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Abstract: Fractional-order time and space derivatives are one way to augment the classical diffusion
equation so that it accounts for the non-Gaussian processes often observed in heterogeneous materials.
Two-dimensional phase diagrams—plots whose axes represent the fractional derivative order—
typically display: (i) points corresponding to distinct diffusion propagators (Gaussian, Cauchy),
(ii) lines along which specific stochastic models apply (Lévy process, subordinated Brownian motion),
and (iii) regions of super- and sub-diffusion where the mean squared displacement grows faster or
slower than a linear function of diffusion time (i.e., anomalous diffusion). Three-dimensional phase
cubes are a convenient way to classify models of anomalous diffusion (continuous time random walk,
fractional motion, fractal derivative). Specifically, each type of fractional derivative when combined
with an assumed power law behavior in the diffusion coefficient renders a characteristic picture of
the underlying particle motion. The corresponding phase diagrams, like pages in a sketch book,
provide a portfolio of representations of anomalous diffusion. The anomalous diffusion phase cube
employs lines of super-diffusion (Lévy process), sub-diffusion (subordinated Brownian motion), and
quasi-Gaussian behavior to stitch together equivalent regions.

Keywords: anomalous diffusion; Brownian motion; complexity; fractal; fractional derivative; fractal
derivative; mean squared displacement; sub-diffusion; super-diffusion

1. Introduction

Fractional calculus (non-integer order integration and differentiation) extends the local,
memory-free concepts of Newton and Leibniz [1,2], but this growth entails a mosaic of non-
integer derivatives whose diverse properties can overwhelm new users. Given the long
history and distinguished pedigree of fractional calculus [3,4], one would think that by now
it would have an established niche in mathematical physics (as have generalized functions
and pseudo-differential operators [5]). Nevertheless, while widely used in electrochemistry,
viscoelasticity, dielectric relaxation and anomalous diffusion, the tools of fractional calculus
are often overlooked. This paradox suggests that we search for new ways to introduce the
multiple forms of fractional-order derivatives (Grünwald–Letnikov, Riemann–Liouville,
Caputo, Riesz–Weyl, etc.) to new investigators seeking to apply fractional calculus in
their research.

In the field of magnetic resonance imaging (MRI), this question can be focused on
the Bloch–Torrey equation [6], and on the selection of the proper fractional-order tools for
generalizing relaxation and diffusion phenomena that occur in complex biological tissues.
Incorporation of a fractional time derivative into a first order relaxation equation yields
a single parameter Mittag–Leffler function that enhances the integer-order exponential
decay model [7], while employing a fractional space derivative in the classical diffusion
equation provides a stretched exponential solution that expands the Gaussian model to one
of Lévy motion [8]. Selection of a particular fractional derivative for each case is based on
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anticipating how material composition, heterogeneity and, in some cases, fractal structure
might be incorporated into the analysis [9,10].

What can guide the researcher in choosing one fractional derivative over another?
When should the material parameters in the models be constants or functions of position
and time? Why use only a linear model? These questions quickly take us beyond the
scope of the current paper but provide context for this investigation. Specifically, here
we will examine fractional-order models that generalize the classical Gaussian solution to
the diffusion equation as it is encountered in MRI. The goal is not to apply a particular
model to a given set of data, but to compare and contrast different models (e.g., integer-
order, fractional-order; linear, non-linear; constant diffusion coefficients, variable diffusion
coefficients). The comparison tool we have chosen will be a scaling analysis of the governing
one-dimensional diffusion equation. We will illustrate the results using a phase diagram
as a means of classifying the time-dependence of the mean-squared displacement of the
underlying random motion. We will illustrate the behavior of each model by presenting the
phase diagram as an orthogonal slice of a three-dimensional anomalous diffusion phase
cube. Lines of super-diffusion (Lévy process) and sub-diffusion (subordinated Brownian
motion, fractional Brownian motion, etc.) for each two-dimensional phase diagram will
be seen to link different diffusion models—displaying corresponding regions of sub- and
super-diffusion.

2. Background

There are now available more than one hundred books on fractional calculus, each de-
scribing specific aspects of the formulation, properties and applications of fractional deriva-
tives in physics, chemistry, biology, and engineering (https://mechatronics.ucmerced.edu/
fcbooks) (accessed on 20 May 2021). An annotated bibliography of books that we have
found useful can be found in Chapter XII of the book, Fractional Calculus in Bioengineer-
ing [4]. In addition, for reference, the definitions and basic properties of the fractional
operators used in this paper are listed in the Supplementary Materials (Tables S1 and S2)
of this paper. These tables and Appendices A and B of this paper should help researchers
who are not familiar with specific properties of different forms of fractional integration
and differentiation.

In addition, it is an inconvenient truth that the Greek letters often used in fractional
calculus to indicate, non-integer, fractional-order operations (α, β, γ, . . . ) are not applied
in a consistent manner for time and space derivatives but shift with the author’s preference
and historical precedent. Since Jeremy Bentham’s ‘calculus of felicity’ (https://plato.
stanford.edu/entries/) (accessed on 20 May 2021) is not part of fractional calculus, the
operator notation in fractional calculus was not formulated to keep all users happy; hence,
we must be ever wary of the local terminology. It should also be kept in mind that
interchanging operations between fractional and integer-order calculus should be viewed
with suspicion; one should not mix the tools and notation together any more carelessly than
trying to assemble a motor using parts with both metric and British Standard Whitworth
threads [11]. Consequently, in the results below we will employ a restricted set of fractional
derivatives and identify the local notation in a consistent manner for each case.

3. Results

In this section two groups of fractional order diffusion equations, Sections 3.1 and 3.2,
are considered where β, denotes the order of the fractional time derivative, and α, indicates
the order of the fractional space derivative. In the first group, Section 3.1, Table 1, we
assume a linear diffusion equation with a diffusion coefficient that is a power law function
of time, Dβ,α,ν(tν), where |ν| < 1. The general solution for each of these equations can be
expressed in terms of the Fox, H-function [10], and its Fourier transform has been used to
model diffusion studies in MRI [12]. In the second group, Section 3.2, Table 2, we assume
both linear and non-linear fractional order models of diffusion with a diffusion coefficient
that is a power law function of both space and time, Dβ,α,θ, ν(|x|−θtν), where θ > 0 and
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|ν| < 1. The general solution for this group is not available in a closed form and, only a
few special cases have been used in MRI. For both groups we use scaling principles [13] to
determine the mean squared displacement (MSD) for a multi-dimensional, Euclidean phase
space, {β, α, ν, θ, . . .}. Two-dimensional phase diagrams of each model are displayed, for
convenience, as a slice of a three-dimensional anomalous phase cube, e.g., {β, α, ν} or
{β, α, θ}. The MSD appears as a line of quasi-Gaussian behavior on the phase diagram
separating regions of sub- and super-diffusion.

Table 1. Anomalous diffusion with power law diffusion coefficient, Dβ,α,ν(tν).

β β = 1

α

FTS
D(tυ)

∂β P(x,t)
∂tβ =

Dβ,α,ν(tν)
∂α P(x,t)

∂xα

FS
D(tυ)

∂P(x,t)
∂t =

D1,α,ν(tν)
∂α P(x,t)

∂xα〈x2〉 ∼
t2(β+ν)/α

〈x2〉 ∼
t2(1+ν)/α

α = 2

FT
D(tυ)

∂β P(x,t)
∂tβ =

Dβ,2,ν(tν)
∂2P(x,t)

∂x2

Gaussian
D(tυ)

∂P(x,t)
∂t =

D1,2,ν(tν)
∂2P(x,t)

∂x2〈x2〉 ∼
tν+β

〈x2〉 ∼
t1+υ

In this table, α is the order of symmetric Riesz space derivative is (0 < α < 2), β is the order of the Caputo time
derivative (0 < β < 1), υ represents the power law behavior of the diffusion coefficient (−1 < υ < 1), and P(x,t) is
particle density. FTS is fractional time and space diffusion, FT is fractional time diffusion, and FS is fractional
space diffusion. Also, 〈x2〉, is the mean squared displacement, and Dβ,α,ν(tν) = Dβ,α,ν(1 + ν)tν with the units,
mmα/sυ+β.

Table 2. Anomalous diffusion with power law diffusion coefficient, Dβ,α,ν,θ,ρ(|x|−θ tν).

β β=1

ν = 0

FTS
D(|x|−θ)

∂β P(x,t)
∂tβ =

∂
∂x

(
Dβ,α,θ |x|−θ ∂α P(x,t)

∂|x|α
) NFS

D(|x|−θ)
∂P(x,t)

∂t =
∂

∂x

(
Dα,θ,ρ|x|−θ ∂α [P(x,t)]ρ

∂|x|α
)

〈x2〉 ∼
t

2β
(1+α+θ)

〈x2〉 ∼
t

1
(α+θ+ρ)

α = 1

FTD
D(|x|−θ tν)

∂β P(x,t)
∂tβ =

∂
∂x

(
Dβ,ν,θ |x|−θ tν ∂P(x,t)

∂x

) Gaussian
D(|x|−θ tν)

∂P(x,t)
∂t =

∂
∂x

(
Dν,θ |x|−θ tν ∂P(x,t)

∂x

)
〈x2〉 ∼
t

2(β+υ)
(2+θ)

〈x2〉 ∼
t

2(1+υ)
(2+θ)

In this table, FTS is fractional time and space diffusion with a power law space diffusion coefficient, NFS is
non-linear fractional space diffusion with a power law space diffusion coefficient, FTD is fractional time diffusion
with a power law space diffusion coefficient, and P(x,t) is the particle density. Also, 〈x2〉, is the mean squared
displacement, and Dβ,α,ν,θ,ρ has the units of mm(α+θ)/s(β+ν)Pρ−1.

In the first group of equations, Section 3.1, we describe linear fractional time and
space diffusion where the diffusion coefficient is assumed to vary as function of time,
Dβ,α,ν(tν). The first diffusion example (Section 3.1.1) describes the floor of the phase cube
as a two-dimensional phase diagram {α, β}, for fractional time and space derivatives with
a constant diffusion constant, Dβ,α, with dimensions, mmα/sβ. The next two cases describe
faces of the phase cube {β, α, ν} that intersect the fractional derivative floor along the line
β = 1 (fractional motion, Section 3.1.2), and along the line α = 2 (fractional Kilbas–Saigo
decay, Section 3.1.3). In both cases the diffusion coefficient varies with time as a power law.

In the second group of equations, Section 3.2, we describe linear fractional time
diffusion with linear and non-linear space diffusion of degree, {ρ}, where the diffusion
coefficient is assumed to vary as function of space and time, Dβ,α,θ, ν(|x|−θtν). The first
example (Section 3.2.1) is linear, ρ = 1, with ν = 0, and describes the phase cube {β, α, θ}.
The next example (Section 3.2.2) is a non-linear model of diffusion with a power law
space diffusion coefficient, D1,α,θ,ρ(|x|−θ), and describes the phase cube {α, θ, ρ}. The last
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example (Section 3.2.3) is a linear diffusion model with a fractional order time and an
integer order space derivative, and a diffusion coefficient that varies as a power law in both
space and time, Dβ,α,ν,θtν|x|−θ , so that corresponding to the phase polytope is a tesseract
{β, α, θ, ν}.

In the following, the diffusion equation will be described in terms of the particle
density, P(x,t), with the units of particles/mm3, where the particle can be a molecule a
microbe, or any object whose physical size is small compared to its surroundings.

3.1. Fractional Time and Space Derivatives with Power Law D(t)

Consider the one-dimensional fractional diffusion equation of P(x,t) that includes a
time-varying power law diffusion coefficient D(t) = Dβ,α,ν(1 + ν)tν with the Caputo time
and symmetric Riesz space derivatives:

∂βP(x, t)
∂tβ

= D(t)
∂αP(x, t)

∂|x|α
(1)

Here, the order of symmetric Riesz space derivative is α, (0 < α < 2), the order of
the Caputo time derivative is β, (0 < β < 1), and the Greek letter ν, (−1 < υ < 1) is
assigned to the assumed power law dependence of diffusion coefficient. The diffusion
coefficient in this case is a constant, Dβ,α,ν(1 + ν), multiplying tυ. The units of Dβ,α,ν are
mmα/sυ+β. The solution to Equation (1) for an initial value problem with a Dirac delta
function concentration of material at the origin of an unbounded domain, P(x, 0) = δ(x),
is given in Appendix A.2. The result can be written as an inverse Fourier transformation of
the Kilbas–Saigo function,

P(x, t) =
1(

Dβ,α,νtν+β
) 1

α

1
2π

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−
∣∣k′∣∣α)exp

 −ik′x(
Dβ,α,νtν+β

) 1
α

dk′. (2)

If we assume that Equation (2) can be written in the scaled form,

P(x, t) =
1
tξ

Pβ,α,ν

( x
tξ

)
(3)

with ξ = (ν + β)/α, [14–16], then the corresponding mean squared displacement (MSD) is:

〈x2〉 =
∫ ∞

−∞
P(x, t)x2dx = Iβ,α,νt2(υ+β)/α (4)

with Iβ,α,ν =
∫ ∞
−∞ z2 p(z)dz for z = x/tξ , where Iβ,α,ν may not exist for all values of β, α

and ν (See Appendix A.1 for details). Analyzing the time behavior of the mean squared
displacement in Equation (4) leads us to recognize sub-diffusion, normal diffusion, and
super-diffusion when: 2(υ + β) < α, 2(υ + β) = α, and 2(υ + β) > α, respectively. The
three fractional parameters of the anomalous phase cube {α, β, υ} describe: (i) Gaussian
diffusion with a power law D(tν), (ii) fractional time and space diffusion (FTS) with a power
law D(tν), (iii) fractional space diffusion (FS) with a power law D(tν), and (iv) fractional
time diffusion (FT) with a power law D(tν), models of anomalous diffusion—all subsumed
by Equation (1)—and displayed with the corresponding power law time-dependence of
the MSD in Table 1.

Equation (1) has three separate power law relationships, two (β, α) arising from the
CTRW model (inverse power law tails of waiting times, t−(1+β), 0 < β < 1, and jump
increments, |x|−(1+α), 0 < α < 2) [17], and one (ν) coming from the power-law time
behavior, D(tν), −1 < ν < 1 in the diffusion coefficient. An overview of regions of sub-
and super-diffusion is displayed in Figure 1 as slices of the {β, α, ν} phase cube. When
ν = 0 this is the fractional calculus model of anomalous diffusion, case (Section 3.1.1), when
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β = 1 it becomes the fractional motion model, case (Section 3.1.2), and when α = 2 it is the
fractional power law model, case (Section 3.1.3). Each case will be briefly described below.
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Figure 1. Three faces of the phase cube {β, α, ν} are shown in this figure. Each face corresponds to the
situation where one of the fractional parameters is fixed: {β, α, ν = 0} {β = 1, α, ν}, and {β, α = 2, ν}.
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3.1.1. Diffusion Equation with Fractional Time and Space Derivatives

The continuous time random walk (CTRW) model of anomalous diffusion is widely
used because it provides a direct connection between the statistical properties of particle
trapping and jump increments (inverse power laws) with the order of the time and space
fractional derivatives in the associated diffusion equation [17,18].

Consider the one-dimensional diffusion equation for the CTRW model of P(x,t) ex-
pressed in terms of fractional time and space derivatives:

∂βP(x, t)
∂tβ

= Dβ,α
∂αP(x, t)

∂|x|α
(5)

Here, the Greek letter β, (0 < β < 1), is used to designate the order of Caputo
fractional time derivative, while the Greek letter α, (0 < α < 2), is used to designate the
order of the symmetric Riesz fractional space derivative (both derivatives are defined in
Supplementary Tables S1 and S2). The diffusion coefficient in this case, Dβ,α, is a constant,
and has the units of mmα/sβ.

The solution to Equation (5) when all particles are initially concentrated at the origin of
an unbounded domain, P(x, 0) = δ(x), is a Fox, H-function [19,20], which can be written as:

P(x, t) =
1

tβ/α
Pβ,α

(
x

tβ/α

)
(6)

where for z = x/tβ/α we have,

Pβ,α,(z) =
1

αD1/α
α,β

H2,1
3,3

 |z|
D1/α

α,β

∣∣∣∣∣∣
(

1− 1
α , 1

α

) (
1− β

α , β
α

) (
1
2 , 1

2

)
(0, 1)

(
1− 1

α , 1
α

) (
1
2 , 1

2

) . (7)

The corresponding MSD is formally given by:

〈x2〉 = Iβ,αt2β/α (8)
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where Iβ,α =
∫ ∞
−∞ Pα,β(z)z2dz, with the understanding that the MSD does not exist for

the entire range of the fractional order parameters. Analyzing the behavior of the 〈x2〉 in
Equation (8) leads us to recognize sub-diffusion, normal diffusion, and super-diffusion
when: 2β < α, 2β = α, and 2β > α, respectively.

The Fourier transformation of Equation (6), p(k, t) can be expressed as a one-parameter
Mittag–Leffler function [20]:

p(k, t) = Eβ

(
−Dβ,α|k|αtβ

)
(9)

This solution, which is the characteristic function of the P(x,t), also describes the time
decay of each spatial frequency of the associated random motion. It yields particular cases
for selected values of the fractional derivatives: Gaussian (β = 1, α = 2), Lévy process
(β = 1, α), and subordinated Brownian motion for (β, α = 1). These special cases of
anomalous diffusion for the CTRW model are displayed in Figure 1 as a two-dimensional
{β, α} phase diagram. This phase diagram corresponds with the ν = 0 plane of the
anomalous phase cube {β, α, ν} in Figure 1.

3.1.2. Integer Time Derivative and Fractional Space Derivative with Power Law D(t)

This anomalous diffusion model was defined by Eliazar and Shlesinger as ‘fractional
motions’ [21]. It differs from the CRTW model by allowing persistence and anti-persistence
in the jump increments of particle motion. This behavior is incorporated into a modified
fractional diffusion equation by setting the order of the time derivative, β = 1, and
introducing a time-dependent diffusion coefficient, which is assumed to be a power law.
Eliazar and Shlesinger provide a complete description of this extended model of Brownian
motion in [21] where the rare extremes of large jumps is described as the Noah exponent
(α in our notation), while persistence, or anti-persistence of motion is characterized as the
Joseph exponent (ν in our notation). They also show its connection to Lévy motion and the
Hurst exponent (H). The utility of this diffusion model in MRI is illustrated by Fan and
Gao [22] and by Karaman et al. [23,24].

Consider the one-dimensional diffusion equation for the fractional motions model of
P(x,t) expressed in terms of the integer time derivative and fractional space derivative:

∂P(x, t)
∂t

= Dα,ν(1 + ν)tν ∂αP(x, t)
∂|x|α

(10)

Here, the Greek letter α, (0 < α < 2) is used to designate the order of the symmetric
Riesz fractional space derivative, while the Greek letter ν, (−1 < ν < 1) is the assumed
power law dependence of the time-dependent diffusion coefficient, Dα,ν(t). The diffusion
coefficient in this case includes a constant, Dα,ν(1 + ν) multiplying tν, where Dα,ν has the
units of mmα/s(1+ν).

The solution to Equation (10) for an initial concentration of material at the origin of an
unbounded domain is a fractional Lévy motion [21] can be written as:

P(x, t) =
1

t(1+ν)/α
Pα,ν

(
x

t(1+ν)/α

)
(11)

where for z = x/t2(1+ν)//α we have,

Pα,ν(z) =
1

αD1/α
α,ν

H1,1
2,2

 |z|
D1/α

α,ν

∣∣∣∣∣∣
(

1− 1
α , 1

α

) (
1
2 , 1

2

)
(0, 1)

(
1
2 , 1

2

) . (12)

The corresponding mean squared displacement is:

〈x2〉 = Iα,νt2(1+ν)/α, (13)
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with Iα,ν =
∫ ∞
−∞ Pα,ν(z)z2dz, with the understanding that the MSD does not exist for the

entire range of the fractional order parameters The Fourier transformation of Equation (11),
p(k, t) has a simple stretched exponential solution:

p(k, t) = exp
(
−Dα,ν|k|αt1+ν

)
. (14)

This solution describes the time decay of each spatial frequency component. It yields
particular cases for selected values of the fractional derivatives: Gaussian (α = 2, ν = 0),
Cauchy (α = 1, ν = 0), Levy process (α, ν = 0), and fractional Brownian motion for
(α = 2, ν). The governing diffusion equations for these cases are shown in the Supplemen-
tary Table S3.

Classification of this behavior in terms of sub- and super-diffusion in the {α, ν} plane
is displayed in Supplementary Table S4. The MSD is expressed in terms of the Hurst
fractal dimension (H) of the diffusion trajectory as 〈x2〉 = 2Dα,νt2H , with αH = 1 + ν. This
expression corresponds to quasi-diffusion (QD) when ν = αH − 1, H = 1

2 , super-diffusion
when 1/α < H < 1, and sub-diffusion when 0 < H < 1/α. This phase diagram corresponds
with the β = 1 plane on the back side of the anomalous phase cube {β, α, ν}, in Figure 1.

3.1.3. Fractional Time Derivative and Integer Space Derivative with Power Law D(t)

The fractional power law model complements the ‘fractional motions’ model by
assuming a fractional time derivative, β, 0 < β < 1, but with the order of the space
derivative, α = 2. In the context of the CTRW model, particle trapping is proscribed,
while jump increments must have a finite second moment. Introducing a time-dependent
diffusion coefficient provides an independent time-scaling parameter, one that has been
associated with fractal properties of the medium [fractal/fractional model]. A complete
description of this extended model of Brownian motion and its connection to CTRW motion
is provided by Gorenflo et al. in [7]. The utility of this diffusion model in MRI is illustrated
by Fan and Gao [22] and by Magin et al. [12].

Consider the one-dimensional diffusion equation of P(x,t) with a power law D(t)
expressed in terms of a fractional time and an integer space derivative:

∂βP(x, t)
∂tβ

= Dβ,ν(1 + ν)tν ∂2P(x, t)
∂x2 (15)

Here, the order of space derivative, α, is set to two, the order of the Caputo time
derivative is β, (0 < β < 1), and the Greek letter ν, (−1 < υ < 1) is assigned to the assumed
power law dependence of diffusion coefficient. The diffusion coefficient in this case is
a constant, Dβ,ν(1 + ν), multiplying tυ. The units of Dβ,ν are mm2/sυ+β. The solution,
P(x,t), for an initial concentration of material at the origin of an unbounded domain is a
Kilbas–Saigo function [10] (p. 21):

P(x, t) =
1

2π

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−|k|2Dβ,νtν+β

)
e−ikxdk. (16)

which may also be written as:

P(x, t) =
1

t
ν+β

2

Pβ,ν

(
x

t
ν+β

2

)
, (17)

with,

Pβ,ν(z) =
1

2πD1/2
β,ν

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−
∣∣k′∣∣2)exp

−ik′z
D1/2

β,ν

dk′. (18)
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The corresponding mean squared displacement is:

〈x2〉 = Iβ,νtυ+β (19)

with Iβ,ν =
∫ ∞
−∞ Pβ,ν(z)z2dz for z = x/t(ν+β)/2 with the understanding that the MSD does

not exist for the entire range of the fractional order parameters.
The Fourier transformation of Equation (17), p(k, t) is a Kilbas–Saigo function:

p(k, t) = Eβ,1+ α
β , α

β

(
−

2Dβ,ν

Γ(1 + β)
k2tυ+β

)
(20)

The Kilbas–Saigo function is a special form of the three parameter Mittag–Leffler
function [20] that includes the exponential (β = 1, υ = 0), stretched single parameter
Mittag–Leffer (0 < β < 1, υ = 0), and stretched exponential (β = 1,−1 < υ < 1)
functions as special cases. The governing diffusion equations for these cases are shown in
the Supplementary Table S5.

Classification of this behavior in terms of sub- and super-diffusion in the {β, ν} plane
is displayed in Figure 1. The mean squared diffusion for this model of anomalous diffusion
has a time dependence of the form tυ+β. This expression corresponds to quasi-diffusion
when υ + β = 1, super-diffusion when υ + β > 1, and sub-diffusion when υ + β < 1. This
phase diagram corresponds with the α = 2 plane on the right side of the anomalous phase
cube {α, β, υ} in Figure 1.

3.2. Fractional Time and Space Derivatives with Power Law D(x,t) and Non-Linear in P(x,t)

The classical derivation of the diffusion equation is a combination of a flux defined
as the negative gradient of particle concentration, J(x, t) = −D∂xP(x, t), where D is the
diffusion constant (mm2/s), with a continuity equation ∂tP(x, t) + ∂xP(x, t) = 0, which
yields the diffusion equation in one dimension: ∂tP(x, t) = ∂x(D∂xP(x, t)) [25]. Extending
this derivation using fractional calculus suggests—in addition to introducing fractional
operators for the time and space derivatives—that one might have reason to modify either
the flux or the continuity equation (or both) [26,27]. This approach also introduces the
notion of sequential fractional space derivatives [1,3], and the possibility of inserting a space
or time dependent diffusion coefficient in the definition of the diffusion coefficient [10], as
well as the possibility of a non-linear flux. Although the last step might seem arbitrary,
it is consistent with the porous media model of the diffusion equation [28], the extension
of diffusion from one to n dimensions [29], the characterization of diffusion across fractal
interfaces [30], and the description of porous materials in terms of fractal dimensions [31].
In this section we will investigate a linear/non-linear model that describes fractional
diffusion combined with an inverse power law time and space dependence diffusion
coefficient.

Consider the one-dimensional, non-linear, fractional diffusion equation of P(x,t) that
includes a time- and space-varying power law diffusion coefficient with the Caputo time
and symmetric Riesz space derivatives:

∂β

∂tβ
P(x, t) =

∂

∂x

{
D(x, t)

∂α

∂|x|α
[P(x, t)]ρ

}
(21)

Here, the order of symmetric Riesz space derivative is α, (0 < α < 1), the order of the
Caputo time derivative is β, (0 < β < 1), D(x, t) = Dβ,α,ν,θ,ρtυ|x|−θ [10], where |ν| < 1, θ
is a positive real number, while the Greek letter ρ, (ρ ≥ 1), is the degree of P(x, t), and
Dβ,α,ν,θ,ρ has the units of mm(α+θ)/s(β+ν)Pρ−1.

The general solution to Equation (21) for an initial value problem with a Dirac delta
function concentration of material at the origin of an unbounded domain, P(x, 0) = δ(x),
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is not available. If we assume that the normalized solution to Equation (21) can be written
in the scaled form:

p(x, t) =
1
tξ

P
( x

tξ

)
, (22)

then by the approach used in [32,33] we find (Appendix B.1), ξ = (β + ν)/(ρ + α + θ).
The corresponding mean squared displacement (MSD) is:

〈x2〉 = Iξ t2ξ (23)

where Iξ =
∫ ∞
−∞ z2 p(z)dz for z = x/tξ and with the understanding that the MSD does not

exist for the entire range of the fractional order parameters (see Appendix B.1 and [16]
(Chapter 16) for details).

Analyzing the time behavior of the mean squared displacement in Equation (23) leads
us to recognize sub-diffusion, normal diffusion, and super-diffusion when: 2ζ < 1, 2ζ = 1,
and 2ζ > 1, respectively. In Table 2 we display special cases of Equation (21) that will
be considered further: (i) linear anomalous diffusion with a power law, Dβ,α,θ(|x|−θ), in
Section 3.2.1, (ii) non-linear anomalous diffusion with a power law diffusion coefficient,
Dα,θ,ρ(|x|−θ), in Section 3.2.2, and (iii) linear anomalous diffusion with a time- and space-
varying diffusion coefficient, Dβ,ν,θ(tν|x|−θ), in Section 3.2.3.

3.2.1. Fractional Time and Space Derivatives with Power Law, D(x), and Linear in P(x,t)

Consider the one-dimensional fractional diffusion equation of P(x,t) that includes a
space-varying power law diffusion coefficient D(|x|−θ) with the Caputo time and symmet-
ric Riesz space derivatives:

∂βP(x, t)
∂tβ

=
∂

∂x

(
Dβ,α,θ |x|−θ ∂αP(x, t)

∂|x|α
)

(24)

The corresponding mean squared displacement is:

〈x2〉 = Iβ,α,θt2β/(1+α+θ) (25)

Here, the Greek letter, β, (0 < β < 1), is the order of the Caputo fractional time
derivative, and the Greek letter α, (0 < α < 1), is the order of the symmetric Riesz fractional
space derivative. The diffusion coefficient in this case, Dβ,α,θ , is a constant and has the
units of mm(α+θ)/sβ. The general solution to Equation (24) is not known. Solutions of this
equation for an initial concentration of material at the origin of an unbounded domain are
presented for specific cases in [10] and Appendix B.2.

For example, when α = β = 1, the integer order solution to Equation (24) is a stretched
exponential [34,35]:

p(x, t) =
Nθ

(t)
1

2+θ

exp

(
− |x|2+θ

(2 + θ)2Dθ(t)
1

2+θ

)
, with Nθ =

1

2Γ
(

3+θ
2+θ

)
[(2 + θ)2Dθ ]

1
2+θ

(26)

The corresponding mean squared displacement is:

〈x2〉 =
Γ
(

3
2+θ

)
Γ
(

1
2+θ

) [(2 + θ)2Dθt]
2

2+θ (27)

Both Equations (26) and (27) condense to the Gaussian case when θ = 0. When θ 6= 0,
the MSD displays sub- and super-diffusion for θ > 0, and for θ < 0, respectively.
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For the α = 1 case, when all particles are initially concentrated at the origin, P(x, 0) = δ(x),
the solution to Equation (24) in an unbounded domain is a Fox, H-function [36] (Appendix B.2),
which can be written as:

P(x, t) =
1

tβ/(2+θ)
Pβ,θ

(
x

tβ/(2+θ)

)
(28)

where,

Pβ,θ(z) = Mθ H20
12

 |z|[
Dβ,θ(2 + θ)2

]1/(2+θ)

∣∣∣∣∣∣∣
(

1− β
2+θ , β

2+θ

)(
1− β

2+θ , 1
2+θ

) ,
−(

0, 1
2+θ

)  (29)

with z = x/tβ/(2+θ), and,

Mθ =
2 + θ

2Γ
(

1
2+θ

)[
Dβ,θ(2 + θ)2

]1/(2+θ)
(30)

In the general case, this model fills the anomalous phase cube {β, α, θ} with regions of
sub- and super-diffusion that correspond to the situations where the exponent of the MSD,
2β/(1 + α + θ), is less than or greater than one. Classification of this behavior in terms of
sub- and super-diffusion is displayed in Figure 2.
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When θ = 0, the super-diffusion domain of the β = 1 plane merges with the fractional
diffusion model (Lévy motion), while also for θ = 0 the sub-diffusion domain of the
α = 1 plane merges with the fractional diffusion model (subordinated Brownian motion).
When α = β = 1, the vertical line, z = θ reflects the stretched exponential solution for
D(x) = Dθ |x|−θ , which is Gaussian for θ = 0, and exhibits sub-diffusion when θ is positive
and super-diffusion when θ is negative.

3.2.2. Integer Time Derivative with a Non-Linear Space Derivative and a Power Law
D(|x|−θ)

Diffusion in complex materials has been modeled using a non-linear version of the classical
diffusion equation (porous media equation) where P(x,t) is raised to a power, ρ [37–39]. In
this section we will outline the fractional order generalization of this non-linear model,
largely following the work described in [37,39], and in Chapter 6 of the book on fractional
diffusion equations and anomalous diffusion by Evangelista and Lenzi [10].

Consider the one-dimensional non-linear fractional diffusion equation for P(x,t) ex-
pressed in terms of the symmetric Riesz space derivative and a power law diffusion
coefficient D(|x|−θ):

∂

∂t
P(x, t) =

∂

∂x

{
Dα,θ,ρ|x|−θ ∂α

∂|x|α
[P(x, t)]ρ

}
(31)

The corresponding mean squared displacement is derived from a scaling argument in
Appendix B.3:

〈x2〉 = Iα,θ,ρt2/(θ+α+ρ), (32)

with Iα,θ,ρ =
∫ ∞
−∞ P(z)z2dz for z = x/t1/(θ+α+ρ), and with the understanding that the MSD

does not exist for the entire range of the fractional order parameters. Here the order of
the fractional space derivative, α is (0 < α < 1), θ is a positive real number, and the range
of the fractional power ρ is (−1 < ρ < 2). The diffusion constant, Dα,θ,ρ has the units
mm(α+θ)/sPρ−1.

Using the scaling argument in Appendix B.3, and expressing P(x, t) in terms of
z = x/tξ ′ with ξ ′ = 1/(θ + α + ρ), as:

P(x, t) =
1

tξ ′
Pξ ′

(
x

tξ ′

)
, (33)

it is possible to simplify Equation (31) as:

D|z|−θ dα

d|z|α
[
Pξ ′(z)

]ρ
= −ξ ′zPξ ′(z). (34)

For an initial concentration of material at the origin of an unbounded domain particu-
lar solutions to Equation (34) are [38]:

Pα,θ,ρ(z) = N
(

1− (ρ− 1)ξ ′

(2 + θ)ρDα,θ,ρ
|z|2+θ

) 1
ρ−1

(35)

For the case of α = 1, and

Pα,θ,ρ(z) = Ñ zδ(a + bz)ζ . (36)

in the case of α 6= 1, with

δ =
(α− 1)(1 + α + θ)

1 + 2α + θ
, ζ = − α(1− α)

1 + 2α + θ
, ρ =

1− α

2 + α + θ
. (37)
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whereN and Ñ are a normalization factors, and a and b are chosen such that Equation (36)
satisfies Equation (34). The parameter b is chosen ±1, depending on the behavior of the
solution. In fact, for a compact behavior, we have b = −1 and for a long-tailed behavior
b = 1. Note that the solutions shown for the non-linear case are given in terms of power
laws and may be related to the Levy distributions as discussed in [10,37–39].

In the general case, this model fills the anomalous phase cube {α, θ, ρ} with regions of
sub- and super-diffusion that correspond to the situations where the exponent of the MSD,
2/(θ + α + ρ), is less than or greater than one. Classification of this behavior in terms of
sub- and super-diffusion is displayed in Figure 3, which is one of the eight phase cubes
that comprise the {β, α, θ, ρ} tesseract.
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In Figure 3, the linear model of anomalous diffusion is displayed as the top of a phase
cube (ρ = 1), as a two-dimensional {α, θ}, phase diagram that is divided into regions of
super- and sub-diffusion by the line, θ = 1− α, with the Gaussian diffusion case at the
point {α = 1, β = 1, θ = 0, ρ = 1}. The ρ = 1 plane is intersected by the θ = 0 and the θ = 1
planes illustrating complementary phase behavior for the non-linear model when θ 6= 0.
For the α = 1 plane, the line of quasi-diffusion (ρ = 1− θ, where the MSD is proportional
to diffusion time), also has a negative slope when D(x) = Dθ |x|−θ . Finally, the ρ = 1,
θ = 0, and α = 1 planes slice off a corner of subdiffusion from the phase cube {α, θ, ρ}.

3.2.3. Fractional Time Derivative and Integer Space Derivatives with a Time and
Space-Dependent Diffusion Coefficient, and Linear in P(x,t)

Consider the one-dimensional linear diffusion equation for P(x,t), with integer space
derivatives and a Caputo time derivative, β, (0 < β < 1):

∂βP(x, t)
∂tβ

=
∂

∂x

(
Dβ,ν,θtν|x|−θ ∂P(x, t)

∂x

)
(38)
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The corresponding mean squared displacement is derived from a scaling argument in
Appendix B.4:

〈x2〉 = Iβ,ν,θt2(β+ν)/(2+θ) (39)

where Iβ,ν,θ =
∫ ∞
−∞ P(z)z2dz for z = x/t(β+ν)/(2+θ) with the understanding that the MSD

does not exist for the entire range of the fractional order parameters.
Here, the diffusion coefficient in this case, Dβ,ν,θ is a constant and has the units of

mm(2+θ)/s(β+ν). Solutions of this equation for an initial concentration of material at the
origin of an unbounded domain are presented for specific cases (additional cases can be
found in [10]).

The general solution to Equation (38) for an initial concentration of material at the
origin of an unbounded domain [40] is derived in Appendix B.4 using:

P(x, t) =
1

t
ν+β
2+θ

Pβ,θ,ν

(
|x|

t
ν+β
2+θ

)
, (40)

with
P(z) = 1

Γ( 1
2+θ )

1

[Dβ,θ,ν(2+θ)]
1

2+θ

×
∫ ∞

0 dkk
1

2+θ |z|
1
2 (1+θ) J−η

(
2 k

(2+θ)D1/2
β,θ,ν
|z|

1
2 (2+θ)

)
Eβ,1+ ν

β , ν
β

(
−k2). (41)

In this case, the model reflects the anomalous phase cube {β, θ, ν} with regions of sub-
and super-diffusion that correspond to the situations where the exponent of the MSD,
(β + ν)/(2 + θ), is less than or greater than one. Classification of this behavior in terms of
sub- and super-diffusion is displayed in Figure 4, which is one of the eight phase cubes
that comprise the {β, α, θ, ν} tesseract.
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In Figure 4, the linear model of anomalous diffusion is displayed on the top face of
a phase cube (ν = 0), as a two-dimensional {β, θ}, phase diagram that is divided into
regions of super- and sub-diffusion by the line, β = 1 + θ/2, with the Gaussian diffusion
case appearing at the point {β = 1, θ = 0, ν = 0}. The ν = 0 plane is intersected by the
θ = 0 plane and the θ = −2 plane (where the MSD does not exist). For the β = 1 plane,
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the line of quasi-diffusion (ν = 1 + θ/2, where the MSD is proportional to diffusion time),
shows a negative slope when D(x) = Dβ,ν,θtν|x|−θ . Finally, the ν = 0, and θ = 0, planes
slice off a wedge of sub-diffusion from the phase cube {β, θ, ν}, while the ν = 0, and β = 1,
planes slice off a wedge of super-diffusion.

4. Discussion

The phase diagrams displayed in the results section (Figures 1–4) depict models of
anomalous diffusion (Tables 1 and 2) as a slice of a three or n-dimensional solid (anomalous
phase hypercube). The intent of this representation is to provide a perspective that connects
the underlying mathematical models (fractional diffusion equations) with the expected
regions of sub- and super-diffusion. Our overall goal is to present these diagrams as an aid
in the interpretation of diffusion data collected from porous, heterogeneous material, such
as, that acquired in diffusion-weighted MRI experiments.

Anomalous diffusion, typically characterized by asymptotic, power law tails for P(x, t)
and a power law growth in time of the mean squared displacement (MSD) [41], sprouts
from the deep root of Brownian motion in its many variegated forms. Here we classify these
forms by comparing the power law exponent (R) of the MSD for each model (t2R) with the
classical result for Brownian motion (〈x2〉 = 2Dt, where R = 1

2 ). In Section 3.1, we combine
the CTRW model of anomalous diffusion with a power-law form of the time-dependent
diffusion coefficient, D(t) = Dβ,α,ν(1 + ν)tν. For this model, Equation (1), we show that
the MSD can be obtained directly from the analytical solution of specific cases (using Fox,
H-functions) as well as from a scaling analysis of the governing fractional order differential
equation (details in Appendix A). The results include the special cases of Lévy motion,
fractional motion and subordinated fractional diffusion.

In Section 3.2, we consider a modified CTRW model of anomalous diffusion derived
by assuming a fractional flux gradient, Jα(x, t) = −Dα∂α

|x|P(x, t), acting in concert with an
integer order divergence term in the continuity equation. The resulting diffusion equation
is also allowed to be non-linear, and to include a power-law time- and space-dependent
diffusion coefficient, D(x, t) = Dβ,α,ν,θ,ρtυ|x|−θ . For this model, Equation (21), we do
not have an analytical solution for all cases but use scaling analysis (Appendix B.1) to
obtain the MSD for three situations: first, a linear anomalous diffusion equation with a
fractional time and a fractional space derivative, and D(x, t) = Dα,θ,ρ|x|−θ (Section 3.2.1);
second a non-linear anomalous diffusion equation with an integer time derivative, a
fractional space derivative, and D(x, t) = Dα,θ,ρ|x|−θ (Section 3.2.2); and finally a linear
anomalous diffusion equation that uses a fractional time derivative, an integer order space
derivative, and includes a time- and space-dependent power law diffusion coefficient
D(x, t) = Dβ,α,ν,θ,ρtυ|x|−θ (Section 3.2.3). The so-called porous medium equation appears
under the umbrella of the non-linear case when both the time and space derivatives are of
integer order [42].

Although each model springs from a different physical or mathematical perspective [43,44]
(linear/non-linear, fractional/fractal, deterministic/stochastic, and constant/varying diffusion
coefficient), its parameter space (order of the time and space derivatives, power-law
exponents of the diffusion coefficients, degree of non-linearity and fractal dimensions) is
divided into zones of sub- and super-diffusion by considering the behavior of the mean
squared displacement for each model. In the phase cube representation, these zones
coalesce to a point for the Gaussian behavior of Brownian motion, a line along which Lévy
motion or subordinated Brownian motion appear, and a plane where regions of sub- and
super-diffusion diffusion are displayed.

Phase diagrams are used throughout physics and engineering to map the behavior
of physical systems [45]. Pressure–temperature, pressure–volume, temperature–volume
(gases) and material composition (liquids and solids) phase diagrams are widely used in
metallurgy and chemistry to guide our understanding of phase changes, optimization of
fractional distillation, and chemical extraction procedures. General principles such as the
Gibb’s phase rule (F = C − P + 2; the degrees of freedom of a system at equilibrium (F) is
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equal to the number of components (C) minus the number of phases (P) plus 2) guide the
expected changes of state when the temperature, pressure or composition are varied. The
idea is easily generalized to binary systems at constant pressure and to eutectic mixtures as
well as to alloys and amalgams. In such cases slices of a multidimensional phase volume
provide a means of organizing the complex material using multiple perspectives.

Chemical phase diagrams of single and multiple components (e.g., water, salt-water,
lead-tin, iron-iron carbide) capture reams of experimental data (melting, vaporization,
sublimation) in regions representing solid, liquid, and gaseous phases [46]. The molecular
configuration in each phase is verified by microscopy and spectroscopy, and the diagrams
modified to account for new phenomena (polymorphic solids, glasses, compressible liquids,
and supercritical fluids). The result is not just an equilibrium description of the material
at a fixed specific volume, but a road map showing how the terrain will change when
experiments alter the temperature, pressure or composition. Implied, but not displayed in
the phase diagram are the consequences of changing the temperature or pressure on the
mobility and configurations of molecules.

Mathematical phase diagrams of fractional derivative orders (β time; and α, space)
in the diffusion equation describe a myriad of analytical, numerical and Monte Carlo
simulation results for the normal (Gaussian) and anomalous (Levy, fractional Brownian,
subordinated, ballistic) motion of ideal particles [27,28]. The particle motion in each
phase reflects an underlying material configuration where the mobility is characterized
by sub-diffusion, super-diffusion, or quasi-Gaussian motion. Association of experimental
measurements of ‘anomalous’ diffusion in a complex, heterogeneous material with a
specific model using fitted values of β and α is not a one-to-one map of fractional derivative
order to molecular configuration; it is doubly degenerate. First, at least in nuclear magnetic
resonance (NMR) and MRI [47], because there are multiple sets of parameters that can
with high fidelity match the observed data, and second because there are integer and
fractional-order models of diffusion, some employing a power-law diffusion coefficient
D(|x|−θ , tν), which also fit the data.

Here, we would like to suggest several ways to combine these models. One idea is to
overlap chemical and mathematical phase diagrams, beginning with simple materials. As
an example, in Figure 5 we have superimposed a portion Figure 5 (e.g., the {β, α} plane for
fractional time and space diffusion with a constant coefficient) on the phase diagram of
pure water [45] (triple point, tp, to critical point, cp,). Taking inspiration from the Clausius–
Clapeyron equation [46], we associate α = 2 [log(P/Ptp)]/[ log(Pcp/Ptp)] with the pressure
ratio, and β =

[(
T − Ttp

)
/Ttp

]
/
[
T(cp−Ttp)/Ttp

]
with the temperature ratio so that the

critical point of the {P, T} diagram corresponds with the Gaussian point of the anomalous
diffusion phase diagram. We then see that overlap of the phase diagrams divides the liquid
and vapor phases of water into regions of putative sub- and super-diffusion, respectively.
The combined diagram also suggests and that the supercritical fluid phase corresponds
with the domain of Brownian motion in the mathematical phase diagram. This inchoate
connection can perhaps be extended to other single- and multi-phase situations where
anomalous diffusion or behavior appears. It also has the potential of linking chemical
composition and material structure—for a given material—with the most appropriate slice
of the phase cube and thus could provide a basis for selection of one model versus another.
This correspondence might be extended by applying fractional calculus to theoretical
models of the vapor–liquid equilibria (Chapter IX in [5,48]).
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Figure 5. Composite pressure-temperature {P, T} phase diagram of water with the fractional anoma-
lous diffusion {β, α} phase diagram. The critical point of water is taken to be equivalent with the
Gaussian case of normal diffusion. In this example, the triple point of water appears near the origin
of the anomalous diffusion diagram, while the boiling point is at the location, {β = 0.27, α = 0.97}.

Alternatively, we can probe the underlying assumptions of kinetic, fractional order and
stochastic models to establish how β and α reflect changes in kinetic theory concepts such
as mean free path and the time between collisions with the CTRW probabilities of particle
jumps and waiting times. The simplest compartmental representation of fractional deriva-
tives is expressed in terms of a distribution of first order exponential decay processes. This
approach, used by Berberan–Santos in luminescence studies [49], links lower order frac-
tional derivatives with a broader distribution of compartments—a single compartment as
the order approaches one. The CTRW model assumes particle jump |x|−(1+α) and waiting
time t−(1+β) probabilities that by convolution embed material properties in the fractional
order derivative operators. This correspondence was applied by Schumer and colleagues
(see Figures 7 and 9 in [50]) to problems in erosion and groundwater contamination.

Classical diffusion theory links the time rate of change of particle concentration
with the divergence of the flux, which is assumed to be proportional to the gradient of
concentration. Here, we used the Caputo fractional time derivative to generalize the time
rate of change and the symmetric Reisz fractional space derivative to generalize the flux
(in Section 3.2, we have not modified the gradient operator in the continuity equation).
The fractional time derivative affects particle dynamics by introducing memory in the
time derivative, f (t) ∗ t−(1+β)

+ /Γ(−β), while the fractional space derivative introduces
non-locality, g(x) ∗ |x|−(1+α)/Γ(−α), [5,43]. Thus, memory and non-locality are introduced
by convolution into mathematical physics when fractional order operators are employed.

Thinking of the classical diffusion problem as it might be affected by Maxwell’s
demon—as William Thompson did in 1875 (see pages 57–60 in Reference [51])—the demon,
is viewed as a batsman in cricket who sorts out pitches/particles entering a ‘control’ volume
based on speed and direction. In the fractional calculus version of cricket, the bowler is
also a ‘demon’, one who can release balls with multiple delays, f (t− τ) all weighted
by t−(1+β)

+ /Γ(−β), and from different distances, g(x− ξ), with each one weighted by
|x|−(1+α)/Γ(−α).
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Mathematically, the fractional time derivative can be thought of either as a convolu-
tion integral [52] or as a power law weighted sum of delay derivatives [53]. Rewriting,
Equation (5), we can describe anomalous diffusion by:

∂P(x.t)
∂t

=
Dβ,α

Γ(1− β)

∂

∂t

∫ t

0

1

(t− τ)β

[
∂αP(x, τ)

∂|x|α
]

dτ (42)

Physically, this changes the complete memory of ordinary integration into a fractional
integral [13] (Chapter 12, page 217). In a similar way, the fractional space derivative allows
particles to jump into the control volume from any distance, with a likelihood decreasing
as an inverse power law of distance [50].

The CTRW phase diagram is used in this paper as the basis for comparison between
fractional-derivative and power law models. It was selected for convenience and its prior
appearance in the literature [27,28,30]. There are other options (e.g., fractal derivative, Lévy
walks). Even within the CTRW context, different choices of the waiting time and jump
increment probabilities (independent, coupled, truncated, symmetric or anti-symmetric)
introduce new sub-regions (ballistic, Gaussian, sub-diffusion, super-diffusion). The CTRW
study by Weeks et al. [54], which uses separate decoupled and truncated particle flight and
sticking time distributions shows 5 and 6 regions, for the symmetric and anti-symmetric
models, each with a different MSD diffusion exponent.

Fractional-order time and space derivatives extend the classical diffusion equation
in a way that accounts for the non-Gaussian diffusion often observed in heterogeneous
materials. One criticism of fractional-order models is their apparent ad hoc nature that
interpolates between the well understood integer order operations of calculus. This weak-
ness is actually a strength as illustrated in two-dimensional phase diagrams—plots whose
axes represent the fractional derivative order—and typically display points corresponding
to distinct diffusion propagators (Gaussian, Cauchy), lines along which specific stochastic
models apply (Lévy, subordinated Brownian motion, quasi-diffusion), and regions of super-
and sub-diffusion where the mean squared displacement grows faster or slower than a
linear function of diffusion time.

In addition to depicting the integer- and fractional-order operators of mathemati-
cal physics, anomalous diffusion phase diagrams provide a convenient way to classify
different models of anomalous diffusion (continuous time random walk, fractal deriva-
tive). Specifically, each type of fractional derivative or assumed functional form of the
diffusion coefficient corresponds to a difference picture of the underlying particle motion.
The corresponding phase diagrams provide a portfolio of representations of anomalous
diffusion. The anomalous phase cube employs lines of super-diffusion (Lévy process)
and sub-diffusion (subordinated Brownian motion) to stitch together the different diffu-
sion models displaying corresponding regions. In addition to the examples described in
Section 3, the anomalous phase cube provides a framework for displaying other models
and phenomena. For example, anomalous (non-linear growth of the MSD) behavior often
exists only for a specific time window. This is also true for Brownian motion, which as-
sumes that particle displacement is observed at times much greater than the time between
collisions. Hence, in anomalous diffusion the MSD can be linear, sub-linear, and then
linear again when plotted over 4 to 5 orders of magnitude in time [10]. Experimental
examples and mathematical models typically involve one or more of the cases illustrated
in Sections 3.1 and 3.2, and therefore are amenable to phase cube representation.

In addition, the complete Lévy description of anomalous diffusion (e.g., the Feller–
Takayasu representation of an asymmetric stable law where α is the Lévy index and β is
not the fractional or fractal time derivative, but a symmetry index) can be inserted into
the base of the anomalous phase cube to replace the CTRW model. In a similar manner
the fractional/fractal extension of Hamiltonian dynamics on a fractal as described by
Zaslavsky [55] has the same general form as case the CTRW model (Sections 3.1 and 3.2)
but for this model the order of the fractional time and space derivatives are directly
connected with a fractal structure in time and distance in the underlying phase space
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(p, q) of the Hamiltonian system [43]. Another example, the generalized diffusion coef-
ficient D(x, t) = D|x|atb, discussed by Lenzi gives rise to anomalous diffusion depicted
by stretched Bessel and Mittag–Leffler functions [10]. Finally, the power law diffusion
coefficient model (Section 3.1), which can also be described as a stretched exponential is
equivalent to with a time-dependent power law (in time) diffusion coefficient, and hence is
similar to the Novikov model: D(t) = D0 + D1/t1+α, [56,57].

Additional studies brought to our attention during the review of this paper include
the work modeling plasma dynamics using fractional calculus by Moradi et al. [58] and
by del Castillo–Negrete [59]. Further information concerning the Kilbas-Saigo function
can be found in the papers by Boudabsa and Simon [60] and by de Oliveira et al. [61].
Also, a recent mini review of anomalous diffusion in MRI is available in the work of
Capuani and Palombo [62]. Furthermore, (i) details needed to evaluate the inverse Fourier
transform of the Mittag–Leffler function can be found in [63], (ii) connections between
anomalous diffusion and non-linear fractional diffusion equations are described in [64],
and (iii) representations of the solution to fractional order anomalous diffusion equations
in terms of the M-Wright function are given in [65].

The examples described in this paper do not exhaust the potential association of the
phase cube with the wide variety of models for anomalous diffusion. Extensions using the
Langevin, Fokker–Planck, and generalized Master equations are certainly possible, perhaps,
as suggest by Bruce West under a new ‘complexity’ hypothesis [66]. As with all visual
aids, the significance resides with the fidelity of the perspective with the experimental
observations. The contribution of the phase cube is through its panoramic view of the
disparate mathematical representations of anomalous diffusion, a view that can perhaps
serve as a map for new explorations.

5. Conclusions

Three factors support the phase cube description of anomalous diffusion. First, is its
successful portrayal of the variety of models (e.g., fractional, fractal, statistical) derived over
the past 50 years. Second, is the visual comparison of the generalized diffusion equations
with Gaussian and non-Gaussian cases as points, lines, and slices of the phase cube. Third,
is the graphic presentation of regions of sub- and super-diffusion on each slice, which
may suggest theoretical connections and experimental (or numerical) tests of the different
models. The movement of material, such as exhaust gases, Li ions and anti-cancer agents in
a porous, heterogeneous matrix is very likely to be non-Gaussian. Therefore, the continued
refinement of anomalous diffusion models that capture this behavior is needed to advance
our understanding of catalysis, battery storage capacity and drug delivery. Such insight
can be placed into a physical and mathematical context using the anomalous phase cube.
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Appendix A. Solution to Fractional Diffusion Equation

Appendix A.1. Fractional Time and Space Derivatives with Power Law D(t)

In this appendix we provide the analytical solution of Equation (1), in Section 3.1,
following the development presented in Garra et al. [14], and also show how a scaled form
of the solution can be used to obtain the mean squared displacement. The fractional time
and space diffusion equation with a time-dependent diffusion coefficient can be written as:

∂β

∂tβ
P(x, t) = D(t)

∂α

∂|x|α
P(x, t) (A1)

with the diffusion coefficient given by D(t) = Dνtν, where Dν = Dβ, α,ν(1 + ν) and |ν| ≤ 1.
We may use the Fourier transform, which when applied to Equation (A1) yields,

∂β

∂tβ
p(k, t) = −Dνtν|k|α p(k, t). (A2)

The solution of Equation (A2) may be found in terms of the Kilbas-Saigo function [1],
which is solution of the following Cauchy problem [14]:{

∂β

∂tβ f (t) = −λtν f (t)
f (0) = 1

(A3)

where f (t) = p(k, t), and λ = Dν|k|α. It is given by:

f (t) = 1 +
∞

∑
n=1

(
−λtν+β

)n n−1

∏
j=0

Γ(νj + βj + ν + 1)
Γ(νj + βj + β + ν + 1)

= Eβ,1+ ν
β , ν

β

(
−λtν+β

)
. (A4)

Thus, the solution for the fractional diffusion Equation (A2) with the time dependent
coefficient D(t) = Dνtν, in the Fourier space, can be written as:

p(k, t) = Eβ,1+ ν
β , ν

β

(
−|k|αDνtν+β

)
. (A5)

By applying the inverse of Fourier transform in Equation (A5), we obtain

P(x, t) =
1

2π

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−|k|αDνtν+β

)
e−ikxdk. (A6)

We may perform the following change of variable k′ =
(

Dνtν+β
)1/αk in Equation (A6),

in order to write the solution as follows:

P(x, t) =
1(

Dνtν+β
)1/α

1
2π

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−
∣∣k′∣∣α)exp

(
−ik′x(

Dνtν+β
)1/α

)
dk′. (A7)

It is worth mentioning that the Equation (A7) is written in a scaled form, i.e.,

P(x, t) =
1

t
ν+β

α

Pβ,α,ν

(
x

t
ν+β

α

)
(A8)

with z = x/t
ν+β

α and

Pβ,α,ν(z) =
1

2π

1

D1/α
ν

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−
∣∣k′∣∣α)exp

(
−ik′z

D1/α
ν

)
dk′. (A9)
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Notice that Equation (A8) has the same form of Equation (3) in Section 3.1 of the text
with ξ = (ν + β)/α.

The time dependence of the mean square displacement, which for this case corre-
sponds to the second moment for the previous initial condition, can be obtained by using
Equation (A8) with a change of variables from x to z as follows:

〈x2〉 =
∫ ∞

−∞
P(x, t)x2dx =

∫ ∞

−∞

1

t
ν+β

α

Pβ,α,ν

(
x

t
ν+β

α

)
x2dx, (A10)

and
〈x2〉 = t

2
α (ν+β) Iβ,α,ν (A11)

where Iβ,α,ν =
∫ ∞
−∞ Pβ,α,ν(z)z2dz, z = x/t

ν+β
α , assuming Iβ,α,ν exists.

Appendix A.2. Fractional Time and Space Derivatives with Fixed Diffusion Coefficient, Dβ,α

Now, we consider the fractional diffusion equation:

∂βP(x, t)
∂tβ

= Dβ,α
∂αP(x, t)

∂|x|α
. (A12)

This is a particular case of the Equation (A1) with ν = 0, i.e., a constant diffusion
coefficient. Similar to the previous case, we can use the Fourier tranform to simplify the
equation to obtain:

∂β

∂tβ
p(k, t) = −Dβ,α|k|α p(k, t) (A13)

whose solution is given in terms of the Mittag-Leffler function,

p(k, t) = Eβ

(
−Dβ,α|k|αtβ

)
(A14)

By performing the inverse of Fourier transform, we obtain,

P(x, t) =
1

α
(

Dα,βtβ
)1/α

H2,1
3,3

 |x|(
Dα,βtβ

)1/α

∣∣∣∣∣∣
(

1− 1
α , 1

α

) (
1− β

α , β
α

) (
1
2 , 1

2

)
(0, 1)

(
1− 1

α , 1
α

) (
1
2 , 1

2

) , (A15)

which can be written as

P(x, t) =
1

tβ/α
Pα,β

(
x

tβ/α

)
, (A16)

with

Pα,β(z) =
1

αD1/α
α,β

H2,1
3,3

 |z|
D1/α

α,β

∣∣∣∣∣∣
(

1− 1
α , 1

α

) (
1− β

α , β
α

) (
1
2 , 1

2

)
(0, 1)

(
1− 1

α , 1
α

) (
1
2 , 1

2

) , (A17)

where z = x/tβ/α. Note that to obtain the inverse of Fourier transform, we used the
following result [15]:

∫ ∞

−∞
kρ−1cos(kx)Hm,n

p,q

[
akδ

∣∣∣∣∣
(
ap, Ap

)(
bq, Bq

) ]
dk =

π

xρ Hn+1,m
q+1,p+2

 xδ

a

∣∣∣∣∣∣
(
1− bq, Bq

)
,
(

1+ρ
2 , δ

2

)
(ρ, δ),

(
1− ap, Ap

)
,
(

1+ρ
2 , δ

2

) , (A18)

and some properties of the Fox functions.

Appendix A.3. Integer Time Derivative and Fractional Space Derivative with Power Law D(t)

Another case that emerges from the Equation (A1) is obtained for β = 1, which yields:

∂P(x, t)
∂t

= Dα,ν(1 + ν)tν ∂αP(x, t)
∂|x|α

. (A19)
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The solution for the previous equation with an initial concentration of material at the
origin of an unbounded domain is a fractional Lévy motion, and may be obtained using the
previous procedure by applying the Fourier transform. In this case we find the equation:

∂

∂t
p(k, t) = −Dα,ν(1 + ν)tν|k|α p(k, t), (A20)

whose solution is a stretched exponential, i.e.,

p(k, t) = exp
(
−Dα,ν|k|αt1+ν

)
. (A21)

By performing the inverse of Fourier transform, we have,

P(x, t) =
1

α(Dα,νt1+ν)
1/α

H1,1
2,2

 |x|
(Dα,νt1+ν)

1/α

∣∣∣∣∣∣
(

1− 1
α , 1

α

) (
1
2 , 1

2

)
(0, 1)

(
1
2 , 1

2

)  (A22)

which may also be written as:

P(x, t) =
1

t(1+ν)/α
Pα,ν

(
x

t(1+ν)/α

)
(A23)

with

Pα,ν(z) =
1

αD1/α
α,ν

H1,1
2,2

 |z|
D1/α

α,ν

∣∣∣∣∣∣
(

1− 1
α , 1

α

) (
1
2 , 1

2

)
(0, 1)

(
1
2 , 1

2

) , (A24)

where z = z/t(1+ν)/α.

Appendix A.4. Fractional Time Derivative and Integer Space Derivative with Power Law D(t)

Another particular case of Equation (A1) is obtained for the case of α = 2, yielding,

∂β

∂tβ
P(x, t) = D(t)

∂2

∂x2 P(x, t), (A25)

with the diffusion coefficient given by D(t) = Dβ,νtν, where Dβ,ν = Dβ,ν(1 + ν) and |ν| ≤ 1.
We use the Fourier transform as in the previous cases. After applying the Fourier

transform to Equation (A25), we obtain:

∂β

∂tβ
p(k, t) = −Dβ,νtνk2 p(k, t). (A26)

The solution for the fractional diffusion Equation (A26), in the Fourier space, can be
written as:

p(k, t) = Eβ,1+ ν
β , ν

β

(
−k2Dβ,νtν+β

)
. (A27)

By applying the inverse of Fourier transform in Equation (A27), we have,

P(x, t) =
1

2π

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−k2Dβ,νtν+β

)
e−ikxdk. (A28)

We may perform the following change of variable k′ =
(

Dβ,νtν+β
)1/2k in Equa-

tion (A6), in order to write the solution as follows:

P(x, t) =
1(

Dβ,νtν+β
)1/2

1
2π

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−k′2

)
exp

 −ik′x(
Dβ,νtν+β

)1/2

dk′. (A29)
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It is worth mentioning that Equation (A8) is written in a scaled form, i.e.,

P(x, t) =
1

t
ν+β

2

Pβ,α,ν

(
x

t
ν+β

2

)
(A30)

with z = x/t
ν+β

2 and

Pβ,α,ν(z) =
1

2π

1

D1/2
β,ν

∫ ∞

−∞
Eβ,1+ ν

β , ν
β

(
−k′2

)
exp

−ik′z

D1/2
β,ν

dk′. (A31)

Appendix B. Solution to Fractional Diffusion Equation

In this appendix we analyze the fractional non-linear diffusion equation and obtain
solutions for some special cases. Before analyzing the solutions for particular cases of
the equation

∂β

∂tβ
P(x, t) =

∂

∂x

{
D(x, t)

∂α

∂xα
[P(x, t)]ρ

}
(A32)

with the diffusion coefficient given by D(x, t) = D|x|−θtν with D = Dβ,α,θ,ν,ρ(1 + ν).

Appendix B.1. Scaling Analysis

Using the approach employed in [32,33], we used variable scaling in Equation (A32)
to determine the mean squared displacement. For this approach, we employ the following
change of variables:

x = λqx, t = λt, P = λl P (A33)

which yields

λl−β ∂β

∂tβ
P
(

x, t
)
= λlρ−q(1+α)−ν−qθ ∂

∂x

{
D|x|−θtν ∂α

∂xα

[
P
(

x, t
)]ρ
}

(A34)

and, consequently,
l − β = lρ− q(1 + α) + ν− qθ (A35)

Another relation among the parameters can be obtained from the condition:∫
dxp(x, t) = const, (A36)

which is related to the conservation of the probability. By performing the previous change
of variables, we find,

l + q = 0. (A37)

By using Equations (A35) and (A37), it is possible to show that:

q = (β + ν)/(θ + ρ + α) (A38)

This analysis implies that the Equation (A32) admits as a solution the scaled form
given by:

P(x, t) =
1
tξ

Pξ

( x
tξ

)
, (A39)

with ξ = (β + ν)/(θ + ρ + α). By using the previous equation is possible to obtain the time
dependence for the second moment and, consequently, show the behavior of the system in
terms of the parameters β, ν, θ, ρ and α. This feature can be verified by using the definition
presented in Equation (A10), which yields:

〈x2〉 =
∫ ∞

−∞
P(x, t)x2dx =

∫ ∞

−∞

1
tξ

Pξ

( x
tξ

)
x2dx (A40)
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and, consequently,
〈x2〉 = t2ξ Iξ (A41)

where Iξ =
∫ ∞
−∞ Pξ(z)z2dz, z = x/tξ , assuming Iξ exists.

It is worth mentioning that the same time dependence for the second moment is
obtained from the following equation:

∂β

∂tβ
P(x, t) =

∂

∂x
∂α

∂xα

{
D(x, t) [P(x, t)]ρ

}
(A42)

with D(x, t) = D|x|−θtν with D = Dβ,α,θ,ν,ρ(1 + ν). The difference between Equations (A42)
and (A32) only involves the spatial dependence or P(x, t), when solutions of the form
given by Equation (A39) are considered.

Appendix B.2. Fractional Time and Integer Space Derivatives with Power Law, D(x), and Linear in
P(x,t)

Let us consider a particular case of the Equation (A42). It is given by the equation:

∂β

∂tβ
P(x, t) =

∂

∂x

(
D(x)

∂

∂x
P(x, t)

)
(A43)

with the diffusion coefficient given by D(x) = Dβ,θ |x|−θ . The solution for this case may be
found by using the eigenfunctions of the spatial operator present in Equation (A43). They
are obtained from the Sturm–Liouville problem:

∂

∂x

(
|x|−θ ∂

∂x
ψ(x, k)

)
= −k2ψ(x, k), (A44)

subject to the conditions ψ(±∞) = 0, which implies in:

ψ(x, k) =

 ψ+(x, k) = |x|
1
2 (1+θ) J−η

(
2k

2+θ |x|
1
2 (2+θ)

)
even

ψ−(x, k) = x|x|
1
2 (1+θ)−1 Jη

(
2k

2+θ |x|
1
2 (2+θ)

)
odd

. (A45)

In terms of these eigenfunctions, the solution can be written as:

P(x, t) =
2

2 + θ

∫ ∞

0
dkk
[
pβ,θ,+(k, t)ψ+(x, k) + pβ,θ,−(k, t)ψ+(x, k)

]
(A46)

where,

pβ,θ,±(k, t) =
1
2

∫ ∞

−∞
dxψ±(x, k)P(x, t). (A47)

By using the orthogonality condition of the eigenfunctions in the fractional diffusion
Equation (A43), it is possible to show that:

∂β

∂tβ
pβ,θ,±(k, t) = −Dβ,θk2 pβ,θ,±(k, t) (A48)

whose solution is given by in terms of the Mittag–Leffler function as follows:

pβ,θ,±(k, t) = pβ,θ,±(k, 0)Eβ

(
−Dβ,θk2tβ

)
. (A49)

Thus, for an arbitrary initial condition, we have:

P(x, t) = 1
2+θ

∫ ∞
0 dkk

[∫ ∞
−∞ dxP(x, 0)ψ+(x, k)ψ+(x, k)Eβ

(
−Dβ,θk2tβ

)
+
∫ ∞
−∞ dxP(x, 0)ψ−(x, k)ψ−(x, k)Eβ

(
−Dβ,θk2tβ

)] (A50)
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which can be written as follows:

P(x, t) =
∫ ∞
−∞ dxP(x, 0)

{
1

2+θ

∫ ∞
0 dkk

[
ψ+(x, k)ψ+(x, k)Eβ

(
−Dβ,θk2tβ

)
+ψ−(x, k)ψ−(x, k)Eβ

(
−Dβ,θk2tβ

)]} (A51)

By using some properties and identities [15,36], Equation (A51) may be written in
terms of a generalized H Fox function, i.e.,

P(x, t) =
∫ ∞

−∞
dxP(ξ, 0)G(x, x, t), (A52)

with
G(x, x, t) = G+(x, x, t) +

xx
|x||x|G−(x, x, t) (A53)

And

G±(x, x, t) = 2+θ
2 |x|

(
|x|
|x|

) 1
2 (1+θ)

×H1,0,1,1
2,[0,1],0,[2,2]


(
|x|
|x|

)2+θ

(2+θ)2Dβ,θ tβ

|x|2+θ

∣∣∣∣∣∣∣
(

2∓η
2 , 1

)
;

(
2∓η

2 , 1
)

− ; (0, 1)(
∓ η

2 , 1
)
,
(
± η

2 , 1
)

; (0, 1), (0, β)

 . (A54)

For the initial condition P(x, 0) = δ(x), the previous solution may be simplified to:

P(x, t) = 2+θ
2Γ( 1

2+θ )

× 1

[(2+θ)2Dβ,θ tβ]
1

2+θ

H20
12

[
|x|2+θ

Dβ,θ(2+θ)2tβ

∣∣∣∣ (1− β/(2 + θ), β), −
(1− 1/(2 + θ), 1), (0, 1)

]
(A55)

Equation (A55) has a scaled form, i.e., it can be written as follows:

P(x, t) =
1

t
β

2+θ

Pβ,θ

(
x

t
β

2+θ

)
, (A56)

with
Pβ,θ(z) = 1

2Γ( 1
2+θ )[(2+θ)2Dβ,θ ]

1
2+θ

×H20
12

 |z|

[(2+θ)2Dβ,θ ]
1

2+θ

∣∣∣∣∣
(

1− β
2+θ , β

2+θ

)
, −(

1− 1
2+θ , 1

2+θ

)
, (0, 1)

 , (A57)

and z = x/tβ/(2+θ). Similar to the previous cases, for example, Equation (A40), we may
perform the same analysis to obtain the time behavior for the second moment related to
the Equation (A56). In particular, after some calculations, it is possible to show that:

〈x2〉 = t
2β

2+θ Iβ,θ (A58)

where Iβ,θ =
∫ ∞
−∞ Pβ,θ(z)z2dz, assuming Iβ,θ exists. Note that for β = 1, Equation (A55)

may be simplified to:

P(x, t) =
e
− |x|2+θ

(2+θ)2Dθ t

2Γ
(

3+θ
2+θ

)[
(2 + θ)2Dθt

] 1
2+θ

(A59)
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with the mean square displacement given by:

〈x2〉 =
Γ
(

3
2+θ

)
Γ
(

1
2+θ

)[(2 + θ)2Dθt
] 2

2+θ (A60)

Appendix B.3. Integer Time Derivative with a Non-Linear Fractional Space Derivative with a
Power Law D(|x|−θ)

Now, we consider the non-linear version of Equation (A32) with β = 1 and ν = 0.
Following [37–39] and the above results, it is possible to simplify the partial differential
Equation (A32) to an ordinary differential equation and to find solutions for some cases. In
particular, by substituting Equation (A39) in Equation (A32), we obtain:

Dα,θ,ρ|z|−θ dα

d|z|α
[
Pα,θ,ρ(z)

]ρ
= −ξ ′zPα,θ,ρ(z) (A61)

with z = x/tξ ′ and ξ ′ = 1/(θ + α + ρ). In this manner, we simplify our non-linear partial
differential equation to an ordinary differential equation as mentioned before. Note that
as discussed in [37,39], we will use the Riemann-Liouville operator to obtain the exact
solutions. In this case, we will work with the positive axis and, later on, we will use
symmetry to extend the results to the entire real axis. Particular solutions of this equation
can be found as shown in [38]. Two of them are:

Pα,θ,ρ(z) = N
(

1− (ρ− 1)ξ ′

(2 + θ)ρDα,θ,ρ
|z|2+θ

) 1
ρ−1

(A62)

for the case α = 1, and
Pα,θ,ρ(z) = Ñ zδ(a + bz)ζ (A63)

for α 6= 1. Here a and b are chosen so that Equation (A63) satisfies Equation (A61), and

δ =
(α− 1)(1 + α + θ)

1 + 2α + θ
, ζ = − α(1− α)

1 + 2α + θ
, ρ =

1− α

2 + α + θ
(A64)

where N and Ñ are normalization factors, which should be found for each case. The
parameter b is chosen ±1, depending on the behavior of the solution with a = 1. In fact,
for a compact behavior, we have b = −1 and for a long-tailed behavior b = 1. Note that
the solutions shown for the non-linear case are given in terms of power laws and may be
related to the Levy distributions as discussed in [10,37–39].

Appendix B.4. Fractional Time Derivative and Integer Space Derivatives with a Time- and
Space-Dependent Diffusion Coefficient, and Linear in P(x,t)

Let us consider some linear cases of the Equation (A32) for ρ = 1. The first one
involves a fractional time diffusion equation with a power law, time- and space-dependent
diffusion coefficient as follows:

∂β

∂tβ
P(x, t) =

∂

∂x

(
D(x, t)

∂

∂x
P(x, t)

)
(A65)

with D(x, t) = Dβ,θ,νtν|x|−θ . Note that Equation (A65) combines some of the cases worked
out above, i.e., Equations (A32) and (A43). The solution for this case may be found by using
the Kilbas–Saigo function given in Equation (A35) and the eigenfunctions of the spatial
operator present in Equation (A56). In particular, they are defined in Equation (A45).



Mathematics 2021, 9, 1481 26 of 29

In terms of the eigenfunction the solution given in Equation (A45), the solution can be
written as:

P(x, t) =
2

2 + θ

∫ ∞

0
dkk
[
pβ,θ,ν,+(k, t)ψ+(x, k) + pβ,θ,ν,−(k, t)ψ+(x, k)

]
, (A66)

where,

pβ,θ,ν,±(k, t) =
1
2

∫ ∞

−∞
dxψ±(x, k)P(x, t). (A67)

By using the orthogonality condition of the eigenfunction in the fractional diffusion
Equation (A65), it is possible to show that:

∂β

∂tβ
pβ,θ,ν,±(k, t) = −Dβ,θ,νtνk2 pβ,θ,ν,±(k, t) (A68)

whose solution is given in terms of the Kilbas–Saigo function as follows:

pβ,θ,ν,±(k, t) = pβ,θ,ν,±(k, 0)Eβ,1+ ν
β , ν

β

(
−Dβ,θ,νk2tν+β

)
. (A69)

Thus, the solution may be formally written as:

P(x, t) =
∫ ∞
−∞ dxP(x, 0)

{
1

2+θ

∫ ∞
0 dkk

[
ψ+(x, k)ψ+(x, k)Eβ,1+ ν

β , ν
β

(
−k2Dνtν+β

)
+

ψ−(x, k)ψ−(x, k)Eβ,1+ ν
β , ν

β

(
−k2Dβ,θ,νtν+β

)]
},

(A70)

for an arbitrary initial condition. By considering the initial condition P(x, 0) = δ(x),
Equation (A70) may be simplified to:

P(x, t) =
1

Γ
(

1
2+θ

) 1

(2 + θ)
1

2+θ

∫ ∞

0
dkk

1
2+θ ψ+(x, k)Eβ,1+ ν

β , ν
β

(
−k2Dνtν+β

)
, (A71)

which can be written as:

P(x, t) = 1

Γ( 1
2+θ )[(2+θ)Dβ,θ,νtν+β]

1
2+θ

×

∫ ∞
0 dkk

1
2+θ

|x|
1
2 (1+θ)

(Dβ,θ,νtν+β)
1+θ

2(2+θ)

J−η

(
2 k

2+θ
|x|

1
2 (2+θ)

(Dβ,θ,νtν+β)
1
2

)
Eβ,1+ ν

β , ν
β

(
−k2), (A72)

and consequently,

P(x, t) =
1

t
ν+β
2+θ

Pβ,θ,ν

(
|x|

t
ν+β
2+θ

)
, (A73)

with
Pβ,θ,ν(z) = 1

Γ( 1
2+θ )[Dβ,θ,ν(2+θ)]

1
2+θ

×
∫ ∞

0 dkk
1

2+θ |z|
1
2 (1+θ) J−η

(
2 k|z|

1
2 (2+θ)

(2+θ)D1/2
β,θ,ν

)
Eβ,1+ ν

β , ν
β

(
−k2) (A74)

The mean square displacement was derived in Equation (A41), and is given by:

〈x2〉 = t
2(ν+β)

2+θ Iβ,θ,ν (A75)

where Iβ,θ,ν =
∫ ∞
−∞ Pβ,θ,ν(z)z2dz, assuming Iβ,θ,ν exists.

Now, we consider the Equation (A32) with β = 1 and ρ = 1. For this case, it can be
simplified to:

∂

∂t
P(x, t) =

∂

∂x

{
D(x, t)

∂α

∂xα
P(x, t)

}
, (A76)



Mathematics 2021, 9, 1481 27 of 29

with the diffusion coefficient given by D(x, t) = Dα,θ,ν(1 + ν)|x|−θtν. By using the scaling
arguments, it is possible to simplify Equation (A76) to an ordinary differential equation
as follows:

(1 + ν)Dα,θ,ν|z|−θ dα

dzα
Pν,θ,α(z) = −ξzPν,θ,α(z), (A77)

where z = x/tξ with ξ = (1 + ν)/(1 + θ + α). The solutions for this equation can be
found by using the symmetries arguments used to find the solutions of the non-linear case
and the Kilbas–Saigo function defined in Equation (A34). In particular, the solution for
Equation (A77) is given by:

Pν,θ,α(z) = N
′E

α,1+ 1+θ
α , 1+θ

α
(− ξ|z|1+α+θ

(1+ν)Dα,θ,ν
)
, (A78)

where N ′ is a normalization constant. A similar analysis has been performed in [40] by
considering reaction terms. By using Equation (A78), it is possible to write the solution
as follows:

P(x, t) =
N ′

t
1+ν

1+α+θ

Eα,1+ 1+θ
α , 1+θ

α

(
− |x|1+α+θ

(1 + α + θ)Dα,θ,νt1+ν

)
. (A79)

By using the previous equation, we obtain the time behavior for the second moment,
or the mean square displacement, for this case. In this direction, it is interesting to note
that Equation (A79) may be written as follows:

P(x, t) =
1

t
1+ν

1+α+θ

Pα,θ,ν

(
x

t
1+ν

1+α+θ

)
(A80)

Using Equation (A73), it is possible to show that 〈x2〉 = t
2(1+ν)
1+α+θ Iα,θ,ν, by assuming that

Iα,θ,ν =
∫ ∞
−∞ z2Pα,θ,ν(z)dz exists.

References
1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The

Netherlands, 2006.
2. Carpinteri, A.; Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures No. 378; Springer:

New York, NY, USA, 1997.
3. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
4. Magin, R.L. Fractional Calculus in Bioengineering, 2nd ed.; Begell House: Danbury, CT, USA, 2020.
5. Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2007.
6. Magin, R.L.; Hall, M.G.; Karaman, M.M.; Vegh, V. Fractional calculus models of magnetic resonance phenomena: Relaxation and

diffusion. Crit. Rev. Biomed. Eng. 2020, 48, 285–326. [CrossRef] [PubMed]
7. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin,

Germany, 2014.
8. Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics 43; De Gruyter: Berlin,

Germany, 2012.
9. ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge,

UK, 2000.
10. Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: Cambridge, UK,

2018.
11. Winchester, S. The Perfectionists: How Precision Engineers Created the Modern World; HarperCollins: New York, NY, USA, 2018.
12. Magin, R.L.; Karani, H.; Wang, S.; Liang, Y. Fractional order complexity model of the diffusion signal decay in MRI. Mathematics

2019, 7, 348. [CrossRef]
13. Balescu, R. Statistical Dynamics: Matter Out of Equilibrium; Imperial College Press: London, UK, 1997.
14. Garra, R.; Orsingher, E.; Polito, F. Fractional Diffusions with Time-varying Coefficients. J. Math. Phys. 2015, 56, 093301. [CrossRef]
15. Mathai, A.M.; Saxena, R.K. The H-Function with Application in Statistics and Other Disciplines; Wiley Eastern: New Delhi, India, 1978.
16. Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Frac. Calc. Appl.

Anal. 2001, 4, 153–192.
17. Metzler, R.; Klafter, J. The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Phys. Rep. 2000,

339, 1–77. [CrossRef]

http://doi.org/10.1615/CritRevBiomedEng.2020033925
http://www.ncbi.nlm.nih.gov/pubmed/33639049
http://doi.org/10.3390/math7040348
http://doi.org/10.1063/1.4931477
http://doi.org/10.1016/S0370-1573(00)00070-3


Mathematics 2021, 9, 1481 28 of 29

18. Metzler, R.; Klafter, J. The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous
Transport by Fractional Dynamics. J. Phys. A Math. Gen. 2004, 37, R161–R208. [CrossRef]

19. Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Fractional Reaction-Diffusion Equations. Astrophys. Space Sci. 2006, 305, 289–296.
[CrossRef]

20. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628.
[CrossRef]

21. Eliazar, I.I.; Shlesinger, M.F. Fractional Motions. Phys. Rep. 2013, 527, 101–129. [CrossRef]
22. Fan, Y.; Gao, J.H. Fractional Motion Model for Characterization of Anomalous Diffusion from NMR Signals. Phys. Rev. E 2015,

92, 012707. [CrossRef]
23. Karaman, M.; Wang, H.; Sui, Y.; Engelhard, H.; Li, Y.; Zhou, X.J. A Fractional Motion Diffusion Model for Grading Pediatric Brain

Tumors. NeuroImage Clin. 2016, 12, 707–714. [CrossRef]
24. Karaman, M.; Zhou, X.J. A Fractional Motion Diffusion Model for a Twice-Refocused Spin-Echo Pulse Sequence. NMR Biomed.

2018, 31, e3960. [CrossRef]
25. Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975.
26. Kimmich, R. Strange Kinetics, Porous Media, and NMR. Chem. Phys. 2002, 284, 253–285. [CrossRef]
27. Klages, R.; Radons, G.; Sokolov, I.M. (Eds.) Anomalous Transport: Foundations and Applications; Wiley-VCH: Weinheim, Ger-

many, 2008.
28. Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific Publishing: Singapore, 2012.
29. West, B.J.; Bologna, M.; Griggolini, P. Physics of Fractal Operators; Springer: New York, NY, USA, 2003.
30. Bouchaud, J.-P.; Georges, A. Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applica-

tions. Phys. Rep. 1990, 195, 127–293. [CrossRef]
31. Vlad, M.O. Fractional Diffusion Equation on Fractals: Self-similar Stationary Solutions in a Force Field Derived from a Logarithmic

Potential. Chaos Solitons Fractals 1994, 4, 191–199. [CrossRef]
32. Costa, F.S.; Oliveira, D.S.; Rodrigues, F.G.; de Oliveira, E.C. The Fractional Space–time Radial Diffusion Equation in Terms of the

Fox’s H-function. Physica A 2019, 515, 403–418. [CrossRef]
33. Su, N.; Sander, G.C.; Liu, F.; Anh, V.; Barry, D.A. Similarity Solutions for Solute Transport in Fractal Porous Media Using a Time-

and Scale-dependent Dispersivity. Appl. Math. Model. 2005, 29, 852–870. [CrossRef]
34. Silva, A.T.; Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; Ribeiro, H.V.; Tateishi, A.A. Exact Propagator for a Fokker-Planck Equation,

First Passage Time Distribution, and Anomalous Diffusion. J. Math. Phys. 2011, 52, 093301. [CrossRef]
35. Fa, K.S.; Lenzi, E.K. Power Law Diffusion Coefficient and Anomalous Diffusion: Analysis of Solutions and First Passage Time.

Phys. Rev. E 2003, 67, 061105. [CrossRef] [PubMed]
36. Jiang, X.; Xu, M. The Time Fractional Heat Conduction Equation in the General Orthogonal Curvilinear Coordinate and the

Cylindrical Coordinate Systems. Physica A 2010, 389, 3368–3374. [CrossRef]
37. Bologna, M.; Tsallis, C.; Grigolini, P. Anomalous Diffusion Associated with Nonlinear Fractional Derivative Fokker-Planck-like

Equation: Exact Time-dependent Solutions. Phys. Rev. E 2000, 62, 2213–2218. [CrossRef]
38. Lenzi, E.K.; Malacarne, L.C.; Mendes, R.S.; Pedron, I.T. Anomalous Diffusion, Nonlinear Fractional Fokker–Planck Equation and

Solutions. Phys. A 2003, 319, 245–252. [CrossRef]
39. Tsallis, C.; Lenzi, E.K. Anomalous Diffusion: Nonlinear Fractional Fokker–Planck Equation. Chem. Phys. 2002, 284, 341–347,

Erratum in 2003, 287, 295. [CrossRef]
40. Ho, C.-L. Similarity Solutions for a Class of Fractional Reaction-Diffusion Equations. Chin. J. Phys. 2020, 68, 723–734. [CrossRef]
41. Saichev, A.I. Fractional Kinetic Equations: Solutions and Applications. Chaos 1997, 7, 753–764. [CrossRef]
42. Lenzi, E.K.; Mendes, R.S.; Tsallis, C. Crossover in Diffusion Equation: Anomalous and Normal Behaviors. Phys. Rev. E 2003,

67, 031104. [CrossRef]
43. Zaslavsky, G.M. Hamiltonian Chaos & Fractional Dynamics; Oxford University Press: Oxford, UK, 2005.
44. Balescu, R. V-Langevin Equations, Continuous Time Random Walks and Fractional Diffusion. Chaos Solitons Fractals 2007, 34,

62–80. [CrossRef]
45. Laidler, K.J.; Meiser, J.H. Physical Chemistry; Benjamin/Cummings: Menlo Park, CA, USA, 1982.
46. Predel, B.; Hoch, M.; Pool, M.J. Phase Diagrams and Heterogeneous Equilibria: A Practical Introduction; Springer: Berlin, Ger-

many, 2004.
47. Valiullin, R. (Ed.) Diffusion NMR in Confined Systems: Fluid Transport in Porous and Heterogeneous Materials; Royal Society of

Chemistry: Cambridge, UK, 2017.
48. Schöll-Paschingera, E.; Benavides, A.L.; Castañeda-Priego, R. Vapor-liquid Equilibrium and Critical Behavior of the Square-well

Fluid of Variable Range: A Theoretical Study. J. Chem. Phys. 2005, 123, 234513. [CrossRef] [PubMed]
49. Berberan-Santos, M.N.; Bodunov, E.N.; Valeur, B. Luminescence Decays with Underlying Distributions of Rate Constants: General

Properties and Selected Cases. In Fluorescence of Supermolecules, Polymers and Nanosystems; Berberan-Santos, M.N., Bodunov, B.N.,
Valeur, M., Eds.; Springer: Berlin, Germany, 2008; pp. 67–103.

50. Schumer, R.; Meerschaert, M.M.; Baeumer, B. Fractional Advection-dispersion Equations for Modeling Transport at the Earth
Surface. J. Geophys. Res. 2009, 114, F00A07. [CrossRef]

51. Canales, J. Bedeviled: A Shadow History of Demons in Science; Princeton University Press: Princeton, NJ, USA, 2020.

http://doi.org/10.1088/0305-4470/37/31/R01
http://doi.org/10.1007/s10509-006-9189-6
http://doi.org/10.1155/2011/298628
http://doi.org/10.1016/j.physrep.2013.01.004
http://doi.org/10.1103/PhysRevE.92.012707
http://doi.org/10.1016/j.nicl.2016.10.003
http://doi.org/10.1002/nbm.3960
http://doi.org/10.1016/S0301-0104(02)00552-9
http://doi.org/10.1016/0370-1573(90)90099-N
http://doi.org/10.1016/0960-0779(94)90143-0
http://doi.org/10.1016/j.physa.2018.10.002
http://doi.org/10.1016/j.apm.2004.11.006
http://doi.org/10.1063/1.3621823
http://doi.org/10.1103/PhysRevE.67.061105
http://www.ncbi.nlm.nih.gov/pubmed/16241197
http://doi.org/10.1016/j.physa.2010.04.023
http://doi.org/10.1103/PhysRevE.62.2213
http://doi.org/10.1016/S0378-4371(02)01495-4
http://doi.org/10.1016/S0301-0104(02)00994-1
http://doi.org/10.1016/j.cjph.2020.10.022
http://doi.org/10.1063/1.166272
http://doi.org/10.1103/PhysRevE.67.031104
http://doi.org/10.1016/j.chaos.2007.01.050
http://doi.org/10.1063/1.2137713
http://www.ncbi.nlm.nih.gov/pubmed/16392937
http://doi.org/10.1029/2008JF001246


Mathematics 2021, 9, 1481 29 of 29

52. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach:
Amsterdam, The Netherlands, 1993.

53. Driver, R.D. Ordinary and Delay Differential Equations (AMS vol.20); Springer: New York, NY, USA, 1997.
54. Weeks, E.R.; Urbach, J.S.; Swinney, H.L. Anomalous Diffusion in Asymmetric Random Walks with a Quasi-geostrophic Flow

Example. Physica D 1996, 97, 291–310. [CrossRef]
55. Zaslavsky, G.M. Fractional Kinetic Equation for Hamiltonian Chaos. Physica D 1994, 76, 110–122. [CrossRef]
56. Novikov, D.S.; Fieremans, E.; Jespersen, S.N.; Kiselev, V.G. Quantifying Brain Microstructure with Diffusion MRI: Theory and

Parameter Estimation. NMR Biomed. 2019, 32, e3998. [CrossRef]
57. Novikov, D.S.; Jensen, J.H.; Helpern Fieremans, E. Revealing Mesoscopic Structural Universality with Diffusion. Proc. Natl. Acad.

Sci. USA 2014, 111, 5088–5093. [CrossRef] [PubMed]
58. Moradi, S.; Anderson, J.; Romanelli Kim, H.-T. Global Scaling of the Heat in Fusion Plasmas. Phys. Rev. Res. 2020, 2, 013027.

[CrossRef]
59. del-Castillo-Negrete, D. Non-diffusive, Non-local Transport in Fluids and Plasmas. Nonlinear Process. Geophys. 2010, 17, 795–807.

[CrossRef]
60. Boudabsa, L.; Simon, T. Some Properties of the Kilbas-Saigo Function. Mathematics 2021, 9, 217. [CrossRef]
61. de Oliveira, E.C.; Mainardi, F.; Vaz, J. Fractional Models of Anomalous Relaxation Based on the Kilbas and Saigo Function.

Meccanica 2014, 49, 2049–2960. [CrossRef]
62. Capuani, S.; Palombo, M. Mini Review of Anomalous Diffusion by MRI: Potential Advantages, Pitfalls, Limitations, Nomenclature,

and Correct Interpretation of Literature. Front. Phys. 2020, 7, 248. [CrossRef]
63. Iafrate, F.; Orsingher, E. On the Fractional Wave Equation. Mathematics 2020, 8, 874. [CrossRef]
64. De Gregorio, A.; Orsingher, E. Random Flights Connecting Porous Medium and Euler-Poisson-Darboux Equations. J. Math. Phys.

2020, 61, 041505. [CrossRef]
65. Mainardi, F.; Consiglio, A. The Wright Functions of the Second Kind in Mathematical Physics. Mathematics 2020, 8, 884. [CrossRef]
66. West, B.J. Sir Isaac Newton Stranger in a Strange Land. Entropy 2020, 22, 1204. [CrossRef] [PubMed]

http://doi.org/10.1016/0167-2789(96)00082-6
http://doi.org/10.1016/0167-2789(94)90254-2
http://doi.org/10.1002/nbm.3998
http://doi.org/10.1073/pnas.1316944111
http://www.ncbi.nlm.nih.gov/pubmed/24706873
http://doi.org/10.1103/PhysRevResearch.2.013027
http://doi.org/10.5194/npg-17-795-2010
http://doi.org/10.3390/math9030217
http://doi.org/10.1007/s11012-014-9930-0
http://doi.org/10.3389/fphy.2019.00248
http://doi.org/10.3390/math8060874
http://doi.org/10.1063/1.5121502
http://doi.org/10.3390/math8060884
http://doi.org/10.3390/e22111204
http://www.ncbi.nlm.nih.gov/pubmed/33286972

	Introduction 
	Background 
	Results 
	Fractional Time and Space Derivatives with Power Law D(t) 
	Diffusion Equation with Fractional Time and Space Derivatives 
	Integer Time Derivative and Fractional Space Derivative with Power Law D(t) 
	Fractional Time Derivative and Integer Space Derivative with Power Law D(t) 

	Fractional Time and Space Derivatives with Power Law D(x,t) and Non-Linear in P(x,t) 
	Fractional Time and Space Derivatives with Power Law, D(x), and Linear in P(x,t) 
	Integer Time Derivative with a Non-Linear Space Derivative and a Power Law D(| x |-  ) 
	Fractional Time Derivative and Integer Space Derivatives with a Time and Space-Dependent Diffusion Coefficient, and Linear in P(x,t) 


	Discussion 
	Conclusions 
	Solution to Fractional Diffusion Equation 
	Fractional Time and Space Derivatives with Power Law D(t) 
	Fractional Time and Space Derivatives with Fixed Diffusion Coefficient, D,  
	Integer Time Derivative and Fractional Space Derivative with Power Law D(t) 
	Fractional Time Derivative and Integer Space Derivative with Power Law D(t) 

	Solution to Fractional Diffusion Equation 
	Scaling Analysis 
	Fractional Time and Integer Space Derivatives with Power Law, D(x), and Linear in P(x,t) 
	Integer Time Derivative with a Non-Linear Fractional Space Derivative with a Power Law D(| x |-  ) 
	Fractional Time Derivative and Integer Space Derivatives with a Time- and Space-Dependent Diffusion Coefficient, and Linear in P(x,t) 

	References

