1263 1664
23/03/2020 53 21,516 21,569 21,569 1535 1813
24/03/2020 54 24,404 24,473 24,475 1825 1962
25/03/2020 55 27,344 27,420 27,422 2090 2117
26/03/2020 56 30,711 30,794 30,796 2412 2272
27/03/2020 57 33,068 33,160 33,162 2757 2369
28/03/2020 58 34,087 34,186 34,189 3082 2423
29/03/2020 59 34,959 35,058 35,061 3392 2464
30/03/2020 60 37,504 37,604 37,607 3603 2554
31/03/2020 61 39,303 39,404 39,409 3865 2627
01/04/2020 62 41,075 41,191 41,199 4175 2694
02/04/2020 63 42,896 43,027 43,038 4483 2764

Even when the data come from official sources, they may present inconsistencies
that must be taken into account. The portal to access the European Union open data [21]
publishes data on the evolution of COVID-19 by continent and broken down by country.
It can be verified that only positive PCRs are counted in the series of cases on this portal.
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On the other hand, Spain (see [18]) and Italy (see [22–24]) offer more detailed information
through their national institutional portals. For example, on April 17, Spain introduces two
columns, PCR and TestAc, and TestAc is empty until April 18, when the government intro-
duces this type of test into the count. On the recommendation of the Spanish Mathematics
Committee, we chose to consider confirmed cases as PCR+TestAc. This situation has been
remedied since the second wave of the pandemic.

Table 2. The .csv with the data.

Cases Cases Cases Deaths ICUs
11/05/2020 18/05/2020 21/05/2020 11/05/2020 21/05/2020

03/04/2020 64 44,613 44,768 44,779 4723 2821
04/04/2020 65 45,496 45,660 45,671 4941 2854
05/04/2020 66 46,016 46,186 46,197 5136 2879
06/04/2020 67 47,568 47,749 47,763 5371 2958
07/04/2020 68 48,945 49,139 49,160 5586 3002
08/04/2020 69 50,357 50,556 50,580 5800 3038
09/04/2020 70 51,296 51,505 51,535 5972 3061
10/04/2020 71 52,146 52,367 52,400 6084 3091
11/04/2020 72 52,680 52,909 52,944 6278 3105
12/04/2020 73 53,017 53,250 53,285 6423 3122
13/04/2020 74 53,988 54,241 54,287 6568 3153
14/04/2020 75 55,062 55,343 55,398 6724 3180
15/04/2020 76 55,959 56,245 56,304 6877 3203
16/04/2020 77 56,792 57,084 57,157 7007 3214
17/04/2020 78 57,598 57,899 57,978 7132 3228
18/04/2020 79 60,558 60,859 60,941 7239 3238
19/04/2020 80 60,952 61,254 61,336 7351 3248
20/04/2020 81 61,568 61,882 61,972 7460 3278
21/04/2020 82 62,440 62,801 62,904 7577 3283
22/04/2020 83 63,558 63,921 64,050 7684 3288
23/04/2020 84 64,120 64,496 64,634 7765 3305
24/04/2020 85 64,785 65,163 65,310 7848 3307
25/04/2020 86 65,015 65,396 65,546 7922 3308
26/04/2020 87 65,477 65,857 66,007 7986 3309
27/04/2020 88 66,241 66,631 66,784 8048 3338
28/04/2020 89 66,884 67,293 67,460 8105 3355
29/04/2020 90 67,332 67,747 67,942 8176 3377
30/04/2020 91 67,714 68,154 68,356 8222 3392
01/05/2020 92 67,830 68,291 68,537 8292 3404
02/05/2020 93 67,947 68,408 68,654 8332 3421
03/05/2020 94 68,056 68,520 68,766 8376 3431
04/05/2020 95 68,447 68,924 69,178 8420 3442
05/05/2020 96 68,745 69,249 69,509 8466 3465
06/05/2020 97 69,110 69,627 69,885 8504 3485
07/05/2020 98 69,323 69,856 70,125 8552 3493
08/05/2020 99 69,566 70,132 70,407 8598 3508
09/05/2020 100 69,697 70,238 70,516 8644 3520
10/05/2020 101 69,730 70,292 70,570 8683 3529

Another controversial point is the notification of deaths due to COVID-19 and the real
deaths registered by the undertaking services of the Autonomous Communities of Spain.
This suggests that only a percentage of the real deaths due to COVID-19 were recorded.
As a matter of fact, many elderly people died in nursing homes before being tested for
COVID-19 and in most cases they were not included in the number of deaths.
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One more problem that we have had to face is related to the series of ICUs in the
Region of Madrid, in which we found an anomaly. Since April 28, the Region of Madrid
offers cumulative data on the number of people with coronavirus who have gone through
the ICU. Before this date, the data were those of daily occupation. Furthermore, the number
of ICU beds varied throughout the course of the epidemic. The maximum number was
changing due to the increase in ICU beds in the large hospitals in Madrid and especially
the provision of new hospital beds in the IFEMA hospital.

2.7. Expert System

Our expert system was designed to facilitate obtaining the results and it consists of
several parts. First, it allows downloading and updating the data file in real time every day.
Once the data file has been updated, the expert system allows us to run the algorithm for
all the series in parallel or one in particular, as well as for all the provinces of Spain or a
specific one. Once the algorithm has been run, our expert system returns three reports:

1. A .pdf file with three graphs for the current time: one of the fitted distribution
function, one of the fitted density function and one of the adjustment to white noise.
Figure 2a,b shows these reports for cases and deaths in the Region of Madrid.

2. A .csv file (see Tables 3 and 5) with the results of the entire day-to-day history of the
process, from which the following can be extracted: (i) the optimal parameters; (ii)
the coefficient of determination of the fit to the distribution function; and (iii) the
p-value of the fit to white noise of the relative errors of the fit to the density function.
In addition, this .csv file also contains the day-to-day commitment dates.

3. A .csv file (see Table 6) with an 8-day horizon of the forecast made with the fitted
model and a graph with the future model.

(a) Report of cases (b) Report of deaths (c) Report of ICUs
Figure 2. Cont.



Mathematics 2021, 9, 1485 10 of 34

(d) Parameter variation per day until May 11. This report has been automatically generated by our
expert system. From top to bottom: peak, sigma left, sigma right and n.

Figure 2. Cases (a), Deaths (b), ICUs (c) and parameter variation per day (d). (a–c) From up to bottom: distribution function
adjustment, density function adjustment and noise on May 11.

2.8. New and Cumulative Confirmed Cases per Day Series

Figure 2 and Tables 3–6 summarize the results for the new and cumulative confirmed
cases per day in the Region of Madrid.

The real peak of the series is one of the most difficult values to predict. Some days
after it has taken place, it is easy to know that the peak was already reached on March 26.
Table 3 and Figure 2 indicate that µ matches the value of the real peak between April 17
and 21. However, as the curve of µ variation per day (see Figure 2) begins to flatten from
March 20, the model alerts us in advance of the possibility that the real peak appears at any
time after that date.

In a virus-free transmission situation, the model would fit to a perfect Gaussian
distribution and µ would be equal to the real peak. Therefore, small deviations from the
model to the left of the real peak may indicate a change in the evolution of the virus. For
example, between March 8 and 14, the curve of the relative frequencies (blue) is above
the model fitted for the density function (orange) (see Figure 2a), which may indicate the
dangerous situation present in Madrid before March 8. This dangerous situation could
be a consequence of individual events increasing close contact between people. This was
already evident in the fitted models until this date. The period prior to March 11 can
be considered free of disease transmission because interventions have not been applied.
Nevertheless, that virus-free model is observed several days after that date. In fact, on
March 17, there is a small peak of cases, which could be due to a high number of contagions
during different massive events in Madrid on March 8. On March 22, the measures imposed
by the government started to be noticed, since the observed data lie below the fitted model,
and that situation continues until the global peak of cases is reached around March 26. On
March 30, after the peak of cases, freedom of activity outside the home was reduced to
essential services. The effect of this intervention is noted on April 9, when the real data lie
below the fitted model, and that trend remains until April 12. It seems that interventions
take around 11 days to be noted.
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Table 3. Cases updated on May 18: the .csv file with the results of the entire day-to-day history of the process (continues in
Table 4).

Date Day F.obs f.obs Peak µ σle f t σright n R2 p-Value qnorm0.99 qnorm0.999

29/02/2020 30 27 7 30 32 3.3 0 100 0.982587668 0.892176923 40 42
01/03/2020 31 53 26 31 35 3.6 0 400 0.978671691 0.622704742 43 46
02/03/2020 32 96 43 32 34 2.9 0 400 0.981876806 0.175458205 41 43
03/03/2020 33 142 46 33 38 4.1 0 1300 0.995770675 0.392234347 48 51
04/03/2020 34 199 57 34 34 2.8 0 400 0.997745553 0.137856774 41 43
05/03/2020 35 311 112 35 41 4.7 0 3100 0.996817645 0.240883244 52 56
06/03/2020 36 515 204 36 42 4.8 0 4900 0.987584896 0.284897495 53 57
07/03/2020 37 738 223 37 42 4.7 0 5200 0.994676239 0.124339758 53 57
08/03/2020 38 1003 265 38 44 5.2 0 8100 0.998540043 0.239198136 56 60
09/03/2020 39 1508 505 39 46 5.5 0 14,900 0.996779356 0.131424278 59 63
10/03/2020 40 2213 705 40 47 5.7 0 20,200 0.992783337 0.300331128 60 65
11/03/2020 41 2943 730 41 48 5.9 0 25,000 0.997812351 0.315691322 62 66
12/03/2020 42 3732 789 42 48 5.9 0 24,400 0.998798116 0.270683941 62 66
13/03/2020 43 4672 940 43 46 5.4 0 16,200 0.999136218 0.111431486 59 63
14/03/2020 44 5576 904 43 46 5.5 0 15,800 0.998952129 0.571789971 59 63
15/03/2020 45 6392 816 43 45 5.2 0 13,000 0.998944934 0.235342367 57 61
16/03/2020 46 7653 1261 46 45 5.2 4.4 13,000 0.999269903 0.363550861 55 59
17/03/2020 47 9601 1948 47 45 5.2 3.1 13,000 0.998123674 0.579021251 52 55
18/03/2020 48 11,356 1755 47 49 6.3 0 26,000 0.996732574 0.272478617 64 68
19/03/2020 49 13,399 2043 49 50 6.5 0 30,600 0.996779095 0.490069959 65 70
20/03/2020 50 15,722 2323 50 51 6.8 0 35,700 0.997098073 0.121977009 67 72
21/03/2020 51 17,397 1675 50 51 6.8 0 35,000 0.998182881 0.180665458 67 72
22/03/2020 52 18,900 1503 50 51 6.8 9.9 35,000 0.998601989 0.120079419 74 82
23/03/2020 53 21,569 2669 53 51 6.8 6.5 34,800 0.998561382 0.138391236 66 71
24/03/2020 54 24,473 2904 54 51 6.8 5.4 34,500 0.998229605 0.121359895 64 68
25/03/2020 55 27,420 2947 55 51 6.8 4.5 33,800 0.997254468 0.105764493 61 65
26/03/2020 56 30,794 3374 56 55 7.9 0 56,000 0.996014729 0.11940529 73 79
27/03/2020 57 33,160 2366 56 54 7.5 0 50,600 0.9969215 0.529316564 71 77
28/03/2020 58 34,186 1026 56 53 7.3 0 45,400 0.997913273 0.18053051 70 76
29/03/2020 59 35,058 872 56 53 7.4 0 45,200 0.998173357 0.105651154 70 76

Table 4. Cases updated on May 18: the .csv file with the results of the entire day-to-day history of the process (continues in
Table 5).

Date Day F.obs f.obs Peak µ σle f t σright n R2 p-Value qnorm0.99 qnorm0.999

30/03/2020 60 37,604 2546 56 53 7.3 0 45,300 0.998303486 0.172127509 70 76
31/03/2020 61 39,404 1800 56 53 7.2 0 45,500 0.998245308 0.470549706 70 75
01/04/2020 62 41,191 1787 56 54 7.5 8.7 50,200 0.998433035 0.754592417 74 81
02/04/2020 63 43,027 1836 56 54 7.5 8.6 50,500 0.998428145 0.50656996 74 81
03/04/2020 64 44,768 1741 56 54 7.5 8.4 50,700 0.998184198 0.284094123 74 80
04/04/2020 65 45,660 892 56 54 7.5 8.4 50,500 0.998541295 0.349922514 74 80
05/04/2020 66 46,186 526 56 54 7.5 8.6 50,300 0.998878631 0.598595831 74 81
06/04/2020 67 47,749 1563 56 54 7.5 8.6 51,100 0.998464545 0.183556346 74 81
07/04/2020 68 49,139 1390 56 54 7.5 9.1 52,400 0.997432118 0.058691187 75 82
08/04/2020 69 50,556 1417 56 55 7.8 0 52,500 0.996017911 0.111161442 73 79
09/04/2020 70 51,505 949 56 55 7.9 11.1 56,500 0.998957163 0.054509831 81 89
10/04/2020 71 52,367 862 56 55 7.9 11.1 56,600 0.998954379 0.037195949 81 89
11/04/2020 72 52,909 542 56 55 7.9 11.2 56,600 0.999093668 0.052789849 81 90
12/04/2020 73 53,250 341 56 55 7.9 11.1 56,200 0.999270096 0.110086342 81 89
13/04/2020 74 54,241 991 56 55 7.9 11.3 56,900 0.999050173 0.030039666 81 90
14/04/2020 75 55,343 1102 56 55 7.9 12.2 58,300 0.998466827 0.009881759 83 93
15/04/2020 76 56,245 902 56 55 7.9 12.5 59,000 0.997872056 0.002736576 84 94
16/04/2020 77 57,084 839 56 55 7.9 13 59,800 0.997263961 0.000860309 85 95
17/04/2020 78 57,899 815 56 56 8.2 14.7 62,100 0.999148019 0.051330147 90 101
18/04/2020 79 60,859 2960 56 56 8.2 16.2 66,000 0.994984648 0.016081334 94 106
19/04/2020 80 61,254 395 56 56 8.2 16.3 65,900 0.995736332 0.024215511 94 106
20/04/2020 81 61,882 628 56 56 8.2 16.4 66,100 0.995644281 0.020793633 94 107
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Table 4. Cont.

Date Day F.obs f.obs Peak µ σle f t σright n R2 p-Value qnorm0.99 qnorm0.999

21/04/2020 82 62,801 919 56 56 8.2 17.2 67,200 0.994675811 0.009949682 96 109
22/04/2020 83 63,921 1120 56 57 8.5 19.1 70,000 0.996894671 0.031130121 101 116
23/04/2020 84 64,496 575 56 57 8.5 19.2 70,100 0.997000217 0.031958511 102 116
24/04/2020 85 65,163 667 56 57 8.5 20 70,900 0.996864121 0.026171537 104 119
25/04/2020 86 65,396 233 56 57 8.5 20.4 70,900 0.997486764 0.055788057 104 120
26/04/2020 87 65,857 461 56 57 8.5 20.3 70,800 0.997614211 0.060271108 104 120
27/04/2020 88 66,631 774 56 57 8.5 20.8 71,500 0.997206052 0.034021395 105 121
28/04/2020 89 67,293 662 56 57 8.5 21.6 72,300 0.996908785 0.02468125 107 124
29/04/2020 90 67,747 454 56 57 8.5 21.7 72,400 0.996957114 0.025102979 107 124

Table 5. Cases updated on May 18: the .csv file with the results of the entire day-to-day history of the process.

Date Day F.obs f.obs Peak µ σle f t σright n R2 p-Value qnorm0.99 qnorm0.999

30/04/2020 91 68,154 407 56 57 8.5 21.7 72,400 0.997054178 0.026233746 107 124
01/05/2020 92 68,291 137 56 57 8.5 24.4 73,900 0.997145056 0.101063259 114 132
02/05/2020 93 68,408 117 56 57 8.5 21.7 71,900 0.997874745 0.12149971 107 124
03/05/2020 94 68,520 112 56 57 8.5 21.9 71,800 0.99812767 0.225740331 108 125
04/05/2020 95 68,924 404 56 57 8.5 21.9 71,900 0.99809795 0.174545762 108 125
05/05/2020 96 69,249 325 56 57 8.5 22.4 72,200 0.998125597 0.188507265 109 126
06/05/2020 97 69,627 378 56 57 8.5 22.7 72,500 0.998056675 0.160258625 110 127
07/05/2020 98 69,856 229 56 57 8.5 22.6 72,400 0.998141899 0.166678645 110 127
08/05/2020 99 70,132 276 56 57 8.5 23 72,600 0.998176115 0.183701463 111 128
09/05/2020 100 70,238 106 56 57 8.5 22.8 72,400 0.998286944 0.246999497 110 127
10/05/2020 101 70,292 54 56 57 8.5 22.7 72,200 0.998403616 0.382879386 110 127
11/05/2020 102 70,482 190 56 57 8.5 22.7 72,200 0.998435983 0.369879957 110 127
12/05/2020 103 70,775 293 56 57 8.5 22.9 72,400 0.998409686 0.270053998 110 128
13/05/2020 104 70,964 189 56 57 8.5 23.1 72,500 0.998425921 0.276756083 111 128
14/05/2020 105 71,280 316 56 58 9 22.3 72,600 0.999084054 0.158835446 110 127
15/05/2020 106 71,572 292 56 58 9 22.6 72,800 0.999097634 0.10264384 111 128
16/05/2020 107 71,590 18 56 58 9 22.4 72,700 0.999115033 0.164105561 110 127
17/05/2020 108 71,595 5 56 58 9 22.3 72,600 0.99913069 0.284532441 110 127

Table 6. Cases: The .csv file with the results of the forecast with the fitted model updated on 11 May
2020 with data until May 10 and the real data updated on 21 May 2020.

Date Day Cases Deaths ICUs Cases Deaths ICUs
Forecast Forecast Forecast 21/05 21/05 21/05

11/05 102 69,907.52664 8760.086075 3522.268127 70,764 8720 3543
12/05 103 70,069.38546 8785.675876 3532.117916 71,064 8760 3555
13/05 104 70,217.06763 8808.931051 3541.764624 71,273 8779 3564
14/05 105 70,351.54658 8830.015338 3551.212438 71,616 8809 3574
15/05 106 70,473.75895 8849.086841 3560.465458 71,932 8826 3577
16/05 107 70,584.60256 8866.297502 3569.527702 71,956 8847 3584
17/05 108 70,684.93486 8881.792689 3578.403102 71,995 8863 3594
18/05 109 70,775.57183 8895.710879 3587.09551 72,121 8894 3600

It is important to note that the parameter σ of the model changes to the right of the
real peak of cases. This indicates that the containment measures are in fact effective. This
results in an increase in the variance of the model to the right of the turning point µ, which
indicates a slowdown in infections (see Figure 2). On April 18, with the addition of the
column TestAc to the dataset, an explosion in the graph of the density of cases is observed
(see Figure 2a). Except for this incident, the model remains quite stable to the right of the
peak of cases and commitment dates for the progressive lifting of mobility restrictions can
be proposed, as Figure 2 and Table 4 show. For example, May 11 shows commitment dates
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between May 19 and June 5 on the basis of 0.01 and 0.001 for the right tail area of the model
(with a forecast of 72,200 for the total of confirmed cases at the end of the pandemic).

This report concludes with a forecast for cumulative cases over the 8-day horizon. For
example, Table 6 shows the forecast from May 11 to 18 generated on May 11.

2.9. New and Cumulative Deaths per Day Series

Figure 2b summarizes the results for the new and cumulative deaths per day series in
the Region of Madrid.

A similar analysis to the one explained for cases can be done for deaths. Some days
after the real peak of deaths has taken place: it is easy to know that is was already reached
on March 28. The peak of the model, µ, was reached around April 1 (see Figure 2b).

The update on May 11 shows two early peaks on March 14 and 16. This situation was
followed by an increase with respect to the fitted model between March 22 and 28 and
then between April 2 and 9. Between these two periods of time, the situation of ICUs is
dramatic, as explained in the following subsection.

It is important to highlight that the model changes to the right side due to the effec-
tiveness of the containment measures. This translates into an increase in the variance of
the model on the right side, which indicates a slowdown in deaths. On May 11, the fitted
model forecasts a total of around 9000 deaths at the end of the pandemic.

2.10. New and Cumulative ICUs per Day Series

Figure 2c summarizes the results of new and cumulative ICUs in the Region of Madrid.
Although the official data are confusing, the fitted model for new and cumulative

ICUs (to fit a suitable model to the series of ICUs, it was necessary to modify the algorithm
considering two uniform and one exponential models to adequately describe the consec-
utive situations of plateau to the right of the normal model) reveals that the median of
the model occurred between March 24 and 25 (see Figure 2c). It is important to note that
the cumulative frequencies of new ICUs evolve very slowly, as the first graph in Figure 2c
shows. It can be seen that 10% of the probability distribution of the model remains after
May 11.

Taking into account that the duration of ICU stay depends on each patient and it
usually ranges between 8 and 28 days, one can understand the saturation of the ICUs in
the Region of Madrid.

The real peak of the series is one of the most difficult features to forecast. It may
have occurred after the peak of deaths on March 28. The date when more new cases were
incorporated into ICUs was March 20 with 205. This situation is detected with the value
of the parameter µ of the normal model fitted to the left, which corresponds to March 21
(see the second graph of Figure 2c). However, that date does not correspond to the real
peak because ICUs became saturated. On April 2, the reported number of ICUs reached
the highest value: 1528. The two dates cited are around the worst moments in terms of
numbers of deaths.

On May 11, the fitted model forecasts that a total of 4000 people will have gone
through the ICU at the end of the pandemic.

2.11. Second Wave

After the first wave, the format in which the data were provided changed and their
quality increased, although the series continues to change from one day to the next.

Figure 3 shows the fitted model for Madrid on December 12, for the second wave
of all series, cases, deaths, hospitalizations and ICU admissions. Figure 4 shows the
monitoring of the parameters: µ, σle f t, σright and n. Note how the effect of the interventions
is manifested in a preview of the peak, in the jump that σle f t experiences with respect to
σright and in the stabilization of n after reaching the peak. In addition, the peak is predicted
in the future from the end of August.
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Figure 3. Cont.
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Figure 3. Second wave: cases (normal) (top-left); deaths (normal) (top-right); hospitalizations (normal) (bottom-left); and
ICUs (Gompertz) (bottom-right).

Figures 5 and 6 shows the fitted models of the second wave for Asturias. These figures
make evident the usefulness of testing different regression functions. Unlike in Madrid,
the expert system selects as best fits those made with a double exponential or double
Pareto model.

During the third and fourth waves, we incorporated the error correction model into
our expert system that increased our predictive capacity. This is the model with which we
currently give our 14-day predictions to the Spanish Mathematics Committee. We found
in the comparison tool implemented on the website of this initiative that this new model
remains among the top three over time with respect to all error metrics. Another of its
advantages is that it adjusts the four data series at the same time: cases, deaths, hospitalized
and ICUs.
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Figure 4. Second wave: cases parameter monitoring.

Figure 5. Second wave cases Asturias: double exponential.
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Figure 6. Second wave cases Asturias: double Pareto.

3. Error Correction Model
3.1. Model Definition

It is intuitive to think that a peak in the confirmed series will increase the other three
data series with some delay. This type of relationship is usually modeled including the
displacement of the confirmed series p times to the future and using this feature to predict
the present of other series. This method for one series is called auto-regressive model and
is generalized to more than one series in the vector auto-regressive model. This type of
model needs the time series to be stationary, which means that the process has the first two
moments constant along time. This restriction is a problem in this case, where we want to
predict future changes in trends.
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When one has a set of stationary time series, yt = (y1t, . . . , yKt), one can define the
stable auto-regressive vector model of order p as:

yt = ν + A1yt−1 + . . . + Apyt−p + ut

where Ai are matrices of parameters, ν = (ν1, . . . , νK) represents the mean of each time
series and ut represents the random error term of the model, with ut ∼ N (0, Σu).

The usual procedure when working with this model with non-stationary series is to
differentiate them until they become stationary, but this procedure clouds the inference
about the model.

There will be a long-term relationship. The stochastic trend of the series will be shared
between the series as they will go down and up in the same way, keeping a certain distance
between them.

We can say that the set of time series yt have a long equilibrium if there exists a
vector β such that β′yt = β1y1t + . . . + βKyKt = 0 and define the process zt = β′yt as the
deviations from this relation.

Thus, the series in the set yt are said to be cointegrated if yit is a series of order 1 for
all i = 1, . . . , K and there exists a vector β such that zt = β′yt is a stationary process.

With this relationship in mind, it is possible to define a model based on the vector
auto-regresive for this type of data, which is the error correction model and is given by

∆yt = Πyt−1 + Γ1∆yt−1 + . . . + Γp−1∆yt−p+1 + φdt + ut (1)

= αβ′yt−1 + Γ1∆yt−1 + . . . + Γp−1∆yt−p+1 + φdt + ut (2)

where Γi are matrices of parameters, dt is the deterministic part of the model, ut ∼ N (0, Σu)
and Π = αβ′ with α the loading matrix and β the cointegration matrix.

Integrated and cointegrated systems must be interpreted cautiously. A tool to make
inferences about the model is the impulse response function. This tool describes the
evolution of the model variables in reaction to a shock in one or more of them. The impulse
response function is developed for VAR models, but we can express the error correction
model as a VAR model, as mentioned in [25].

For the application of the error correction model to the COVID-19 data, the following
modifications are made:

• It is first necessary to apply the logarithm to each of them; this is because seasonality
is multiplicative while the model is additive, so it is necessary to transform this
relationship and capture it with the proposed model.

• The data series show a strong seasonality due to the data collection and publication
policy of each region. To capture this seasonality in the model, the deterministic
component, dt, a dummy variable relative to each day of the week except one, is
introduced (to avoid collinearity).

• A last change in the model is carried out using a dummy variable for a change of
scenario: that of the test policy, since tests were not available at the beginning of
the pandemic. While at the beginning of the first wave only some suspected cases
could be tested for SARS-CoV-2, later the scenario changes and diagnostic testing can
be extended to all suspected cases, close contacts and even several mass screenings
are performed.

With these changes, the final model formula is given by Equations (3) and (4).

∆yt = Π1yt−1 + Γ1,1∆yt−1 + . . . + Γ1,p−1∆yt−p+1 + φ1dt + ut

= α1β′1yt−1 + Γ1,1∆yt−1 + . . . + Γ1,p−1∆yt−p+1 + φ1dt + ut for t ≤ T1
(3)
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and

∆yt = Π2yt−1 + Γ2,1∆yt−1 + . . . + Γ2,p−1∆yt−p+1 + φ2dt + ut

= α2β′2yt−1 + Γ2,1∆yt−1 + . . . + Γ2,p−1∆yt−p+1 + φ2dt + ut for t > T1
(4)

Once the model is defined, there is only one parameter to decide, the regression order
p, that is, the number of lags of each of the series in the equation. For the decision of this pa-
rameter and given the ease of calculating this model, a cross-validation procedure is carried
out with different p, taking the order p with the smallest mean absolute percentage error.

3.2. Application to the Case Study

To assemble the model, we proceed as described in the previous section.
A logarithmic transformation is applied to the data and the two-to-two cointegration

of the series under study is checked with the Engle and Granger [26] procedure and the
Phillips–Ouliaris test [26]. Both tests work with the null hypothesis of non-existence of
cointegration and the p-values of series two by two are shown in Table 7.

Table 7. Cointegration tests for Madrid series.

Test Combination p-Value

Phillips–Ouliaris confirmed–hosp <0.01
Engle and Granger confirmed–hosp <0.01
Phillips–Ouliaris confirmed–icu <0.01

Engle and Granger confirmed–icu <0.01
Phillips–Ouliaris confirmed–deaths <0.01

Engle and Granger confirmed–deaths <0.01
Phillips–Ouliaris hosp–icu <0.01

Engle and Granger hosp–icu <0.01
Phillips–Ouliaris hosp–deaths <0.01

Engle and Granger hosp–deaths <0.01
Phillips–Ouliaris icu–deaths <0.01

Engle and Granger icu–deaths <0.01

The cointegration relationship shows us that there is a long-term equilibrium between
the series. Another present relationship between these is the regressive part. In order to
confirm it, a cross-correlation study was carried out among the series of ICU, hospitalized
and deaths against the series of confirmed patients. To avoid spurious correlations, a
differentiation process is carried out, to transform these into stationary series individually,
applying the logarithm and differentiating once.

It is observed in Figure 7a that there are important shifts of the series in the confirmed
series (as well as between all of them, outside the scope of this article) indicated by entering
the rejection region of the test for correlation 0.

To obtain the optimal order for all of them simultaneously, the auto-regressive order p
is optimized, obtaining in this case that the optimal p is 9.

To ensure the adequacy of the model, the independence of the errors is checked. The
p-values for the augmented Dickey–Fuller test [26] and the Phillips–Perron test [26] are
included in the auto-correlation graph of the residuals in Figure 7b.

No pattern is observed in the auto-correlation graph of the residuals in Figure 7b, and
the p-values of the tests allow us to reject the hypothesis of the presence of a unit root,
which is why it is concluded that the errors are stationary.

Another good check in the case study is to see how the peak of the wave is predicted.
To this end, Figure 7c presents the current date on the x-axis and the peak date on the y-axis.
The black line represents the maximum value of the series up to the real date, while the
blue line represents the date of the peak predicted by the model.
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(a) CCF of ICU, hospitalized and deaths versus confirmed series

(b) ACF of confirmed model residuals

(c) Peak prediction of the second wave in Madrid

Figure 7. Second Wave in Madrid.
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It can be observed in the graph that, while in the first half of July the peak was
predicted in mid-August, in the second half of July the prediction of the peak rises sharply
until mid-September, remaining stable in this prediction until the actual date of the peak
(18 September 2020).

In addition, it is appreciated that the model is capable of detecting when the peak has
passed. This is observed in Figure 7c by noticing how from the real date of the peak (18
September 2020) the model predicts the peak to pass.

To check the adequacy of the model for prediction, error metrics are calculated [27]
using cross-validation techniques [28] for fitted and forecast value and presented for
frequency (Table 8) and cumulative data (Table 9).

Finally, the results of applying the impulse response function with two different
histories are presented. The first represents the data from the beginning of the pandemic
to before the second wave. The second represents the data from the beginning of the
pandemic to before the third wave. This graph can be observed in Figure 8a.

In this figure, the maximum influence and the moment at which its effects decrease
can be observed, the curves being less pronounced.

Table 8. Metrics of error correction model for punctual data.

Metric Train Test

MAPE 28.5
MPE 8.76
R2 0.949 0.798

Table 9. Metrics of the error correction model for cumulative data.

Metric Train Test

MAPE 14.5856 3.3848
MPE 11.1601 1.6564
R2 0.9998 0.9913

It should be noted that, initially, this model was not developed for the prediction of
confirmed cases, but rather for the prediction of the other three series that depend closely
on it. Despite this, the model works really well with this series, but it works better in the
inpatient series.

The implementation of the model allows quick execution of the fit and forecast for all
the Autonomous Communities (Figure 8b).

For the comparisons between models, we considered the following extension of the
SIR model proposed by Castro et al. [10] and an automatic implementation of ARIMA
forecast model by Hyndman and Khandakar [29]. We chose the SCIR model because it
incorporates the compartment of the deaths into its definition and is formulated through
only five parameters. Different extensions of SIR models can be found in [30,31]. The
automatic ARIMA forecast model was chosen due to its widespread use in time series
forecasting. Some example can be found in [32,33].
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(a) IRF

(b) Adjusted graph for each Region

Figure 8. IRF and adjusted graph for each Region.
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4. SCIR Model: A SIR Model with Confinement

The SCIR model includes the usual states of an SIR model plus a class C for individuals
sent to confinement who are susceptible, but not infected. Susceptible individuals (S) can
enter and exit confinement (C) or become infected (I). Infected individuals can recover (R)
or die (D). Figure 9b shows the diagram of the equations of the SCIR model.

For the optimization of the parameters, we included in the objective function an
accuracy measure that combines the determination coefficients of the fits of both the cases
and the deaths.

In the next section, the comparison between the three models is illustrated with the
second wave for the Region of Madrid.

(a)

(b)

Figure 9. Expert system and SCIR diagram. (a) Expert system graphical interface. (b) Diagram of the SCIR model [10].

5. Automatic SARIMA Model

The procedure followed to apply the ARIMA automatic adjustment method given
in [29] is:
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• Automatic model adjustment, with the selection of the model’s hyper-parameters
(p, d, q)(P, D, Q) and a Box–Cox transformation [34] with parameter λ.
The result of this step in the data is the model with: p = 1, d = 1, q = 2, P = 0, D = 1,
Q = 1 and λ = 0.2086024.
The following model equation was chosen:

(1− φ1 B) (1− B) (1− B7)yt = (1 + θ1 B+θ2 B2) (1 + Θ1 B7) (1 + B7)εt

where B is the backshift operator.
• In the validation phase, the regression parameters are recalculated with these same

hyper-parameters.

6. Other Models

To verify the contribution of the two models developed, other algorithms such as
neural networks [35] and machine learning algorithms qwew tested. To present some of
the results, the predictions are shown in Figure 10. The same dates for the implementation
of random forest and xgboost with a direct forecasting strategy are presented [36].

Figure 10. ML models example.
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In [37], a deep long short-term memory network is used very successfully for financial
time series forecasting. We tried to apply this neural network to our problem, but the result
is not satisfactory. This is undoubtedly due to the fact that the number of samples of each
of the waves is very insufficient for the training of a deep learning network.

7. Comparisons

Figures 11 and 12 show the fit and 14-day forecasts with the three models for the
time interval corresponding to the second wave for eight different endings of the historical
time series (all of them starting on June, 24th), respectively, for the cumulative and non-
cumulative absolute frequencies of the cases.

Figure 11. (Top) Cumulative cases adjustment. (Bottom) Cumulative cases forecast at 14 days.



Mathematics 2021, 9, 1485 26 of 34

Figure 12. (Top) Non-cumulative cases adjustment. (Bottom) Non-cumulative cases forecast at
14 days.

Figure 13 shows the corresponding box-plots for the metrics values obtained with the
three models. The means of the metrics are shown in Tables 10 and 11. The individual
values for the eight different data histories are shown in Tables 12–15. In general, it is noted
that our two proposed MATGEN models improve the metric values obtained with the
SCIR model in both fitting and forecast.
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Table 10. Mean of the metrics values for cumulative data. Error Correction Model (ECM) and
Non-Linear Regression Model (NLRM).

Model Type ME RMSE MAE MPE MAPE R2

1 Auto ARIMA adjusted −1248.54 1728.10 1269.68 −7.85 8.59 1.00
2 Auto ARIMA prediction −1112.81 6833.94 4632.59 −1.40 3.81 0.99
3 ECM (MATGEN) adjusted 81.20 1345.88 894.42 −0.81 5.09 1.00
4 ECM (MATGEN) prediction −19.95 6932.53 4867.94 1.44 4.06 0.99
5 NLRM (MATGEN) adjusted 1348.81 2443.29 1790.66 16.39 17.37 1.00
6 NLRM (MATGEN) prediction 2073.89 7198.78 5863.88 2.44 4.85 0.99
7 SIR adjusted −6007.57 8953.81 6686.95 −17,728.71 17,734.67 0.99
8 SIR prediction −6714.01 8943.46 7271.55 −6.84 7.61 0.99

Table 11. Mean of the metrics values for non-cumulative data. Error Correction Model (ECM) and
Non-Linear Regression Model (NLRM).

Model Type ME RMSE MAE MPE MAPE R2

1 Auto ARIMA adjusted −28.51 340.40 219.37 −4.26 21.07 0.96
2 Auto ARIMA prediction 283.29 1376.83 891.92 −28.59 56.27 0.71
3 ECM (MATGEN) adjusted −14.78 402.27 250.27 −0.67 17.67 0.94
4 ECM (MATGEN) prediction 186.95 1133.20 853.33 −11.54 39.33 0.74
5 NLRM (MATGEN) adjusted 6.32 1052.47 766.99 9.02 48.03 0.58
6 NLRM (MATGEN) prediction 110.35 1785.72 1506.44 −36.81 80.40 0.28
7 SIR adjusted −62.88 1073.00 779.05 −13,852.97 13,888.64 0.57
8 SIR prediction −402.71 1789.38 1595.02 −18.22 61.42 0.24

Table 12. Metrics’ values for the adjustment of the cumulative data. Error Correction Model (ECM)
and Non-Linear Regression Model (NLRM).

Set Model ME RMSE MAE MPE MAPE R2

1 Auto ARIMA −485.88 700.55 486.71 −12.34 13.81 0.99
1 ECM (MATGEN) 168.90 400.31 289.59 −2.18 8.24 1.00
1 NLRM (MATGEN) 1260.45 1551.80 1291.45 33.55 33.70 0.94
1 SIR −1522.24 1823.16 1522.24 −46,288.96 46,288.96 0.92
2 Auto ARIMA −858.09 1201.04 858.72 −10.84 11.95 0.99
2 ECM (MATGEN) 253.20 477.60 349.93 −1.96 6.66 1.00
2 NLRM (MATGEN) 764.84 1255.90 1035.12 22.35 23.21 0.99
2 SIR 2212.52 2870.74 2220.49 −12,599.75 12,637.41 0.96
3 Auto ARIMA −978.93 1323.82 979.50 −10.20 11.21 1.00
3 ECM (MATGEN) 302.09 519.49 392.29 −1.71 6.24 1.00
3 NLRM (MATGEN) 589.18 1511.35 1251.04 20.61 22.35 0.99
3 SIR 1628.68 2289.74 1736.60 −11,456.21 11,487.04 0.99
4 Auto ARIMA −1088.73 1470.23 1089.27 −9.91 10.87 1.00
4 ECM (MATGEN) 389.35 627.22 473.02 −1.26 6.09 1.00
4 NLRM (MATGEN) 642.38 1498.33 1246.00 19.55 21.10 1.00
4 SIR −3325.18 3955.14 3325.18 −31,652.14 31,652.14 0.97
5 Auto ARIMA −1375.22 1860.10 1375.71 −9.32 10.18 1.00
5 ECM (MATGEN) 522.39 850.41 642.24 −0.55 5.82 1.00
5 NLRM (MATGEN) 508.56 1823.34 1392.07 16.28 18.56 1.00
5 SIR −3793.62 4639.00 3817.71 −28,582.67 28,582.70 0.98
6 Auto ARIMA −1530.03 2051.45 1530.49 −9.01 9.81 1.00
6 ECM (MATGEN) 436.65 910.16 696.56 −0.52 5.60 1.00
6 NLRM (MATGEN) 616.64 1643.56 1324.56 17.57 18.93 1.00
6 SIR −6159.50 7507.13 6159.50 −22,241.48 22,241.48 0.95
7 Auto ARIMA −1630.21 2043.77 1630.49 −5.87 6.36 1.00
7 ECM (MATGEN) 39.24 1406.28 1048.43 −0.30 3.92 1.00
7 NLRM (MATGEN) 2051.99 3257.69 2473.12 11.33 12.01 1.00
7 SIR −11,425.65 13,086.26 11,425.65 −13,595.76 13,595.76 0.98



Mathematics 2021, 9, 1485 28 of 34

Table 12. Cont.

Set Model ME RMSE MAE MPE MAPE R2

8 Auto ARIMA −1257.97 1796.90 1340.12 −4.42 4.82 1.00
8 ECM (MATGEN) −513.38 2151.91 1649.35 −0.21 3.33 1.00
8 NLRM (MATGEN) 2271.70 3192.56 2437.28 10.69 10.92 1.00
8 SIR −10,433.77 11,931.45 10,433.77 −5642.22 5642.22 0.99

Table 13. Metrics values for the forecast of cumulative data. Error Correction Model (ECM) and
Non-Linear Regression Model (NLRM).

Set Model ME RMSE MAE MPE MAPE R2

1 Auto ARIMA 742.27 2607.38 1972.18 0.22 4.40 0.95
1 ECM (MATGEN) 8078.15 10,443.86 8078.15 13.90 13.90 0.22
1 NLRM (MATGEN) −1722.69 2601.55 2217.13 −3.68 5.64 0.95
1 SIR −8332.40 9505.03 8332.40 −24.04 24.04 0.35
2 Auto ARIMA −361.36 1250.37 1059.50 −0.85 1.61 0.99
2 ECM (MATGEN) 1986.20 2158.57 1986.20 2.48 2.48 0.98
2 NLRM (MATGEN) 9290.25 10,806.19 9418.25 10.11 10.34 0.47
2 SIR 1505.19 2685.56 2262.73 2.22 3.08.62 8.62
3 Auto ARIMA −7682.18 8583.72 7682.18 −8.62 8.62 0.74
3 ECM (MATGEN) −3316.37 4683.55 3621.03 −3.27 3.70 0.92
3 NLRM (MATGEN) 6570.61 7325.77 6570.61 6.34 6.34 0.81
3 SIR −2875.42 4134.21 3236.74 −2.89 3.34 0.94
4 Auto ARIMA −4195.20 4234.32 4195.20 −4.23 4.23 0.95
4 ECM (MATGEN) −2057.25 2967.20 2111.82 −1.75 1.81 0.98
4 NLRM (MATGEN) 5299.33 5672.03 5299.33 4.95 4.95 0.92
4 SIR −4942.52 6137.30 5013.43 −4.62 4.71 0.90
5 Auto ARIMA 3244.98 8616.59 6127.89 1.44 4.07 0.80
5 ECM (MATGEN) 1976.52 4041.05 2769.67 1.12 1.82 0.96
5 NLRM (MATGEN) 4409.42 4942.49 4543.91 3.19 3.29 0.93
5 SIR −5467.07 5976.66 5467.07 −4.22 4.22 0.90
6 Auto ARIMA 6351.74 11,367.51 8513.56 3.24 4.95 0.51
6 ECM (MATGEN) 6700.05 9047.66 6849.74 3.84 3.96 0.69
6 NLRM (MATGEN) 5235.72 6889.86 5807.06 3.09 3.53 0.82
6 SIR −16,797.09 17,040.06 16,797.09 −12.63 12.63 −0.09
7 Auto ARIMA −708.88 1054.81 868.51 −0.28 0.34 0.98
7 ECM (MATGEN) −3022.85 3068.54 3022.85 −1.21 1.21 0.83
7 NLRM (MATGEN) −4102.31 5676.48 4633.04 −1.64 1.86 0.41
7 SIR −8786.20 8826.30 8786.20 −3.63 3.63 −0.42
8 Auto ARIMA −6293.84 8310.95 6641.69 −2.13 2.25 −0.09
8 ECM (MATGEN) −10,504.03 11,506.51 10,504.03 −3.61 3.61 −1.09
8 NLRM (MATGEN) −8389.22 10,053.77 8421.72 −2.86 2.87 −0.60
8 SIR −9156.26 9312.66 9156.26 −3.21 3.21 −4.44

Table 14. Metrics values for the adjustment of the cumulative data. Error Correction Model (ECM)
and Non-Linear Regression Model (NLRM).

Set Model ME RMSE MAE MPE MAPE R2

1 Auto ARIMA −36.55 200.52 117.06 −7.82 25.31 0.92
1 ECM (MATGEN) 20.56 171.19 95.72 0.99 16.63 0.94
1 NLRM (MATGEN) 4.78 435.54 298.20 20.66 47.93 0.64
1 SIR −74.26 434.98 300.27 −34,245.49 34,267.18 0.64
2 Auto ARIMA −49.77 288.63 179.84 −5.37 23.94 0.94
2 ECM (MATGEN) 14.12 326.32 181.57 0.53 17.40 0.93
2 NLRM (MATGEN) 4.27 702.71 483.61 13.99 46.54 0.66
2 SIR 32.40 721.61 505.11 −12,598.90 12,658.23 0.64
3 Auto ARIMA −44.57 295.50 188.00 −4.45 22.92 0.95
3 ECM (MATGEN) 10.46 323.84 194.94 0.15 18.09 0.94
3 NLRM (MATGEN) 46.30 868.08 605.99 13.91 48.45 0.56
3 SIR 24.38 843.97 604.11 −11,454.88 11,513.44 0.58
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Table 14. Cont.

Set Model ME RMSE MAE MPE MAPE R2

4 Auto ARIMA −58.22 297.94 194.23 −4.64 22.15 0.96
4 ECM (MATGEN) 1.37 351.12 212.71 0.07 17.86 0.94
4 NLRM (MATGEN) 5.11 863.13 606.81 12.21 46.72 0.65
4 SIR −85.49 874.68 640.00 −23,183.48 23,209.36 0.64
5 Auto ARIMA −65.79 295.95 196.90 −4.30 20.50 0.97
5 ECM (MATGEN) −23.47 401.64 250.76 −0.22 17.71 0.94
5 NLRM (MATGEN) 3.02 1021.29 731.38 10.00 46.99 0.64
5 SIR −93.38 1044.13 769.12 −20,880.91 20,908.29 0.63
6 Auto ARIMA −58.64 288.40 191.54 −3.86 19.56 0.97
6 ECM (MATGEN) −30.64 427.64 268.51 −0.25 17.56 0.94
6 NLRM (MATGEN) 2.15 1071.60 798.41 11.13 47.70 0.63
6 SIR −122.06 1169.80 856.83 −16,662.54 16,688.03 0.56
7 Auto ARIMA −0.20 405.01 268.60 −3.44 19.76 0.95
7 ECM (MATGEN) −27.63 476.34 319.69 −1.37 17.78 0.93
7 NLRM (MATGEN) 1.68 1276.71 1001.69 4.26 48.29 0.50
7 SIR −101.72 1314.40 1011.77 −10,167.64 10,199.50 0.47
8 Auto ARIMA 6.03 396.20 264.21 −3.59 19.91 0.94
8 ECM (MATGEN) −27.85 436.26 285.29 −1.90 17.74 0.93
8 NLRM (MATGEN) 0.17 1192.96 921.71 3.67 49.28 0.47
8 SIR −45.29 1183.58 899.62 −4958.01 4995.86 0.48

Table 15. Metrics values for the forecast of the non-cumulative data. Error Correction Model (ECM)
and Non-Linear Regression Model (NLRM).

Set Model ME RMSE MAE MPE MAPE R2

1 Auto ARIMA 516.72 770.60 656.07 22.21 26.73 0.71
1 ECM (MATGEN) 1292.29 1665.30 1313.82 33.28 33.97 −0.35
1 NLRM (MATGEN) −123.29 1393.85 1317.77 −6.65 58.84 0.05
1 SIR −778.54 1584.90 1359.83 −48.49 84.86 −0.23
2 Auto ARIMA 236.05 312.25 278.05 10.58 11.38 0.97
2 ECM (MATGEN) 137.44 442.86 379.73 4.20 13.92 0.94
2 NLRM (MATGEN) 1003.11 1887.68 1462.84 23.83 34.71 −0.00
2 SIR −385.05 1766.60 1666.21 −11.23 54.82 0.12
3 Auto ARIMA −848.62 1028.91 848.62 −27.42 27.42 0.70
3 ECM (MATGEN) −629.06 1028.97 750.27 −22.44 26.12 0.70
3 NLRM (MATGEN) 476.07 1845.24 1564.23 11.08 35.72 0.05
3 SIR −661.61 1912.08 1765.00 −20.45 55.07 −0.02
4 Auto ARIMA −51.16 298.94 213.27 0.66 6.42 0.98
4 ECM (MATGEN) −427.13 902.31 636.70 −11.87 18.96 0.84
4 NLRM (MATGEN) 282.85 2087.31 1943.95 7.62 45.32 0.13
4 SIR −388.76 2141.24 2020.72 −9.83 55.55 0.09
5 Auto ARIMA 1664.09 2240.33 1664.09 28.02 28.02 −0.07
5 ECM (MATGEN) 738.73 1046.20 912.73 17.54 21.55 0.77
5 NLRM (MATGEN) 459.34 2123.00 1908.62 10.57 43.08 0.04
5 SIR 49.68 2084.13 1929.12 1.33 48.04 0.07
6 Auto ARIMA 2005.82 2518.26 2005.82 35.48 35.48 −0.43
6 ECM (MATGEN) 1372.00 1633.92 1459.07 28.89 30.13 0.40
6 NLRM (MATGEN) 695.40 2054.18 1639.29 15.35 35.80 0.05
6 SIR −753.06 2119.06 1943.78 −23.21 61.44 −0.01
7 Auto ARIMA −126.86 317.46 239.17 −12.89 20.96 0.87
7 ECM (MATGEN) −17.64 459.68 295.66 1.56 17.84 0.72
7 NLRM (MATGEN) −702.71 1138.53 967.96 −104.96 132.27 −0.71
7 SIR 223.08 897.94 822.94 12.09 47.43 −0.06
8 Auto ARIMA −1129.68 1365.44 1230.28 −285.34 293.76 −1.42
8 ECM (MATGEN) −971.04 1206.39 1078.69 −143.49 152.12 −0.89
8 NLRM (MATGEN) −1207.97 1489.81 1246.88 −251.29 257.50 −1.88
8 SIR −636.58 1066.63 952.83 −70.27 104.03 −0.39



Mathematics 2021, 9, 1485 30 of 34

Figure 13. (Left) Cumulative cases metric comparisons. (Right) Non-cumulative cases metric
comparisons.

Figure 14 shows the monitoring of the peak detection achieved with the three models.
The model that best detects the peak is the non-linear regression model.
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Figure 14. Peak prediction comparisons.

8. Conclusions

A non-linear regression model for count data in time series is developed and im-
plemented by means of an expert system of artificial intelligence. It is based on directly
estimating the distribution function of each of the series under study and on the duality
between the distribution function and the density function. Since those two functions fully
characterize the probability distribution of a variable, our model is able to capture the main
characteristics of epidemic outbreaks. The simplicity of MATGEN must also be noted, since
it is formulated only through four parameters: µ, σle f t, σright and n. The monitoring of all
model parameters makes it possible to easily quantify and detect the effect of interventions
over time. Furthermore, the machine learning algorithm developed is scalable, allows
parallel running of different data series and is capable of introducing new data in real time.

We apply this model to the COVID-19 series of the Region of Madrid (Spain) during
the first and second waves to give an eight-day forecast for the Spanish Mathematical
Initiative [16]. This theoretical framework allows us to detect pandemic peaks and make
short- and long-term monitoring and forecasting of the number of people infected, people
requiring hospitalization and deaths. This expert system proves very useful to estimate the
effectiveness of the interventions prompted by the government, which seems to have an
impact after 11 days of its implementation during the first wave. Moreover, it is useful to
propose commitment dates to lift the mobility restrictions and to advise on how to proceed
in future outbreaks. On May 25, the Region of Madrid entered Phase 1 of the de-escalation.
The MATGEN update on May 11 showed commitment dates between May 19 and June 5
(with a forecast of 72,200, 9000 and 4000 for the total numbers of confirmed cases, deaths
and ICUs at the end of the pandemic, respectively).
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The flexibility of our theoretical framework allows us to fit different regression func-
tions (Gaussian, Gompertz, double Pareto, double exponential and uniform) between
different dates. During the first wave, the series of new cases per day and deaths in the
Region of Madrid only needed one cutoff and normal models in each part. The ICU series
adjustment was more difficult: three cutoffs and different models in a wide family of
probability distributions were needed. The computational cost of the last situation is higher
than that of the first. In this case, the algorithm needed to detect the appropriate number
of cutoffs and tried all the possible combinations of the models belonging to the family
considered.

At present, in order to provide 14-day forecasts for the Spanish Mathematical Ini-
tiative [16], we implement another MATGEN model based on error correction models,
useful for estimating both short- and long-term effects of one time series on another. This
model is based on the cointegration of the four series in the study, namely cases, deaths,
hospitalizations and ICUs, and it was incorporated into the expert system too.

Finally, the comparison from different points of view of our two models with the SCIR
model [10] yields the following conclusions:

• Among the advantages of using the SCIR model, we can highlight its simplicity,
since it is formulated using five parameters and the interpretability of them from an
epidemiological point of view.

• The MATGEN non-linear regression model (formulated with four parameters per
series that are easy to monitor) is the most explanatory for studying the peak detection
and the effect of interventions. In addition, it is equipped with a control procedure
that allows detecting trend changes in the tails that indicate the start of a new wave.
Unlike the two other models, the fit of the four series is in parallel.

• The MATGEN error correction model depends on a greater number of parameters but
allows us to approximate the four series simultaneously, and it is the best in all the
metrics, both in fit and in forecast. In addition, this model incorporates the impulse
response function, a method that allows making inference about the impact of one
series on the remaining ones.

Therefore, MATGEN combines our two proposed models in one expert system as a
new epidemiological tool that can be proved extremely useful in new COVID-19 outbreaks
and future epidemics of infectious diseases.
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