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Abstract: In this work, numerical estimations of a nonlinear hyperbolic bioheat equation under
various boundary conditions for medicinal treatments of tumor cells are constructed. The heating
source components in a nonlinear hyperbolic bioheat transfer model, such as the rate of blood perfu-
sions and the metabolic heating generations, are considered experimentally temperature-dependent
functions. Due to the nonlinearity of the governing relations, the finite element method is adopted to
solve such a problem. The results for temperature are presented graphically. Parametric analysis is
then performed to identify an appropriate procedure to select significant design variables in order to
yield further accuracy to achieve efficient thermal power in hyperthermia treatments.

Keywords: biological tissue; thermal damage; bioheat transfer; finite element method

1. Introduction

Recent research developments have shown that the problem of heating transfers in
skin tissues is an incredibly complicated problem. There are many controversial param-
eters found in this field. To describe the current status [1], at temperatures above 60 ◦C,
the time needed to check irreversible damages decreases rapidly, while, at temperatures
around 40–45 ◦C, irreversible tissue damage happens after only prolonged exposures. A
human body behaves differently under different environmental conditions (e.g., differ-
ent air temperatures, humidity levels, and wind velocities). Thermotherapy operations,
such as laser tissues welding [2], hyperthermy [3], and lasers operations [4], have been
openly used in modern medicine. Since the temperature distribution in the living tissues
depends on complex phenomena, like metabolic heating generations and blood circulation,
investigators have expanded some formulations. In clinical therapy, various contemporary
thermotherapeutic techniques have been widely used for microwave, laser, ultrasound,
and radiofrequency technologies. First, using an objective thermal lens, the laser focuses
on the tumor. One of the main challenges in the treatment process is to provide adequate
thermal power to diseased tissue without affecting healthy tissue. Therefore, it is impor-
tant to consider the impact of temperature and stress fields on heat treatment kinetics.
Van and Gybels [5] demonstrated that deformation due to heating and cooling can also
contribute to a feeling of discomfort. Therefore, exact predictions of the Sun, mechanical
reaction, and thermal damage in organic tissues are required for the treatment planning
and development of new clinical heating systems. In 1948, Pennes [6] investigated the
thermal behavior of skin temperature in the forearm. The investigation included many
phenomenological mechanizations, such as metabolic heat generation, radiation, blood
perfusion, thermal conduction, and phases change. In biological tissues, the phase changes
occur in wide ranges. The adjusted Penne’s bioheat models are presented by various
techniques of numerical approach available in the literature: the homotopy perturbation
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method [7], the Legendre wavelet Galerkin approach, the finite element approaches, the
Galerkin approach, and the approach of variations and iterations [8,9], as well as the
finite-decomposition approach [10]. Hobiny et al. [11] presented analytical estimations
of temperature in biological tissue under TPL bioheat model with experimental verifica-
tions. Dillenseger and Esneault [12] studied temperature improvement over time by using
the approach of finite differences in the case where the body temperature is abnormally
low. Hobiny and Abbas [13] studied the temperature increment and variations of thermal
damages in living tissues due to mobile heating sources. Zhu et al. [14] considered the
rate process models for the resulting thermal injury and the sedimentations of lighting
energy in tissues by using the diffusion theory. Diaz et al. [15] applied the finite element
scheme to solve the thermos-diffusions model type in the biological tissues to determine
the thermal damages. Alzahrani and Abbas [16] investigated the analytical solution of
thermal damage in living tissue due to laser irradiations. In considering the study of real
phenomenon regarding thermal transfers in finite mediums, the linear/nonlinear models
of heat transfers have been expanded, and their numerical or analytical solutions have
been solved by several authors [17–29].

This work explores the numerical solutions of the thermal injury of biological tissue
using a nonlinear bioheat theory in the living tissue. Due to the nonlinearity of the
governing relations, the finite element method is used in order to determine solutions for
this problem. The numerical outcomes for temperature behaviors are provided graphically.
Furthermore, a comparison is made with the results obtained in the presence and absence
of delay times. Additionally, comparisons between the nonlinear and linear influences on
bioheat transfers are made when the nonlinear parameter are zeroes.

2. Mathematical Model

We consider that the medium is a semi-infinite living tissue under thermal insulation.
Based on Cattaneo [30], with the delay time τo, the bioheat relation in skin tissues can be
given by the following equation [31,32]:

k
∂2T
∂x2 =

(
1 + τo

∂

∂t

)(
ρc

∂T
∂t
−Qb −Qm −Qext

)
, (1)

where τo is the thermal delay time, ρ is the mass density of tissues, Tb is the temperature of
blood, t is the time, T is the temperature of tissue, c is the tissue-specific heat, k is the tissue
thermal conductivity, and Qext represents the thermal generated per unit volume of tissue
due to the absorption of electromagnetic radiations, which is expressed by the following
equation [7]:

Qext = ρSPeη(x−xp), (2)

where P is the transmitted power, S and η are the antenna constants, xp is the probe radius,
x = L − x is the distance of tissues from external surface, and Qb refers to the blood
perfusion heat source, which is expressed as follows:

Qb = wb(T)ρbcb(Tb − T), (3)

where ωb(T) is the blood perfusion rate dependent on temperature, ρb is the mass density
of blood, and cb is the specific heat of blood. Depending on the anatomical structure of the
biological living tissue containing blood vessels, this point will extend with the increasing
temperature of the local tissues. The perfusion rate of blood with the temperature of local
tissues is presumed as in [33] as follows:

ωb(T) = ωboeα( T−To
To ), (4)

where ωbo is the reference blood perfusions rate, α is the constant associated with blood
perfusions, To is the initial temperature of normal tissues, and Qm is the heat generated
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by metabolics process. Mitchell et al. [33] noticed that the metabolic heat generations is a
function of the temperature of local tissues and is expressed as follows:

Qm = Qmo2β( T−To
10 ) , (5)

where β is the associated metabolic constant and Qmo is the metabolic heat source reference.

3. Application

The appropriate initial and boundary conditions are defined by the following:

T(x, 0) = Tb,
∂T(x, 0)

∂t
= 0. (6)

k
∂T(L, t)

∂x
= 0, k

∂T(0, t)
∂x

= 0. (7)

For its adaptations, the non-dimensional variables can be expressed by the following:

T′ = T−To
To

, (t′, τ′o) =
k

ρcl2 (t, τo), x′ = x
L , fr =

ρSP
kTo

L2, fm = Qmo L2

kTo
, η1 = η × L,

fb =
√

ωboρbcb
k L, T′b = Tb−To

To
, β1 = 0.1× To × β, x′ = 1− x, x′b = xb

L .
(8)

In terms of this nondimensional parameters (8), the formulation (1) as well the initial
(6) and the boundary (7) conditions can be inserted as (the scripts have been abandoned
for its suitability) as follows:

∂2T
∂x2 =

(
1 + τo

∂

∂t

)(
∂T
∂t
− f 2

b (Tb − T)eαT − fm2β1T − freη1(x−xp)

)
, (9)

T(x, 0) = Tb,
∂T(x, 0)

∂t
= 0, (10)

∂T(0, t)
∂x

= 0,
∂T(L, t)

∂x
= 0. (11)

4. Numerical Scheme

In this section, the highly nonlinear formulation of bioheat transfer based upon thermal
delay time τo in biological tissues is summarized using the finite element method (FEM).
This technique is a powerful approach that is primarily used to obtain the numerical
solution of complex problem and the finite element method is the selected method for
nonlinear systems in several fields. The finite element scheme is applied here to obtain the
solution of nonlinear formulation (9) under the initial condition (10) and the boundary (11)
condition. Abbas and his colleagues [34–42] presented solutions for various problems under
deference generalized thermoelasticity models. The finite element formulation of nonlinear
bioheat transfer can be obtained by using the standard procedure. The non-dimension weak
formulations of bioheat model are derived. The set of independent test functions resulting
in the temperature δT is specified. The governing formulation is multiplied by independent
weighting functions and then the boundary conditions are used to integrate over the spatial
domain. The applications of integration by parts and the use of the divergence theorem
to decrease the order of the spatial derivative paves the way for the application of the
boundary condition. Using the Galerkin procedure, the unknown temperature T and the
corresponding test function are approximated by the same shape function.

T =
n

∑
j=1

NjTj(t), (12)
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δT =
n

∑
j=1

NjδTj. (13)

where N refers to the shape function and n refers to the node numbers per element. The
quadratic element with three nodes is used. In this problem, a one-dimensional quadratic
element is used, and we suppose that the local coordinates in the range [−1, 1] are used
for the master element, which can be defined as follows:

N1 = 1
2
(
χ2 − χ

)
, N1 = 1− χ2, N3 = 1

2
(
χ2 + χ

)
, (14)

Furthermore, the time derivatives of the unknown variables should be determined
by the implicit approaches. Thus, the weak formulations for the finite element scheme
corresponding to the basic Equation (9) can be written as follows:∫ L

0
∂δT
∂x

∂T
∂x dx +

∫ L
0 δT

((
∂T
∂t − f 2

b (Tb − T)eαT − fm2β1T − freη1(x−xp)
))

dx+

+
∫ L

0 δT
(

τo
∂2T
∂t2 + τo

(
− f 2

b (α(Tb − T)− 1)eαT − β1 log(2) fm2β1T) ∂T
∂t

)
dx = δT ∂T

∂x

∣∣∣L
0

.
(15)

Symbolically, the discredited equation of Equation (15) can be given as follows:

∫ L

0

(
δTτo

∂2T
∂t2 + δTM(T)

∂T
∂t

+ δTF(T)
)

dx = R, (16)

where M(T) = 1 + τo
(
− f 2

b (α(Tb − T)− 1)eαT − β1 log(2) fm2β1T),
F(T) = −

(
f 2
b (Tb − T)eαT + fm2β1T), R = δT ∂T

∂x

∣∣∣L
0
+
∫ L

0 δT freη1(x−xp)dx.
By using the implicit method for time, Equation (16) can be expressed as follows:

m

∑
s=1

(∫ L

0

(
δTτo

Ts+1 − 2Ts + Ts−1

∆t2 + δTM
(

Ts+1
)Ts+1 − Ts

∆t
+ δTF

(
Ts+1

))
dx− R = 0

)
, (17)

5. Numerical Results

The temperature distribution in a biological tissue under nonlinear bioheat trans-
fer models was investigated. For numerical computation, exemplary values of thermal
properties for biological tissue are given below (as in [43]):

cb = 3860 (J)
(
kg−1)(k−1

)
, ρb = 1060(kg)

(
m−3), ωb = 1.87× 10−3(s−1), Tb = 37 °C,

τo = 16(s), L = 0.05(m), Qo = 0.17(W)
(
m−3), Qm = 1.19× 103(W)

(
m−3), α = 2.15,

ρ = 1000(kg)
(
m−3), c = 4187 (J)

(
kg−1)(k−1

)
, k = 0.628 (W)

(
m−1)(k−1

)
, β = 1 °C ,

xp = 0.005 (m), η = −127
(
m−1), P = 21.439 (W), S = 12.5

(
kg−1).

The calculations were made by the MATLAB software (R2018a), and the outcomes
are graphically presented. The impacts of the external heating sources on the skin’s sur-
face were integrated. In this study, it was considered that Tb = 37 ◦C is the normal
temperature and a slab of tissues is 0.05 m thick. The grid sizes were refined and, con-
sequently, the values of various parameters were stabilized. Further refinement of mesh
sizes over 18,000 elements did not change the values considerably, therefore the mesh
sizes were accepted as the grid sizes for computing purposes. In Figures 1 and 2, the
computations are carried out when Tb = To = 37 ◦C, and the variations of temperature
are presented graphically. The dotted lines represent the nonlinear bioheat model, while
the solid lines represent the linear bioheat model. Comparing the figures of the solutions
obtained with the linear and nonlinear models, one observes important phenomena, as
in Figures 1 and 2. Figures 3 and 4 display the influences of thermal delay time on the
temperature distribution. As expected, the thermal delay time has a major impact on the
temperature distributions. Figures 1 and 3 show the temperature variations with respect to
the distances x at t = 1.5 min. It is observed from the graphs that the temperature increases
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from the normal temperature Tb = 37 ◦C to the maximum values on the tissue surface.
A timeline of the surface temperature is presented in Figures 2 and 4. It was observed
that after starting from the normal temperature Tb, temperature increases with time until
the highest temperature values are obtained. Finally, Figures 5 and 6 display the effects
of the rate of blood perfusion ωb under bioheat model with one relaxation time on the
temperature variation. The higher the rate of blood perfusion, the greater the convective
heat loss due to faster blood flow.

Mathematics 2021, 9, x FOR PEER REVIEW 5 of 9 
 

 

time on the temperature variation. The higher the rate of blood perfusion, the greater the 

convective heat loss due to faster blood flow. 

 

Figure 1. Temperature profile in skin tissues due to linear and nonlinear models. 

 

Figure 2. The skin surface temperature through the time under nonlinear and linear models. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

 x (m)

35

40

45

50

55

60

65

 T
 (

 °
C

 )

 linear

 nonlinear

0 10 20 30 40 50 60 70 80 90 100

 t  (s)

35

40

45

50

55

60

65

 T
 (

 °
C

 )

 linear

 nonlinear

Figure 1. Temperature profile in skin tissues due to linear and nonlinear models.
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6. Conclusions

Based on a highly nonlinear bioheat model of skin tissues, temperature behaviors were
studied when applying thermotherapy. Numerical solutions were derived for the nonlinear
bioheat with one relaxation time under an external heat source. The finite element method
was applied to solve the second-order nonlinear differential equation by using a quadratic
element. The theoretical outcomes can be used as confirmation tools in order to examine
practical operations like laser treatment.
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