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Abstract: We study a particular case of a convergence model of interest rates. The bond prices are
given as solutions of a parabolic partial differential equation and we consider different possibilities of
approximating them, using approximate analytical solutions. We consider an approximation already
suggested in the literature and compare it with a newly suggested one for which we derive the order
of accuracy. Since the two formulae use different approaches and the resulting leading terms of the
error depend on different parameter sets of the model, we propose their combination, which has a
higher order of accuracy. Finally, we propose one more approach, which leads to higher accuracy of
the resulting approximation formula.
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1. Introduction

The time value of money is expressed through interest rates. Therefore, their modelling
is necessary in all situations in which cash flows from different times are considered.
Short rate models constitute one class of interest rate models. In short rate models, the
instantaneous interest rate (so called short rate) is modelled as a stochastic quantity, using
a stochastic differential equation or a system of such equations. Interest rates with other
maturities are then obtained from the bond prices, whose prices (similarly to other interest
rate derivatives) are solutions to a parabolic partial differential equation. We refer the
reader to books [1,2] that deal with modelling interest rates in detail.

In particular, our interest lies in convergence models, which are used to model interest
rates in a country that is going to enter into a monetary union, or in a country that has
interest rates strongly influenced by rates in a different country. The system of stochastic
differential equations governing the evolution of the domestic short rate therefore consists
of the equation for the union rate and the equation for the domestic rate, whose drift is
a function also of the union rate. The randomness is incorporated by Wiener processes,
which model random shocks in the behaviour of the short rates. The increments of the
Wiener processes can be correlated. The first model of this kind was proposed in [3] and
extended in different ways afterwards, for example in [4] to estimate the model using
noparametric techniques; in [5,6] to generalize the original system of stochastic differential
equations, etc. These generalizations can include dynamic correlation, as suggested in [7].
A dynamic correlation in financial markets was studied previously in [8,9]. In this approach,
the correlation between increments of Wiener processes is then modelled as a deterministic
function of time. In the context of convergence models, this can be used to describe another
source of convergence, when, besides the trend part of the domestic short process being
influenced by the union rate, also the random shocks are getting more correlated.

Closed form solutions of the partial differential equation for the bond prices can be
obtained only in some special cases. In more complicated models, the partial differential
equation can be solved numerically, and the prices may be obtained by Monte Carlo
simulations (using an alternative expression for the bond prices, using expected values)
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or approximated using approximate analytical solutions, which can be implemented in
different ways (see, for example, [10–13].

We consider a particular convergence model with nonconstant volatilities and a
dynamic correlation. In Section 2 we review the relevant models and the bond pricing
partial differential equation, which needs to be solved. Section 3 deals with approximate
analytical solutions to this PDE. We recall a known approximation formula for a more
general model, which is based on the original model [3] with constant volatilities and
correlation. Afterwards, we suggest approximating the desired bond price by the price in a
model with the same volatilities and zero correlation. We derive its accuracy and show that
the order is the same as in the case of the first approximation. However, the leading term of
the error depends on different parameters of the model. This is a motivation for creating a
combination of these two approximations, which has a higher accuracy. Finally, we propose
one more approach leading to higher accuracy in the last part of the Section 3. Finally, in
Section 4, we end the paper with concluding remarks and ideas for future research.

2. Cox–Ingersoll–Ross Model with Dynamic Correlation

The model, which we consider for the domestic short rate rd and the short rate in the
monetary union ru (in what follows, we refer to the interest rates that influence the domestic
rates as the rates in the monetary union, using, for simplicity, this concrete application of
the model), is given by the following system of stochastic differential equations specified
under the physical measure:

drd = (a + κd(ru − rd))dt + σd
√

rddwd, (1)

dru = κu(θ − ru)dt + σu
√

rudwu, (2)

where the increments of the Wiener processes wd and wu are correlated. The correlation
takes the form cor(dwddwu) = ρ(t), where ρ(t) is a deterministic function of time with
values in the interval (−1, 1). The parameters κd, κu, θ, σd, σu of the model are positive
numbers, a is non-negative.

We make several observations about the model. The short rate in the monetary union
given by (2) follows a classical Cox–Ingersoll–Ross model (CIR hereafter) from [14]. It is
the mean reverting process, reverting to the mean level θ; its characteristic feature is the
volatility proportional to

√
ru. We note that a more general form of the model, allowing any

positive power rγ
d to take place instead of the square root, was suggested by Chan, Karolyi,

Longstaff and Sanders (CKLS hereafter) in [15]. The equation for the domestic short rate rd
is an analogy to the equation from the pioneering model in [3], with a constant volatility
replaced by the CIR-type multiple of the square root

√
rd. The drift function describes

the reverting to the current level of the union rate, with a possible minor divergence
given by a. This parameter was suggested in [3], but was found to be insignificant in the
statistical estimation. We kept it in the equation, as it does not provide any complication
to subsequent computations and can be kept at the zero level, if desired. Originally, the
correlation ρ was constant in [3]; here, we introduce a dynamic correlation, according to
the motivation given in the introduction.

In order to find the bond prices, further quantities, so-called market prices of risk,
λd(rd, ru, t), λu(rd, ru, t) have to be specified. By analogy to the one-factor CIR model
and the two-factor model with constant correlation (cf. [16,17]), we take them to be
proportional to square roots of the respective short rates, i.e., λd(rd, ru, t) = λd

√
rd and

λu(rd, ru, t) = λu
√

ru. Then (see, for example, [18] for the derivation), denoting by P(rd, ru, t),
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the price of the domestic bond at time t when the short rates are equal to rd and ru, is a
solution to the following partial differential equation:

∂P
∂t

+ (a + κd(ru − rd))− λdσdrd)
∂P
∂rd

+ (κu(θ − ru)− λuσuru)
∂P
∂ru

+
1
2

σ2
d rd

∂2P
∂r2

d
+

1
2

σ2
uru

∂2P
∂r2

u
+ ρ(t)σdσu

√
rdru

∂2P
∂rd∂ru

− rdP = 0 (3)

satisfied by all rd, ru > 0 and for all t ∈ (0, T), where T is the maturity of the bond. The
terminal condition is given by P(rd, ru, T) = 1 for all r. The bond prices in the monetary
union are given by a closed form formula, see [14], which can be done in the CKLS
framework only in the CIR case of γu = 1/2 and the case of a constant volatility, i.e.,
γu = 0.

We remark that using the market prices of risk, it is possible to rewrite the system of
stochastic differential Equations (1) and (2) into the following so-called risk neutral form:

drd = (a1 + a2rd + a3ru)dt + σd
√

rddw̃d, (4)

dru = (b1 + b2ru)dt + σu
√

rudw̃u, (5)

where w̃d and w̃u are Wiener processes in the so-called risk neutral measure, which is a
probability measure equivalent to the original one in which the model is observed. The
parameters are given by the following:

a1 = a, a2 = −κd − λdσd, a3 = κd, b1 = κuθ, b2 = −κu − λuσu. (6)

The correlation structure is preserved, so cor(dw̃ddw̃u) = ρ(t). Again, we refer the
reader to more details to [18] for more details on the risk neutral measure.

Using this parametrization and the change in time variable τ = T − t, the partial
differential Equation (3) transforms into the equation P(rd, ru, τ) given by the following:

∂P
∂t

+ (a1 + a2rd + a3ru)
∂P
∂rd

+ (b1 + b2ru)
∂P
∂ru

+
1
2

σ2
d rd

∂2P
∂r2

d
+

1
2

σ2
uru

∂2P
∂r2

u
+ ρ(T − τ)σdσu

√
rdru

∂2P
∂rd∂ru

− rdP = 0 (7)

for rd, ru > 0 and τ ∈ (0, T) with initial condition P(rd, ru, 0) = 1 for rd, ru > 0 . This is the
equation for which we are trying to find an analytical approximation solution.

3. Approximating the Bond Prices in the Cox–Ingersoll–Ross Convergence Model with
Dynamic Correlation

In this section, we present our results concerning approximate analytical solutions
of Equation (7). The first subsection uses a known result concerning a more general
convergence model. The approximation formula is based on the convergence model with
constant volatilities and a constant nonzero correlation. Therefore, it might be seen as an
approximation disregarding the nonconstant nature of volatility but taking the correlation
into account. The second subsection uses a different approach, which can be seen as
a complement. We suggest to approximate the bond price by the solution to the bond
pricing PDE for the model with the same CIR-type nonconstant volatilities but with zero
correlation. We derive the order of accuracy for this approximation. Since the orders of
accuracy for these two approximations turn out to be the same, we are able to combine
them and obtain an approximation with a higher order of accuracy. In the last subsection,
we propose another approach for increasing the accuracy of the approximation and derive
one more formula, approximating the bond prices.

We note that all of these approximations have the order of accuracy given in the form
of the difference between logarithms of the exact and approximate bond price. It is derived
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that this difference is O(τk) for a certain natural number k as τ → 0+. It means that the
difference is guaranteed to be small for small times to maturity τ. However, it is often
the case that approximations of this kind provide a very accurate approximation for τ
up to several years; see, for example, ref. [7] for a numerical comparison in the case of a
convergence model with constant volatilities and dynamic correlation.

3.1. A Known Approximation for a CKLS-Type Convergence Model

In [7] a dynamic correlation was introduced into a convergence model with non-
constant CKLS-type volatilities, i.e., the domestic short rate rd and the European (or, in
general, the leading) short rate ru follow the system of stochastic differential equations in
the following risk-neutral measure:

drd = (a1 + a2rd + a3ru)dt + σdrγd
d dwd, (8)

dru = (b1 + b2ru)dt + σurγu
u dwu, (9)

where the correlation between increments of the Wiener processes wd, wu is a deterministic
function of time ρ(t). The paper proposes an approximate analytical solution to the bond
prices, which is based on the exact solution in case of constant volatilities (i.e., γd = γu = 0)
and a constant correlation ρ, which was derived in the original pioneering paper [3] by
Corzo and Schwartz. The bond price Pcs(rd, ru, τ) in the Corzo and Schwartz model has
the following form:

log Pcs(rd, ru, τ) = Acs(τ)− Dcs(τ)rd −Ucs(τ)ru, (10)

where, in the generic case a2 6= b2, the functions Acs, Dcs, Ucs are given by the following:

Dcs(τ) =
ea2τ − 1

a2
, Ucs(τ) =

a3

(
−a2(eb2τ − 1) + b2(ea2τ − 1)

)
a2b2(a2 − b2)

, (11)

Acs(τ) =
∫ τ

0
−a1D(s)− b1U(s) +

σ2
d

2
D2(s) +

σ2
u

2
U2(s) + ρσdσuD(s)U(s)ds. (12)

The function Acs can be written in the close form, too. We omit evaluating the integral
for the sake of brevity.

The approximation proposed in [7] is given by substituting instantaneous volatilities
σdrγd

d and σurγu
u in place of constant volatilities in the model and the correlation at the time

of bond maturity ρ(T), in place of the constant correlation, i.e., the following:

σ2
d 7→ σ2

d r2γd
d , σ2

u 7→ σ2
ur2γu

u , ρ 7→ ρ(T), (13)

in the solution from the model by Corzo and Schwartz, given by (10)–(12).
It was shown in [7] that if we denote the exact solution of the bond price in the CKLS

model with dynamic correlation by Pex,ckls and the proposed approximation by Pap,ckls,
then the difference of their logarithms is of the order τ4 as τ → 0+. In particular, we have
(cf. [7]) the following:

log Pap,ckls(rd, ru, τ)− log Pex,ckls(rd, ru, τ) = − 1
24

σ2
d γdr2γd−1

d [2(a1 + a2rd + a3ru)

−r2γd−1
d σ2

d (2γd − 1)
]
τ4 + O(τ5) (14)

as τ → 0+. It is worth noting that the accuracy formula has the leading term that does not
depend on the correlation function ρ.

In our case of the CIR model, when γd = 1/2, γu = 1/2, we, therefore, have the
following theorem.
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Theorem 1. Let Pex(rd, ru, τ) be the exact solution of the partial differential Equation (7) and
Pap,cir(rd, ru, τ) be the approximation obtained by substituting the following:

σ2
d 7→ σ2

d rd, σ2
u 7→ σ2

uru, ρ 7→ ρ(T) (15)

in (10)–(12). Then,

log Pap,cir(rd, ru, τ)− log Pex,cir(rd, ru, τ) = − 1
24

σ2
d (a1 + a2rd + a3ru)τ

4 + O(τ5) (16)

as τ → 0+.

3.2. Approximation by Using the Cox–Ingersoll–Ross Model with Zero Correlation

As outlined at the beginning of this section, we propose to approximate the solution of
Equation (7) by the solution obtained for ρ = 0. In this case, it is known that the solution has
a separated form and its calculation can be transformed into solving a system of ordinary
differential equations, cf. [16,17]. Unlike the approximation from the previous subsection,
this approximation is not a closed form formula. However, a numerical solution of the
resulting system can be easily performed, using a selected numerical method. This is a
significantly easier problem from a numerical point of view, compared to solving the partial
differential equation for the original case of a dynamic correlation. We use this special form
of the solution for the zero correlation case in the proof of the following theorem, giving
the accuracy of this approximation.

Theorem 2. Let Pex(rd, ru, τ) be the solution of the partial differential Equation (7), and let
P0,cir(rd, ru, τ) be the solution of the same equation with ρ identically equal to zero. Then,

log P0,cir(rd, ru, τ)− log Pex(rd, ru, τ) = −1
8

a3σdσu
√

rdruρ(T)τ4 + O(τ5) (17)

as τ → 0+.

Proof. Denoting the logarithm of the exact bond price by f (τ, rd, ru), we can write the
partial differential equation, which it satisfies, in the following form:

− ∂ f
∂τ

+ (a1 + a2rd + a3ru)
∂ f
∂rd

+ (b1 + b2ru)
∂ f
∂ru

+
σ2

d rd

2

[
∂2 f
∂r2

d
+

(
∂ f
∂rd

)2
]

+
σ2

uru

2

[
∂2 f
∂r2

u
+

(
∂ f
∂ru

)2
]
+ ρ(T − τ)σdσu

√
rdru

[
∂ f
∂rd

∂ f
∂ru

+
∂2 f

∂rd∂ru

]
− rd = 0 (18)

for τ ∈ (0, T), where T is the maturity of the bond, and for rd, ru > 0. If we substitute the
logarithm of the approximate solution denoted by f ap = log P0,cir to the left hand side
of (18), we obtain a nontrivial right hand side, which we denote by h(rd, ru, τ). As can be
verified by substitution into the PDR, the function f ap has the following form:

f ap(rd, ru, τ) = A(τ)− D(τ)rd −U(τ)ru

and the functions A(τ), D(τ), U(τ) satisfy the following system of ordinary differential
equations:

Ḋ(τ) = 1 + a2D(τ)− 1
2

σ2
d D2(τ), (19)

U̇(τ) = a3D(τ) + b2U(τ)− 1
2

σ2
uU2(τ), (20)

Ȧ(τ) = −a1D(τ)− b1U(τ), (21)



Mathematics 2021, 9, 1469 6 of 10

with initial conditions A(0) = D(0) = U(0) = 0, cf. [16,17]. Using the system (19)–(21) we
can write the following:

D(τ) = τ + O(τ2), U(τ) =
1
2

a3τ2 + O(τ3), A(τ) = −1
2

a1τ2 + O(τ3). (22)

Using the leading terms of the functions D(τ), U(τ), A(τ) given by (22) together with
the following:

ρ(T − τ) = ρ(T) + O(τ) (23)

we obtain the following expression for the function h:

h(rd, ru, τ) =
1
2

a3σdσu
√

rdruρ(T)τ3 + O(τ4). (24)

Introducing the function g = f ap − f ex, we can write the following PDE, which it
satisfies:

− ∂g
∂τ

+ (a1 + a2rd + a3ru)
∂g
∂rd

+ (b1 + b2ru)
∂g
∂ru

+
1
2

σ2
d rd

[(
∂g
∂rd

)2
+

∂2g
∂r2

d

]

+
1
2

σ2
uru

[(
∂g
∂ru

)2
+

∂2g
∂r2

u

]
+ ρ(T − τ)σdσu

√
rdru

(
∂g
∂rd

∂g
∂ru

+
∂2g

∂ru∂rd

)

= h(rd, ru, τ) + σ2
d rd

[(
∂ f ex

∂rd

)2
− ∂ f ex

∂rd

∂ f ap

∂rd

]
+ σ2

uru

[(
∂ f ex

∂ru

)2
− ∂ f ex

∂ru

∂ f ap

∂ru

]

+ρ(T − τ)

(
2

∂ f ex

∂rd

∂ f ex

∂ru
− ∂ f ex

∂ru

∂ f ap

∂rd
− ∂ f ex

∂rd

∂ f ap

∂ru

)
(25)

= h(rd, ru, τ) + σ2
d rd

[(
∂ f ex

∂rd

)2
+

∂ f ex

∂rd
D

]
+ σ2

uru

[(
∂ f ex

∂ru

)2
+

∂ f ex

∂ru
U

]

+ρ(T − τ)

(
2

∂ f ex

∂rd

∂ f ex

∂ru
+

∂ f ex

∂ru
D +

∂ f ex

∂rd
U
)

. (26)

Since we are interested in the order of the function g as τ → 0+, we write it in the
form g(rd, ru, τ) = ∑∞

i=ω ck(rd, ru)τω . Logarithms of both the exact and approximate bond
prices have zero value; therefore, g(rd, ru, 0) = 0 and ω ≥ 1. The lowest order term on the
left hand side of (26) is, therefore, (−ω)cω(rd, ru)τω−1 and we match it with the lowest
order term on the right hand side.

Since f ex(rd, ru, τ) = O(τ), also its partial derivatives with respect to rd and ru are
O(τ). Together with (22)–(24), we see that the right hand side of Equation (26) is at least
of the order O(τ2). It follows that ω ≥ 3. This implies that f ex(rd, ru, τ) = f ap(rd, ru, τ) +
O(τ3) and consequently, ∂ f ex/∂r = ∂ f ex/∂r + O(τ3) for r = rd and r = ru. Using the
orders of the functions D and U given by (22), we have the following estimates for the
terms on the right hand side of (26):(

∂ f ex

∂rd

)2
+

∂ f ex

∂rd
D = D2 + O(τ4) + (−D + O(τ3))D = O(τ4),(

∂ f ex

∂ru

)2
− ∂ f ex

∂ru
U = (U2 + O(τ5)− (−U + O(τ3))(−U) = O(τ5),

2
∂ f ex

∂rd

∂ f ex

∂ru
+

∂ f ex

∂ru
D +

∂ f ex

∂rd
U = 2(−D + O(τ3))(−U + O(τ3)) + (−U + O(τ3))D

+(−D + O(τ3))U = O(τ4).
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Recalling (23), we can, therefore, conclude that the right hand side of Equation (26)
has the order O(τ3), and the only O(τ3) term comes from the expansion of the function h
given by (24). Finally, it means that ω = 4 and

−4c4(rd, ru, τ) =
1
2

a3σdσu
√

rdruρ(T),

from which the claim of the theorem follows.

3.3. Combination of the Approximations

Let us note the different features of the approximations from the previous subsections
and their different leading terms in error estimates.

The first approximation keeps some of the information about correlation (instead of
dynamic correlation it assumes it being constant) and disregards the nonconstant behaviour
of the volatilities (they are taken to be constant, equal to their present value). The leading
term in the error is a multiple of the risk neutral drift of the domestic short rate; the constant
depends on its volatility parameter.

On the other hand, the latter approximation keeps the volatilities unchanged but
disregards the correlation completely (it is taken to be zero). The leading term of the error
is a multiple of the product of the instantaneous volatilities of both domestic and union
short rates. The constant depends on the correlation at maturity and one of the coefficients
from the risk neutral drift of the domestic short rate. We can also notice that in the usual
case of positive correlation, the leading term is positive (recall the transformation of the
parameters (6) and Equation (1) in the original probability measure).

This different character of the approximations motivates us to use both of them by
creating their suitable combination. Recall that we have the following:

log Pap,cir(rd, ru, τ)− log Pex(rd, ru, τ) = c̃(rd, ru)τ
4 + O(τ5),

log P0,cir(rd, ru, τ)− log Pex(rd, ru, τ) = c(rd, ru)τ
4 + O(τ5)

with
c̃(rd, ru) = −

1
24

σ2
d (a1 + a2rd + a3ru), c(rd, ru) = −

1
8

a3σdσu
√

rdruρ(T).

Therefore, the following theorem holds.

Theorem 3. Let Pex(rd, ru, τ) be the solution of the partial differential Equation (7) and let
Pap,new(rd, ru, τ) be a new approximation given by the following:

log Pap,new(rd, ru, τ) = α(rd, ru) log Pap,cir(rd, ru, τ) + (1− α(rd, ru)) log P0,cir(rd, ru, τ)

with

α(rd, ru) =
c(rd, ru)

c(rd, ru)− c̃(rd, ru)
=

3a3σdσu
√

rdruρ(T)
3a3σdσu

√
rdruρ(T)− σ2

d (a1 + a2rd + a3ru)
,

where Pap,cir is the approximation from Theorem 1 and P0,cir is the approximation from Theorem 2.
Then,

Pap,new(rd, ru, τ)− log Pex(rd, ru, τ) = O(τ5).

The new approximation uses information from both approaches and it has a higher
order of accuracy. The weights are not necessarily from the interval (0, 1). We remark that
this property is, however, guaranteed if the risk neutral drift of the domestic short rate is
negative and the correlation at the bond’s maturity is positive. In such a case, the leading
terms of the errors have opposite signs, and, as expected, the new improved approximation
lies between them. In general, this does not need to be the case.
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3.4. A Different Substitution of Parameters in the Constant Volatility Model

In this subsection, we provide a different approach to increasing the accuracy of the
approximation from Section 3.1. Instead of combining it with a different approximation as
we did in the previous subsection, we change the values, which are substituted into the
closed form solution for the bond price in the model with constant volatilities. Recall that
the approximation from Section 3.1 consists of substituting the terms in the solution by
Corzo and Schwartz, according to (15). Now, we look for a modified substitution of the
following form:

σ2
d 7→ σ2

d rd + d1(rd, ru)τ, σ2
u 7→ σ2

uru, ρ 7→ ρ(T), (27)

where our choice of the function d1(rd, ru) leads to an approximation formula with a higher
order of accuracy. Let us remark that our motivation for altering the σ2

d term comes from
the fact that in computation of the function h(rd, ru, τ), it is this term that gets multiplied
by functions of the lowest order.

In order to see that the function h is indeed the crucial term of (25), when computing
the order of accuracy, we show that the remaining terms on the right hand never enter
the matching of the right hand side with the O(τω−1) term of the left hand side when
g(rd, ru, τ) = ∑∞

k=ω ckτk. We saw that this was the case when the approximation was given
by the solution to the model with zero correlation, when the terms ∂ f ap/∂rd and ∂ f ap/∂ru
were equal to functions characterized by ordinary differential equation, which allowed us
to determine their order. In general, we can write the following:(

∂ f ex

∂rd

)2
− ∂ f ex

∂rd

∂ f ap

∂rd
= −∂ f ex

∂rd

(
∂ f ap

∂rd
− ∂ f ex

∂rd

)
= −∂ f ex

∂rd

∂g
∂rd

= O(τ)O(τω) = O(τω+1),(
∂ f ex

∂ru

)2
− ∂ f ex

∂ru

∂ f ap

∂ru
= −∂ f ex

∂ru

(
∂ f ap

∂ru
− ∂ f ex

∂ru

)
= −∂ f ex

∂ru

∂g
∂ru

= O(τ)O(τω) = O(τω+1),

2
∂ f ex

∂rd

∂ f ex

∂ru
− ∂ f ex

∂ru

∂ f ap

∂rd
− ∂ f ex

∂rd

∂ f ap

∂ru
= −∂ f ex

∂ru

(
∂ f ap

∂rd
− ∂ f ex

∂rd

)
− ∂ f ex

∂rd

(
∂ f ap

∂ru
− ∂ f ex

∂ru

)
= −∂ f ex

∂ru

∂g
∂rd
− ∂ f ex

∂rd

∂g
∂ru

= O(τ)O(τω) + O(τ)O(τω) = O(τω+1).

Since the terms multiplying the expressions above in (25) are O(1), being either
independent of τ or an O(1) function ρ(T − τ), their products cannot be matched with
O(τω−1) term on the left hand side. Therefore, the term being matched is h(rd, ru, τ), and
if this function is O(τµ), then ω = µ + 1.

Now, using (27) and substituting the resulting f ap into the left hand side of (18) in
place of f leads to the function h(rd, ru, τ) given in the closed form, which can be expanded
as the following:

h(rd, ru, τ) =
1
6

(
−(a1 + a2rd + a3ru)σ

2
d + 4d1(rd, ru)

)
τ3 + O(τ4).

Therefore, in order to cancel the O(τ3) term, we need to take the following:

d1(rd, ru) =
σ2

d
4
(a1 + a2rd + a3ru) (28)

in the substitution (27). With this choice, we obtain h(rd, ru, τ) = O(τ4) and therefore, the
approximation f ap satisfies f ap − f ex = O(τ5).

We can summarize the computations in this subsection in the following theorem.
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Theorem 4. Let Pex(rd, ru, τ) be the exact solution of the partial differential Equation (7), and let
Pap(rd, ru, τ) be the approximation obtained by substituting the following:

σ2
d 7→ σ2

d rd +
σ2

d
4
(a1 + a2rd + a3ru)τ, σ2

u 7→ σ2
uru, ρ 7→ ρ(T) (29)

in (10)–(12). Then

log Pap(rd, ru, τ)− log Pex,cir(rd, ru, τ) = O(τ5) (30)

as τ → 0+.

4. Conclusions

In this paper, we considered several ways of approximating the bond prices in a
Cox–Ingersoll–Ross model convergence model with dynamic correlation. A closed form
approximation formula, which was already suggested, is complemented by an alternative
method with the same order of accuracy, requiring a numerical solution of a system of
ordinary differential equations. This is not a closed form approximation but it is still a
numerically uncomplicated problem. Moreover, it uses different information from the
original model and leads to an error, which has the leading term depending on different
set of parameters. These two approximations can be combined to form yet another approx-
imation, which has a higher order of precision. An alternative way of obtaining a higher
order of accuracy is modifying the substitution made in the original formula.

In the future, it might be useful to look for simple approximation formulae, also in
the case of other, more complicated models. The model considered in the paper assumes
a dynamic correlation, while the other parameters of the model are kept constant. This
is not necessarily true in reality, which leads to models with time-dependent parameters.
They may be dynamic (given by a deterministic function of time) or stochastic (governed
by a stochastic differential equation). We mention, for example, a cyclical model [19], with
the volatility and equilibrium short rate modelled as periodic functions of time. A review
of stochastic volatility models for interest rates can be found in [20]. In addition, Wiener
processes may not be sufficient to capture the stochastic character of the interest rates. A
popular class of models uses Lévy processes to model jumps; we refer the reader to [21–23]
for examples of interest rate models of this form.

A second path of future research is the experimental part of the study concerned with
approximation formulae, which includes an analysis of real data. A simple approximate
solution of the bond pricing equation is useful in many applications, where an evaluation
of the bond prices is necessary. We plan to focus our future work on using these approxi-
mations in inverse problems, similar to those in [24–26]. In particular, we are interested
in estimating the implied correlation from the market data. This will bring interesting
information about the nature of convergence of interest rates.
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