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Abstract: This article shows that the recently proposed latent D-scoring model of Dimitrov is statisti-
cally equivalent to the two-parameter logistic item response model. An analytical derivation and a
numerical illustration are employed for demonstrating this finding. Hence, estimation techniques for
the two-parameter logistic model can be used for estimating the latent D-scoring model. In an em-
pirical example using PISA data, differences of country ranks are investigated when using different
metrics for the latent trait. In the example, the choice of the latent trait metric matters for the ranking
of countries. Finally, it is argued that an item response model with bounded latent trait values like
the latent D-scoring model might have advantages for reporting results in terms of interpretation.

Keywords: latent D-scoring model; logistic item response model; identifiability; item parameter esti-
mation; PISA

1. Introduction

Item response theory (IRT; [1]) is the statistical analysis of test items in education,
psychology, and other fields of social sciences. Typically, a number of test items are
administered to test takers, and the interest is to infer the ability (performance or trait) of
them. IRT models relate observed item responses to unobserved latent traits. Because the
latent trait is unobserved, there are many plausible choices for modeling these relationships.
The most popular class of IRT models comprises logistic IRT models [2]. Recently, in a
series of papers, Dimitrov proposed an alternative IRT model, the so-called latent D-scoring
model [3]. The main goal of this paper is to demonstrate that the newly proposed IRT
model is statistically equivalent to the well-established two-parameter logistic IRT model.

The paper is structured as follows. In Section 2, IRT models are introduced in their
general form. Afterward, the logistic IRT model and the latent D-scoring model are
discussed. In Section 3, we show the statistical equivalence of the latent D-scoring model
and the logistic IRT model utilizing an analytical derivation and a numerical illustration.
Furthermore, we study the properties of the two models. Section 4 presents an empirical
example that compares outcomes of the two different modeling strategies and compares
them with two alternative parameterizations of the latent trait. Finally, the article closes
with a discussion.

2. Item Response Modeling

In Section 2.1, we discuss the indeterminacy of the latent trait in IRT models. In
Section 2.2, we focus on the logistic IRT model and its estimation. As an alternative IRT
model, the latent D-scoring model is introduced in Section 2.3.
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2.1. Indeterminacy of the Latent Trait in IRT Models

A unidimensional IRT model for dichotomous item responses Xi ∈ {0, 1} is a statistical
model [2]

P(X = x) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ)

xi (1− Pi(θ))
1−xi

]
f (θ)dθ , θ ∼ F , (1)

where f denotes the density function of the latent variable θ (also denoted as the latent trait),
and Pi(x, θ) = P(Xi = x|θ) denotes the item response function of item i. Note that items
i = 1, . . . , I are conditionally independent given the latent trait θ. The model parameters
in Equation (1) are typically not uniquely defined. Assume that one utilizes a monotone
function m : R→ (0, 1) for defining a transformed latent trait δ by δ = m(θ). For example,
m could be the logistic function Ψ(x) = [1 + exp(−x)]−1 that maps the real line onto the
unit interval (0, 1). Define P∗i (δ) = Pi(m−1(δ)), where m−1 denotes the inverse function of
m. Furthermore, denote by g the density function of the transformed latent trait δ. The IRT
model in Equation (1) can be equivalently written as

P(X = x) =
∫ 1

0

I

∏
i=1

[
P∗i (δ)

xi (1− P∗i (δ))
1−xi

]
g(δ)dδ . (2)

The density g can be obtained from the density f by applying the density transforma-
tion theorem

g(δ) =
f (m−1(δ))

m′(m−1(δ))
, (3)

where m′ = dm
dx is the derivative of m with respect to θ.

It could be argued that only ordinal information can be extracted from the latent trait θ
because the general IRT model (1) is only identified up to monotone transformations [4–7].
The indeterminacy of the latent trait metric implies that a researcher can seek a trans-
formation m(θ) for the sake of enhancing interpretations of the results. One possible
transformation is the true score metric τ = τ(θ) [2] that maps the θ metric from the real
line to the bounded interval (0, 1) by defining

τ(θ) =
1
I

I

∑
i=1

Pi(θ). (4)

For a fixed value of θ, τ = τ(θ) is the expected value of the proportion of correctly
solved items. Another alternative is the rank score metric ρ = ρ(θ) [7] that is defined by

ρ(θ) = F(θ), (5)

where F is the distribution function of θ. One can show that ρ follows a uniform distribution
(hence, the label “rank score”):

P(ρ ≤ u) = P(F(θ) ≤ u) = P(θ ≤ F−1(u)) = F(F−1(u)) = u , 0 < u < 1 . (6)

2.2. Logistic Item Response Model

An important class of IRT models is the class of logistic IRT models. Logistic IRT
models employ the logistic link function for parameterizing IRFs. The IRFs in the two-
parameter logistic (2PL) model [8] are given by

P(Xi = 1|θ) = Pi(θ) =
1

1 + exp(−ai(θ − bi))
= Ψ(ai(θ − bi)), θ ∼ F , (7)
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where ai are item discriminations, and bi are item difficulties. The one-parameter logistic
(1PL) model (Rasch model; [9]) is obtained by setting all item discriminations equal to one
(i.e., ai = 1 for i = 1, . . . , I).

In Figure 1, IRFs of seven items of the 2PL model are displayed (see the figure legend
for item parameters ai and bi). It can be seen that items with higher item discriminations ai
have steeper slopes. Additionally, items with larger item difficulties bi are shifted to the
right. A fundamental property of IRFs in the 2PL model is a lower asymptote of zero and
an upper asymptote of one. Hence, persons with very low abilities (θ → −∞) have almost
zero probability of correctly solving any item in the test, while highly able persons (θ → ∞)
correctly solve items with a probability of one. Alternative IRT models allow lower and
upper asymptotes different from 0 or 1, respectively [10].
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Figure 1. Item response functions for seven items of the 2PL model.

In many applications, a normal distribution N(µ, σ2) for the latent trait θ is assumed [7].
However, more flexible distributions or semiparametric specifications are possible [11,12].
Identification constraints are required in the 1PL and 2PL models for the estimation of
model parameters. In the 1PL model, one can identify the model by setting µ = 0 or fixing
an item difficulty of a reference item to 0 (or to a prespecified value). Alternatively, one can
constrain the sum of the item difficulties equal to zero. In the 2PL model, identification can
be ensured by posing a standard normal distribution N(0, 1) (i.e., µ = 0 and σ = 1). Alter-
natively, a reference item i0 can be chosen for which ai0 = 1 and bi0 = 0 are used as fixed
values in the estimation. Using a reference item has the advantage that the distribution F
of θ can be flexibly estimated without using constraints on some parameters of F.

The 1PL model or the 2PL model can be estimated using marginal maximum likelihood
(MML) or joint maximum likelihood (JML) estimation [2]. It is noteworthy that ∑I

i=1 Xi is a
sufficient statistic for θ in the 1PL model, while ∑I

i=1 aiXi is the corresponding sufficient
statistic in the 2PL model. Hence, the different models imply different interpretations and
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implications of the trait because the contribution of items to the variable of interest differs
considerably [13].

2.3. Dimitrov’s Latent D-Scoring Model

Dimitrov proposes an alternative IRT model that has a bounded metric for the latent
trait. His latent D-scoring (LDS) model [3,14] includes a latent trait δ that takes values in
the interval (0, 1). The IRF in the LDS model is given as [15]

P(Xi = 1|δ) = 1

1 +
[

1−δ
δ

βi
1−βi

]αi
, δ ∼ G , (8)

where G is some distribution on (0, 1). Item discriminations αi are non-negative and
indicate the extent to which item i measures the trait δ. Item difficulties δi range between
0 and 1 and primarily determine the proportion of correctly solving item i. The IRF in
Equation (8) is also referred to as the rational function model with two item parameters [15].
The IRFs of the LDS model for seven items are shown in Figure 2 (see the figure legend for
item parameters αi and βi).
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Figure 2. Item response functions for seven items of the LDS model.

The LDS model with one item parameter is obtained by setting αi = 1 [15]:

P(Xi = 1|δ) = 1

1 + 1−δ
δ

βi
1−βi

, δ ∼ G . (9)
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The LDS model with three item parameters that accommodates guessing effects is
defined as [15]

P(Xi = 1|δ) = γi + (1− γi)
1

1 +
[

1−δ
δ

βi
1−βi

]αi
, δ ∼ G . (10)

In the following, we mainly consider the case of the LDS model with two item param-
eters.

The LDS model can be estimated with MML [3] or JML [16]. In Section 3, we show that
identification constraints are needed for the estimation of the model. The latent D-scoring
model is applied in psychometric areas of linking and equating [16], differential item
functioning [14], and the development of multistage tests [17].

3. Relation of the Latent D-Scoring Model and the 2PL Model

In this section, we show the close correspondence of the 2PL model and the LDS model.
It is demonstrated that the two models are equivalent using analytical (Section 3.1) and
numerical (Section 3.2) arguments. However, the two models imply different consequences
regarding measurement precision and interpretations (Section 3.3). Finally, we propose an
extension of the LDS model to multiple dimensions in Section 3.4.

3.1. Equivalence of the Latent D-Scoring Model and the 2PL Model

In this subsection, we analytically show that the LDS model is statistically equivalent to
the 2PL model. Consequently, the model parameters of the 2PL model can be transformed
to obtain model parameters of the LDS model.

The IRF of the LDS model (Equation (8)) can be rewritten as

P(Xi = 1|δ) = 1

1 + exp
(
−αi

[
log δ

1−δ − log βi
1−βi

]) , δ ∼ G , (11)

where G is the distribution function of δ. By defining θ = log δ
1−δ , bi = log βi

1−βi
, and ai = αi,

one can rephrase the LDS model in Equation (11) as the 2PL model. Equivalently, we
can write δ = Ψ(θ) = [1 + exp(−θ)]−1 as the logistic transform of θ. Note that the
logistic transform of δ = Ψ(θ) was also discussed in [6,7]. Hence, the LDS model is a
reparametrization of the 2PL model. Hence, estimation routines for the 2PL model can
be used for estimating the latent D-scoring model, and item parameters are transformed
afterward; that is, αi = ai and βi = Ψ(bi).

Our derivation also implies that the LDS model with one item parameter is equivalent
to the 1PL model. Moreover, the LDS model with three parameters is equivalent to the
three-parameter logistic IRT model.

The distribution of δ can also be derived from the distribution of θ. The density
function g of δ can be obtained from the density function f of θ by applying Equation (3)

g(δ) =
1

δ(1− δ)
f
(

log
δ

1− δ

)
. (12)

Conversely, the density function θ can also be obtained from the density function of
δ by

f (θ) = Ψ(θ)(1−Ψ(θ))g(Ψ(θ)). (13)

The estimation of the LDS model using software for the 2PL model requires a correct
specification of the distribution for θ. Suppose that a particular distributional assumption
is posed on δ with density g. In that case, the estimation procedure must ensure that the
assumed distribution for θ aligns with the implied density f for θ (see Equation (13)) to
avoid biased item parameter estimates.
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The variance–covariance matrix V for item parameters in the 2PL model can be
obtained utilizing the observed information matrix. The transformed item parameters
for the LDS model emerge from a nonlinear transformation of the 2PL item parameters.
Hence, the delta method can be applied for obtaining item parameters for the LDS model.
In more detail, the matrix A of derivatives of the transformed item parameters with respect
to the 2PL item parameters is a diagonal matrix, and the variance–covariance matrix for
transformed item parameters is AVAT .

In Section 2.2, we showed that identification constraints are needed for estimating the
2PL model. Because the latent D-scoring model is equivalent to the 2PL model, the former
also needs identification constraints. In the 2PL model, the location (i.e., the mean µ) and
the scale (i.e., the standard deviation σ) for the latent trait θ can be fixed in the estimation.
This would translate into identification constraints for the LDS model. Alternatively,
a reference item i0 could be chosen for the LDS model with fixed parameters αi0 = 1 and
βi0 = 0.5.

3.2. Numerical Illustration

This subsection demonstrates that the LDS model can be estimated using software
for the 2PL model. We used item parameters of I = 7 items of the LDS model that were
also used in Figure 2 (see also Table 1). The multivariate distribution of these I = 7 items
according to the LDS model can be written as

P(X = x) =
∫ 1

0

I

∏
i=1

[
Pi(δ; αi, βi)

xi (1− Pi(δ; αi, βi))
1−xi

]
g(δ)dδ , (14)

where Pi(δ; αi, βi) is the IRF for the ith item of the LDS model, and x = (x1, . . . , xI). Note
that there are 2I = 128 different item response patterns. The corresponding marginal
probabilities P(X = x) are computed using (14) and numerical integration with respect to
θ. This numerical illustration aims to compute the multivariate distribution P(X = x) of X
in Equation (14) for specified item and distribution parameters and to show that the input
parameters can be uniquely and correctly identified from P(X = x). This probability distri-
bution corresponds to a population, i.e., a sample with an infinite sample size. Maximum
likelihood estimation is applied to estimate the item and distribution parameters. Sampling
variability does not play a role in estimated (i.e., identified) parameters by relying on the
population. Hence, the illustration demonstrates the parameter equivalence of the 2PL and
the LDS model at the population level. Note that no standard errors must be reported for
item parameters because the data are defined at the population level.

In Section 3.1, we derived the transformation of item parameters from the 2PL model
to the LDS model when showing statistical equivalence. Notably, for establishing statistical
equivalence, the distribution G for δ is a transformation of the distribution of F for θ. When
item parameters of the LDS model are obtained with transformed item parameters from
the 2PL model, it must be ensured that the distribution F of θ is correctly specified in
the 2PL model. This means that F corresponds to the distribution G for δ that is used
for generating data. Hence, we investigate whether distributional misspecifications of θ
have consequences for transformed item parameters of the LDS model. We considered
two distributions for δ in the data-generating model. First, δ followed a beta distribution
Beta(4,2) [18]. Second, δ followed a logit-normal distribution LogitN (0.6, 1.22); that is
θ = log δ

1−δ is a normal distribution with a mean of 0.6 and a standard deviation of
1.2 [19–21].

The 2PL model was estimated in the R [22] package sirt [23] using a sample weights
option that inputs the item response pattern probabilities P(X = x). To avoid a restrictive
distributional assumption on θ, we used a fixed grid of 61 equidistant θ values ranging
between −6 and 6 and assumed a normal distribution for θ. The item parameters of the
fourth item were fixed (i.e., a4 = 1 and b4 = 0 in the 2PL model, which corresponds
to α4 = 1 and β4 = 0.5 in the LDS model). The 2PL model was estimated using MML
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estimation and an EM algorithm [24]. Sample R code for the estimation is provided in
Appendix A.

Table 1. Estimated item parameters for the numerical illustration assuming a logit-normal distribu-
tion and a beta distribution.

Item
LDS 2PL LogitN (0.6, 1.22) Beta (4,2)

αi βi ai bi α̂i β̂i α̂i β̂i

1 0.50 0.10 0.50 −2.20 0.501 0.101 0.505 0.102
2 1.00 0.30 1.00 −0.85 1.002 0.301 0.988 0.296
3 0.50 0.50 0.50 0.00 0.501 0.500 0.513 0.502
4 ‡ 1.00 0.50 1.00 0.00 1.000 0.500 1.000 0.500
5 1.50 0.50 1.50 0.00 1.503 0.500 1.472 0.499
6 1.50 0.70 1.50 0.85 1.504 0.700 1.531 0.701
7 1.00 0.90 1.00 2.20 1.002 0.900 1.071 0.892

Note. LDS = latent D-scoring model; 2PL = two-parameter logistic model; LogitN = logit-normal distribution;
Beta = beta distribution; ‡ = Item 4 was used as a reference item in estimation by fixing a4 = 1 and b4 = 0 (i.e.,
α4 = 1 and β4 = 0.50).

Results for this numerical illustration are presented in Table 1. It can be seen that
estimated item parameters α̂i and β̂i for the LDS model almost perfectly recover true values
in the case of the logit-normal distribution. This finding can be expected because the
log-linear smoothing approach includes the normal distribution as a particular instance
(smoothing up to two moments). Slightly larger deviations were observed if the distribution
for δ was a beta distribution. The logit transform of the beta distribution is not correctly
represented by a normal distribution for θ, which explains slight biases in item parameter
estimates. For example, β̂7 = 0.892 deviated from the true values β7 = 0.90 and α̂5 = 1.472
deviated from α5 = 1.50. However, these numerical differences are probably negligible in
practical applications and confirm our analytical reasoning for the equivalence of the 2PL
and the LDS model.

3.3. Conditional Standard Errors for the Latent Trait

In this subsection, we study the amount of information for the latent trait that can be
extracted with the 2PL model and the LDS model by using the concept of item information.
Let xpi = (xp1, . . . , xpI) denote the vector of item responses of person p. For IRFs Pi

(depending on already estimated item parameters), the maximum likelihood estimate θ̂p
for the latent trait of person p is given as [1]

θ̂p = arg max
θ

I

∑
i=1

{
xpi log Pi(θ) + (1− xpi) log(1− Pi(θ))

}
. (15)

Hence, the standard error associated with the estimate θ̂p is related to the information
function that is obtained as the negative value of the second derivative of the log-likelihood
function evaluated at θ̂p. The information that is provided by item i in (15) is then given as

− xpi
d2

dθ2 log Pi(θ)− (1− xpi)
d2

dθ2 log(1− Pi(θ)). (16)

This allows defining the (expected) item information Ii for item i [25]

Ii(θ) = −πi
d2

dθ2 log Pi(θ)− (1− πi)
d2

dθ2 log(1− Pi(θ)), (17)

where πi = E(Xi) is the expected value for item i. In the literature, the observed item infor-
mation

OIi(θ) = −
d2

dθ2 log Pi(θ) (18)
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is often defined as the item information function. However, this function can become
negative for some IRT models and the LDS model in particular [25], which is why preferring
(17) for ensuring positivity of the item information function. For the 2PL model, the
expected and observed item information coincide and are given as

Ii(θ) = a2
i Pi(θ)(1− Pi(θ)). (19)

Equation (19) implies that the least information is available for extreme θ values (i.e.,
extremely negative or positive).

The test information I(θ) is defined as I(θ) = ∑I
i=1 Ii(θ). It quantifies the information

that is provided by the test at each latent trait value θ. The conditional standard error for
the latent trait θ is given by SE(θ) = 1/

√
I(θ).

One can similarly define the item information function for δ for the LDS model (see
also [15]):

Ii(δ) = −πi
d2

dδ2 log Pi(δ)− (1− πi)
d2

dδ2 log(1− Pi(δ)). (20)

Analogously, the test information function I(δ) = ∑I
i=1 Ii(δ) can be defined for the

latent trait δ.
Because the latent D-scoring model is equivalent to the 2PL model (see Section 3.1),

δ = Ψ(θ) is a monotonous transformation of θ, and the test information function for θ can
be converted into the test transformation for δ. More generally, let δ = m(θ) be a monotone
differentiable transformation. The test information function for δ can be computed from
the test information function for θ (see [2]):

I(δ) = I(m(θ)) =
1

m′(θ)
I(θ), (21)

where m′ = dm
dθ . Equation (21) can be rewritten for conditional standard errors as

SE(δ) = SE(m(θ)) =
√

m′(θ) SE(θ). (22)

Hence, the conditional standard error SE(δ) for the LDS model is given as

SE(δ) = SE(Ψ(θ)) =
√

Ψ(θ)(1−Ψ(θ)) SE(θ). (23)

In Section 3.2, we demonstrated that the LDS model is equivalent to the 2PL model.
For the item parameters of the seven items used in the demonstration (see Table 1), the con-
ditional standard errors for θ and δ are shown in Figure 3. It can be seen that the 2PL model
measures the latent trait θ less precisely for extremely large negative and extremely large
positive values; that is, for low- and high-achieving persons. In line with the results of [3],
the converse holds for the LDS model. Conditional standard errors are smallest for persons
with δ values near 0 or 1. Hence, statements about measurement precision in different
ranges of values for the latent trait strongly depend on the chosen metric (see also [26]).
Interestingly, the transformed latent trait ξ = m(θ) =

∫ θ
−∞

√
I(u)du (the so-called arc

length metric; see [6]) has homogeneous standard errors among the latent trait

SE(ξ) = SE(m(θ)) = 1 . (24)

These observations indicate that it is difficult to state for which subgroups of persons
adaptive or multistage testing [27] provides measurement precision gains because such
statements depend on the chosen metric.

An anonymous reviewer presented an insightful explanation of the behavior of con-
ditional standard errors. For people with a high D-score, a low standard error will result
because one can be very confident that these persons will get a new but parallel item
correct. In contrast, for persons with a high θ score, a high standard error will be observed
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because it is uncertain what the hardest item they could write is. Overall, the different
scoring methods give different interpretations and, therefore, different interpretations to
their respective standard errors.
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Figure 3. Conditional standard errors SE(θ) for the 2PL model (left) and SE(δ) for the LDS
model (right).

3.4. A Multidimensional Latent D-Scoring Model

To our knowledge, the LDS model has only been investigated for a unidimensional latent
variable δ. However, in applications, multidimensional traits are often of interest [28,29]. We
now show that an apparent extension of the LDS model to multiple dimensions can be
obtained by using the same transformations of the multidimensional variant of the 2PL
model. We illustrate the arguments for two dimensions θ1 and θ2.

The multidimensional logistic IRT model can be written as [29]

P(Xi = 1|θ1, θ2) =
1

1 + exp(−ai1θ1 − ai2θ2 + di)
, (θ1, θ2) ∼ F, (25)

where F is a bivariate distribution of (θ1, θ2) and θd (d = 1, 2) attain values on the real line.
Define transformed latent traits δd = Ψ(θd) = [1 + exp(−θd)]

−1 (d = 1, 2) as the logistic
transformations of θd. Like in the unidimensional LDS model, the δd variables attain values
in the interval (0, 1). Note that the inverse transformation is given as θd = log δd

1−δd
. Then,

employing the same strategy as in Section 3.1, one can rewrite Equation (25) by using
βi = Ψ(di) and αid = aid as

P(Xi = 1|δ1, δ2) =
1

1 +
[

1−δ1
δ1

]αi1
[

1−δ2
δ2

]αi2 βi
1−βi

, (δ1, δ2) ∼ G. (26)

Hence, the multidimensional 2PL model can easily be reparametrized for defining
a multidimensional LDS model. The generalization to more than two dimensions is
straightforward. Given that multidimensional IRT models are more difficult to estimate
than unidimensional IRT models, it is advantageous that existing software implementations
of multidimensional logistic IRT models can be used for estimating a multidimensional
variant of the LDS model.

4. Empirical Example: PISA 2006 Reading

4.1. Method

In order to illustrate the consequences of the choice of different metrics of the latent
trait in multiple-group comparisons, we analyzed the data from the Programme for Inter-
national Student Assessment (PISA) conducted in 2006 (PISA 2006; [30]). In this situation,
groups constitute countries. We included 26 countries (see Table 2) that participated in
2006 and focused on the reading test (see [31,32] for other studies using this dataset).
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Table 2. Country-level results for PISA 2006 reading for different ability metrics.

cnt Country N
M SD Rank M

θ δ τ ρ θ δ τ ρ θ δ τ ρ maxrk

KOR South Korea 2790 0.471 0.603 0.663 0.646 0.831 0.176 0.166 0.246 1 1 1 1 0
FIN Finland 2536 0.327 0.576 0.646 0.614 0.570 0.130 0.124 0.193 2 2 2 2 0
CAN Canada 12,142 0.234 0.553 0.616 0.577 0.823 0.179 0.176 0.255 3 3 3 3 0
IRL Ireland 2468 0.170 0.538 0.599 0.554 0.911 0.193 0.192 0.272 4 4 4 4 0
AUS Australia 7562 0.144 0.534 0.596 0.550 0.876 0.188 0.189 0.267 5 5 5 5 0
SWE Sweden 2374 0.098 0.523 0.581 0.535 1.015 0.213 0.214 0.295 6 6 6 6 0
NLD Netherlands 2666 0.084 0.521 0.577 0.531 1.051 0.219 0.221 0.302 7 7 7 8 1
POL Poland 2968 0.065 0.515 0.573 0.521 0.981 0.209 0.211 0.293 8 9 8 9 1
BEL Belgium 4840 0.031 0.517 0.567 0.532 1.278 0.250 0.257 0.333 9 8 11 7 4
JPN Japan 3203 0.015 0.507 0.562 0.512 1.103 0.225 0.229 0.308 10 10 13 10 3
CHE Switzerland 6578 0.015 0.506 0.569 0.511 0.852 0.186 0.190 0.265 11 11 10 11 1
DNK Danmark 2431 0.008 0.502 0.566 0.503 0.828 0.181 0.183 0.260 12 12 12 14 2
EST Estonia 2630 0.002 0.501 0.571 0.501 0.616 0.142 0.143 0.211 13 13 9 15 6
GBR Great Britain 7061 −0.028 0.498 0.557 0.500 0.989 0.206 0.211 0.286 14 15 15 16 2
FRA France 2524 −0.039 0.500 0.559 0.508 1.004 0.206 0.215 0.285 15 14 14 13 2
ISL Iceland 2010 −0.055 0.489 0.556 0.486 0.741 0.165 0.170 0.239 16 18 16 18 2
AUT Austria 2646 −0.057 0.493 0.547 0.495 1.125 0.230 0.237 0.314 17 17 17 17 0
DEU Germany 2701 −0.098 0.497 0.539 0.510 1.485 0.280 0.290 0.364 18 16 19 12 7
HUN Hungary 2399 −0.110 0.477 0.544 0.468 0.694 0.156 0.163 0.229 19 20 18 20 2
NOR Norway 2504 −0.135 0.479 0.535 0.478 1.079 0.221 0.231 0.303 20 19 21 19 2
ESP Spain 10,506 −0.168 0.460 0.535 0.440 0.432 0.102 0.108 0.155 21 23 20 23 3
LUX Luxembourg 2443 −0.210 0.463 0.519 0.456 1.073 0.219 0.231 0.300 22 21 22 22 1
PRT Portugal 2773 −0.219 0.455 0.517 0.439 0.863 0.185 0.195 0.262 23 24 23 24 1
CZE Czech Republic 3246 −0.237 0.462 0.506 0.457 1.398 0.270 0.280 0.355 24 22 24 21 3
ITA Italy 11,629 −0.288 0.443 0.502 0.426 0.966 0.199 0.212 0.276 25 25 25 25 0
GRC Greece 2606 −0.385 0.419 0.479 0.388 0.868 0.183 0.196 0.256 26 26 26 26 0

Note. cnt = country label; N = sample size per country; M = mean; SD = standard deviation; Rank M = country rank with respect to mean
M; θ = logit ability metric from two-parameter logistic (2PL) model; δ = metric of the latent D-scoring (LDS) model; τ = true score metric;
ρ = rank score metric; maxrk = maximum rank difference among ability metrics θ, δ, τ, and ρ.

Items for the reading domain were only administered to a subset of the participating
students. We included only those students who received a test booklet with at least one
reading item. This resulted in a total sample size of 110,236 students (ranging from 2010 to
12,142 students between countries). In total, 28 reading items nested within eight reading
texts were used in PISA 2006. Six of the 28 items were polytomous and were dichotomously
recorded, with only the highest category being recorded as correct.

In all analyses, student weights were taken into account. Within a country, student
weights were normalized to a sum of 5000, so that all countries contributed equally to
the analyses.

In a first step, the 2PL model was estimated based on the data comprising students
of all 26 countries. Student weights were taken into account, and a normal distribution
was posed for θ in the estimation. The obtained item parameters âi and b̂i were fixed in the
second step when estimating the trait distribution in each country. More concretely, the 2PL
model was fitted using the R [22] package sirt [23] using MML estimation. The 2PL model
was estimated by using a discrete grid of T = 121 equidistant θ points ranging between
−6 and 6 for numerical integration of the involved integrals in the log-likelihood function
of the 2PL model. As in Section 3.2, log-linear smoothing up to four moments of the
trait distribution [12] within a country was employed to allow non-normal distributions.
Assume that the estimated parametric distribution for θ in country g is πgt = P(θt; δg) for
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grid values θt (t = 1, . . . , T) and country-specific distribution parameters δg. Afterward,
individual posterior distributions hp(θt|xp) (t = 1, . . . , T) were computed as

hp(θt|xp) =

I

∏
i=1

[
Pi(θt; âi, b̂i)

xpi
(

1− Pi(θt; âi, b̂i)
)1−xpi

]
πgt

T

∑
u=1

I

∏
i=1

[
Pi(θu; âi, b̂i)

xpi
(

1− Pi(θu; âi, b̂i)
)1−xpi

]
πgu

, (27)

where Pi(θt; âi, b̂i) is the IRF of item i from the 2PL model using estimated item parameters
âi and b̂i from the total sample. By construction, it holds that ∑T

t=1 hp(θt|xp) = 1. For Ng
persons per country g, the country means µ̂θ,g on the logit metric θ was estimated by

µ̂θ,g =
1

W

Ng

∑
p=1

wp

T

∑
t=1

θthp(θt|xp), (28)

where the person weights wp sum to W = 5000 within a country (i.e., ∑
Ng
p=1 wp = W).

Country-specific standard deviations σ̂θ,g can be computed similarly:

σ̂θ,g =

√√√√ 1
W

Ng

∑
p=1

wp

T

∑
t=1

θ2
t hp(θt|xp)− µ̂2

θ,g. (29)

Besides the logit metric θ, we also investigated the metric δ based on the LDS model,
the true score metric τ (see Equation (4)), and the rank score metric ρ (see Equation (5)).
All three alternative metrics are monotone transformations m(θ) of θ. The country mean
µ̂m(θ),g at the transformed metric was calculated as

µ̂m(θ),g =
1

W

Ng

∑
p=1

wp

T

∑
t=1

m(θt)hp(θt|xp). (30)

Using (30), the standard deviation of m(θ) can be computed similarly to (29). Fur-
thermore, conditional standard errors for the four latent trait metrics are computed for
the whole sample containing all students. The item information is obtained by using the
second derivatives of IRFs with respect to the metrics θ, δ, τ, and ρ (see Equation (17)).

4.2. Results

In Table A1 of Appendix B, estimated item parameters âi and b̂i from the 2PL model
are shown. These item parameters were transformed into parameters of the equivalent LDS
model (see columns α̂i and β̂i in Table A1). The IRFs of seven selected items are displayed
in Figure A1 in Appendix B for the four latent trait metrics θ, δ, τ and ρ. IRFs for the
bounded metrics δ, τ and ρ look very similar.

In Figure 4, the transformation functions δ = δ(θ), τ = τ(θ) and ρ = ρ(θ) are
depicted. The latent D-score δ and the true score τ follow a very close transformation
function. The rank score ρ differs from the former two in the tails of the θ distribution.
Hence, it can be expected that δ and τ provide similar country rankings, while using ρ
might lead to slightly different country rankings.
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Figure 4. Transformation functions δ = δ(θ), τ = τ(θ) and ρ = ρ(θ) of latent ability θ for the PISA
2006 reading test.

In Figure 5, conditional standard errors are displayed. It can be seen that θ has
a U-shaped form, while the three other metrics are inverted U-shaped. Interestingly,
the standard errors SE(δ) and SE(τ) approach 0 for δ or τ near to 0 or 1. This is not the
case for the rank score metric ρ, for which standard errors for ρ = 0 and ρ = 1 are larger
than 0. Assume that Country C1 is low-performing (negative θ value) and Country C2
has average performance (θ average of about 0). Then, it can be the case that the latent
trait is less precisely assessed for Country C1 than for Country C2 in the θ metric but more
precisely assessed for Country C1 than C2 in one of the three alternative metrics δ, τ, or ρ.
These statements rely on the somewhat arbitrary choice of the latent trait metric used to
quantify differences between countries.
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Figure 5. Conditional standard error functions for the logit score θ (upper left), the delta score δ

(upper right), the true score τ (lower left), and the rank score ρ (lower right) for the PISA 2006
reading test.
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Table 2 contains detailed results of means, standard deviations, and country ranks
based on means for the 26 countries. For the first six high-performing countries, country
ranks are the same for all four trait metrics. However, there are countries for which ranks
differ considerably. Relatively large deviations are observed for Belgium (BEL; maximum
rank difference (maxrk) of 4), Estonia (EST; makrk = 6), and Germany (DEU; maxrk = 7).
The most crucial difference occurs for the τ and the ρ metric. For the three mentioned
countries, the standard deviation of θ was relatively low or high compared to all other
countries in the sample. This observation explains the differences among ranks because
the tails of the θ distributions are differently weighted (i.e., differently transformed) for τ
and ρ.

Overall, the Spearman rank correlations of country means ranged between 0.949
(between τ and ρ) and 0.992 (between θ and δ). The average rank difference of country
means across different metrics was 2.000 (see column “maxrk” in Table 2; SD = 1.853,
Min = 0, Max = 7). The Spearman rank correlations of country standard deviations ranged
between 0.973 (between τ and ρ) and 0.999 (between δ and ρ). The average rank difference
of country standard deviations across different metrics was 1.000 (SD = 1.301, Min = 0,
Max = 5). To sum up, the choice of the ability metric can have relevance for some countries
for the reporting of country means.

5. Discussion

This article shows that the newly proposed LDS model of Dimitrov can be interpreted
as a reparametrization of the well-studied 2PL model. Hence, all established statistical
techniques for the 2PL model can be used for practical applications of the LDS model. It
has been shown that the latent trait score δ from the LDS model is a monotonous (logistic)
transformation of the θ score from the 2PL model. All other psychometric areas such as
differential item functioning, equating and linking, or test assembly must not be reinvented
for the LDS model because known techniques for the 2PL model can be used.

Although these findings might be interpreted as somehow destructive for the research
surrounding the LDS model, we do not think that the LDS model is not of interest at all.
We wanted to argue that the choice latent trait metric is arbitrary in IRT models, and the
θ or the δ metric can be both useful in applications. The authors of this paper tend to
prefer bounded trait metrics in applications because it seems more challenging to interpret
the possibility of unbounded negative and positive trait values of θ [33]. However, we
would prefer the true score metric τ or the rank score ρ over δ. The latent D-score δ can
be interpreted as a particular true score in which only a reference item with ai = 1 and
bi = 0 is used. We believe that using a well-chosen reference test with its item parameters
provides a better interpretable latent trait metric in practical applications. The rank score ρ
has the advantage that it does not depend on item parameters. For example, in the PISA
study, one fixes the θ metric in the starting study (e.g., in PISA 2000) to a mean of 500 and a
standard deviation of 100. Using the rank metric ρ would imply that the metric is identified
by assuming a uniform distribution on [0, 1] for identification. Both approaches might be
legitimate in practical applications. Notably, linking and equating for bounded metrics are
more difficult to conduct than for unbounded metrics. However, we would opt for using
the unbounded metric from the 2PL model for the operational use for linking but bounded
metrics for reporting ability distributions.

In IRT models, items are typically treated as fixed. However, they can alternatively
be interpreted as exchangeable. Item sampling models [34–36] have fewer assumptions in
this respect and could be alternatively employed in assessment studies.

The LDS model has been motivated as an IRT analog of the so-called manifest D-
scoring method [37]. The scoring rule ∑I

i=1(1− πi)Xi is used in this approach, where
πi = P(Xi = 1) is the probability of getting item i correct. In manifest D-scoring, more
difficult items receive larger weights. This property might have appeal in some applications.
However, we believe that this scoring rule does not adequately represent all items in a test
in typical assessment studies and might lead to country comparisons with reduced validity.
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Appendix A. R Code for the Numerical Illustration
In this Appendix, we provide the R code for the estimation of the numerical illustration

in Section 3.2.

library(sirt)

# The dataset data contains item response patterns (first I columns)
# and probabilities P(X=x) in last column ’wgt’

# define grid for theta values
theta.k <- seq(-6,6,len=61)

I <- 7 # number of items
est.a <- 1:I

# define fixed item parameters
est.a[4] <- 0
constraints <- data.frame(item="I4", b=0)

# fit 2PL model with sirt::rasch.mml2
mod <- sirt::rasch.mml2(dat[,1:I], weights=dat$wgt, est.a=est.a,

constraints=constraints, distribution.trait="normal")

# 2PL item parameters
item <- mod$item

# obtain beta parameter from LDS model
stats::plogis(item$b)

Appendix B. Item Parameter Estimates for the PISA 2006 Reading Data

In Table A1, estimated item parameters from the 2PL model are shown (columns “âi”
and “b̂i”). In addition, transformed item parameters for the LDS model are displayed in
the columns “α̂i” and “β̂i”

In Figure A1, IRFs of the following seven selected items are shown: R067Q01, R104Q02,
R104Q05, R111Q02B, R219Q01T, R219Q02, and R220Q01.

https://www.oecd.org/pisa/pisaproducts/database-pisa2006.htm
https://www.oecd.org/pisa/pisaproducts/database-pisa2006.htm
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Table A1. Estimated item parameters for the PISA 2006 reading dataset.

2PL LDS

Item πi ai bi αi βi

R055Q01 0.817 1.395 −1.486 1.395 0.185
R055Q02 0.480 1.379 0.043 1.379 0.511
R055Q03 0.584 1.620 −0.334 1.620 0.417
R055Q05 0.719 2.118 −0.778 2.118 0.315
R067Q01 0.892 1.227 −2.072 1.227 0.112
R067Q04 0.382 0.832 0.723 0.832 0.673
R067Q05 0.582 1.088 −0.307 1.088 0.424

R102Q04A 0.343 1.460 0.669 1.460 0.661
R102Q05 0.457 1.330 0.244 1.330 0.561
R102Q07 0.842 1.417 −1.493 1.417 0.183
R104Q01 0.816 1.627 −1.322 1.627 0.211
R104Q02 0.326 0.584 1.333 0.584 0.791
R104Q05 0.046 1.132 3.131 1.132 0.958
R111Q01 0.643 1.365 −0.604 1.365 0.353

R111Q02B 0.155 1.046 1.912 1.046 0.871
R111Q06B 0.351 1.588 0.542 1.588 0.632
R219Q01E 0.582 1.633 −0.250 1.633 0.438
R219Q01T 0.699 1.860 −0.664 1.860 0.340
R219Q02 0.792 1.534 −1.179 1.534 0.235
R220Q01 0.434 1.762 0.305 1.762 0.576

R220Q02B 0.621 1.520 −0.376 1.520 0.407
R220Q04 0.596 1.302 −0.312 1.302 0.423
R220Q05 0.823 1.977 −1.145 1.977 0.241
R220Q06 0.669 1.167 −0.675 1.167 0.337
R227Q01 0.521 0.778 −0.151 0.778 0.462

R227Q02T 0.337 0.993 0.793 0.993 0.688
R227Q03 0.546 1.664 −0.183 1.664 0.454
R227Q06 0.706 1.766 −0.777 1.766 0.315

Note. 2PL = two-parameter logistic model; LDS = latent D-scoring model; πi = proportion correct.
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Figure A1. Item response functions of seven selected items from the PISA 2006 reading test.



Mathematics 2021, 9, 1465 16 of 17

References
1. Baker, F.B.; Kim, S.H. Item Response Theory: Parameter Estimation Techniques; CRC Press: Boca Raton, FL, USA, 2004. [CrossRef]
2. Yen, W.M.; Fitzpatrick, A.R. Item response theory. In Educational Measurement; Brennan, R.L., Ed.; Praeger Publishers: Westport,

CT, USA, 2006; pp. 111–154.
3. Dimitrov, D.M.; Atanasov, D.V. Latent D-scoring modeling: Estimation of item and person parameters. Educ. Psychol. Meas. 2021,

81, 388–404. [CrossRef]
4. Ballou, D. Test scaling and value-added measurement. Educ. Financ. Policy 2009, 4, 351–383. [CrossRef]
5. Ho, A.D. A nonparametric framework for comparing trends and gaps across tests. J. Educ. Behav. Stat. 2009, 34, 201–228.

[CrossRef]
6. Ramsay, J.O. A geometrical approach to item response theory. Behaviormetrika 1996, 23, 3–16. [CrossRef]
7. van der Linden, W.J. Unidimensional Logistic Response Models. In Handbook of Item Response Theory, Volume One: Models; CRC

Press: Boca Raton, CT, USA, 2016; pp. 11–30. [CrossRef]
8. Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores;

Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479.
9. Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Danish Institute for Educational Research: Copenhagen,

Denmark, 1960.
10. Culpepper, S.A. The prevalence and implications of slipping on low-stakes, large-scale assessments. J. Educ. Behav. Stat. 2017,

42, 706–725. [CrossRef]
11. Formann, A.K. Constrained latent class models: Theory and applications. Br. J. Math. Stat. Psychol. 1985, 38, 87–111. [CrossRef]
12. Xu, X.; von Davier, M. Fitting the structured general diagnostic model to NAEP data. (Research Report No. RR-08-28). Educ. Test.

Serv. 2008. [CrossRef]
13. Brennan, R.L. Misconceptions at the intersection of measurement theory and practice. Educ. Meas. Issues Pract. 1998, 17, 5–9.

[CrossRef]
14. Dimitrov, D.M.; Atanasov, D.V. Testing for differential item functioning under the D-scoring method. Educ. Psychol. Meas. 2021.

[CrossRef]
15. Dimitrov, D.M. Modeling of item response functions under the D-scoring method. Educ. Psychol. Meas. 2020. 80, 126–144.

[CrossRef] [PubMed]
16. Dimitrov, D.M.; Atanasov, D.V. An approach to test equating under the latent D-scoring method. Meas. Interdiscip. Res. Perspect.

2021, in press.
17. Han, K.C.T.; Dimitrov, D.M.; Al-Mashary, F. Developing multistage tests using D-scoring method. Educ. Psychol. Meas. 2019.

79, 988–1008. [CrossRef] [PubMed]
18. Hoff, P.D. A First Course in Bayesian Statistical Methods; Springer: New York, NY, USA, 2009. [CrossRef]
19. Atchison, J.; Shen, S.M. Logistic-normal distributions: Some properties and uses. Biometrika 1980, 67, 261–272. [CrossRef]
20. DeCarlo, L.T. A signal detection model for multiple-choice exams. Appl. Psychol. Meas. 2021. [CrossRef]
21. Mead, R. A generalised logit-normal distribution. Biometrics 1965, 21, 721–732. [CrossRef] [PubMed]
22. R Core Team. R: A Language and Environment for Statistical Computing. 2020. Vienna, Austria. Available online: https:

//www.R-project.org/ (accessed on 24 August 2020).
23. Robitzsch, A. sirt: Supplementary Item Response Theory Models. 2020. R Package Version 3.9-4. Available online: https:

//CRAN.R-project.org/package=sirt (accessed on 17 February 2020).
24. Aitkin, M. Expectation maximization algorithm and extensions. In Handbook of Item Response Theory, Vol. 2: Statistical Tools; van

der Linden, W.J., Ed.; CRC Press: Boca Raton, CT, USA, 2016; pp. 217–236. [CrossRef]
25. Magis, D. A note on the equivalence between observed and expected information functions with polytomous IRT models. J. Educ.

Behav. Stat. 2015, 40, 96–105. [CrossRef]
26. Brennan, R.L. Perspectives on the evolution and future of educational measurement. In Educational Measurement; Brennan, R.L.,

Ed.; Praeger Publishers: Westport, CT, USA, 2006; pp. 1–16.
27. Yamamoto, K.; Shin, H.J.; Khorramdel, L. Multistage adaptive testing design in international large-scale assessments. Educ. Meas.

Issues Pract. 2018, 37, 16–27. [CrossRef]
28. Bonifay, W. Multidimensional Item Response Theory; Sage: Thousand Oaks, CA, USA, 2019.
29. Reckase, M.D. Multidimensional Item Response Theory Models; Springer: New York, NY, USA, 2009. [CrossRef]
30. OECD. PISA 2006. Technical Report; OECD: Paris, France, 2009.
31. Oliveri, M.E.; von Davier, M. Analyzing invariance of item parameters used to estimate trends in international large-scale

assessments. In Test Fairness in the New Generation of Large-Scale Assessment; Jiao, H., Lissitz, R.W., Eds.; Information Age
Publishing: New York, NY, USA, 2017; pp. 121–146.

32. Robitzsch, A. Robust Haebara linking for many groups: Performance in the case of uniform DIF. Psych 2020, 2, 155–173.
[CrossRef]

33. Ramsay, J.O.; Li, J.; Wiberg, M. Better rating scale scores with information–based psychometrics. Psych 2020, 2, 347–369. [CrossRef]
34. van der Linden, W.J. Binomial test models and item difficulty. Appl. Psychol. Meas. 1979, 3, 401–411. [CrossRef]
35. Wiley, J.A.; Martin, J.L.; Herschkorn, S.J.; Bond, J. A new extension of the binomial error model for responses to items of varying

difficulty in educational testing and attitude surveys. PLoS ONE 2015, 10, e0141981. [CrossRef]

http://doi.org/10.1201/9781482276725
http://dx.doi.org/10.1177/0013164420941147
http://dx.doi.org/10.1162/edfp.2009.4.4.351
http://dx.doi.org/10.3102/1076998609332755
http://dx.doi.org/10.2333/bhmk.23.3
http://dx.doi.org/10.1201/9781315374512-3
http://dx.doi.org/10.3102/1076998617705653
http://dx.doi.org/10.1111/j.2044-8317.1985.tb00818.x
http://dx.doi.org/10.1002/j.2333-8504.2008.tb02113.x
http://dx.doi.org/10.1111/j.1745-3992.1998.tb00615.x
http://dx.doi.org/10.1177/00131644211001524
http://dx.doi.org/10.1177/0013164419854176
http://www.ncbi.nlm.nih.gov/pubmed/31933495
http://dx.doi.org/10.1177/0013164419841428
http://www.ncbi.nlm.nih.gov/pubmed/31488922
http://dx.doi.org/10.1007/978-0-387-92407-6
http://dx.doi.org/10.1093/biomet/67.2.261
http://dx.doi.org/10.1177/01466216211014599
http://dx.doi.org/10.2307/2528553
http://www.ncbi.nlm.nih.gov/pubmed/5858101
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=sirt
https://CRAN.R-project.org/package=sirt
http://dx.doi.org/10.1201/b19166-12
http://dx.doi.org/10.3102/1076998614558122
http://dx.doi.org/10.1111/emip.12226
http://dx.doi.org/10.1007/978-0-387-89976-3
http://dx.doi.org/10.3390/psych2030014
http://dx.doi.org/10.3390/psych2040026
http://dx.doi.org/10.1177/014662167900300311
http://dx.doi.org/10.1371/journal.pone.0141981


Mathematics 2021, 9, 1465 17 of 17

36. Hong, H.; Wang, C.; Lim, Y.S.; Douglas, J. Efficient models for cognitive diagnosis with continuous and mixed-type latent
variables. Appl. Psychol. Meas. 2015. 39, 31–43. [CrossRef] [PubMed]

37. Dimitrov, D.M. An approach to scoring and equating tests with binary items: Piloting with large-scale assessments. Educ. Psychol.
Meas. 2016. 76, 954–975. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/0146621614524981
http://www.ncbi.nlm.nih.gov/pubmed/29880992
http://dx.doi.org/10.1177/0013164416631100
http://www.ncbi.nlm.nih.gov/pubmed/29795895

	Introduction
	Item Response Modeling
	Indeterminacy of the Latent Trait in IRT Models
	Logistic Item Response Model
	Dimitrov's Latent D-Scoring Model

	Relation of the Latent D-Scoring Model and the 2PL Model
	Equivalence of the Latent D-Scoring Model and the 2PL Model
	Numerical Illustration
	Conditional Standard Errors for the Latent Trait
	A Multidimensional Latent D-Scoring Model

	Empirical Example: PISA 2006 Reading
	Method
	Results

	Discussion
	R Code for the Numerical Illustration
	Item Parameter Estimates for the PISA 2006 Reading Data
	References

