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Abstract: The linear associator is a classic associative memory model. However, due to its low
performance, it is pertinent to note that very few linear associator applications have been published.
The reason for this is that this model requires the vectors representing the patterns to be orthonormal,
which is a big restriction. Some researchers have tried to create orthogonal projections to the vectors
to feed the linear associator. However, this solution has serious drawbacks. This paper presents a
proposal that effectively improves the performance of the linear associator when acting as a pattern
classifier. For this, the proposal involves transforming the dataset using a powerful mathematical
tool: the singular value decomposition. To perform the experiments, we selected fourteen medical
datasets of two classes. All datasets exhibit balance, so it is possible to use accuracy as a performance
measure. The effectiveness of our proposal was compared against nine supervised classifiers of the
most important approaches (Bayes, nearest neighbors, decision trees, support vector machines, and
neural networks), including three classifier ensembles. The Friedman and Holm tests show that our
proposal had a significantly better performance than four of the nine classifiers. Furthermore, there
are no significant differences against the other five, although three of them are ensembles.

Keywords: machine learning; supervised classification; associative algorithm; diseases

1. Introduction

This paper proposes a novel machine learning algorithm that is successfully applied
in medicine [1]. In this context, it is pertinent to mention that in machine learning, there are
four basic tasks corresponding to two paradigms. The unsupervised paradigm includes
the clustering task, while the remaining three tasks belong to the supervised paradigm:
classification, recalling, and regression [2].

The novel machine learning algorithm proposed in this article involves two of the
three tasks of the supervised paradigm: classification and recalling. The classification task
consists of assigning, without ambiguity, the class that corresponds to a test pattern. For
example, a classification algorithm could support a physician with a certain percentage of
success if a chest X-ray corresponds to a patient suffering from COVID-19 or pneumonia.
The hit rate of the classifier will depend on how complex the dataset is, as well as the
quality of the machine learning algorithm [3].

Recalling is the second machine learning task involved in this proposal. Unlike the
classification task in which a label is assigned to a pattern, the recalling task is responsible
for assigning another pattern to the test pattern. In the example above, when having a chest
X-ray as a test pattern, the recalling task tries to associate this test pattern with another
pattern, such as with the patient’s social security number. Associative memories are the
algorithms that carry out the recalling task [4].
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The central part of the machine learning algorithm proposed in this paper consists of
carrying out the classification of diseases through an associative memory. In other words,
we have converted an associative memory (whose natural task is recalling) into a classifier
of patterns related to healthcare and, specifically, diseases.

The associative memory used here is the linear associator, a model that dates back to
1972 and whose development is attributed to two scientists working simultaneously and
independently: Kohonen in Finland [5] and Anderson in the US [6].

The linear associator is a classic associative memory model. Its importance lies in the
fact that it is one of the pioneering models in this branch of research. In relation to this
model, studies have been carried out on convergence [7] and on its performance [8].

However, due to the low performance exhibited by this model in most of the datasets,
very few applications have been published [9]. Researchers have dedicated efforts to
improve the performance of the linear associator by preprocessing the data under study,
with very modest advances [10,11].

The reason for the low success of the methods that seek to improve performance is that
the linear associator requires a very strong restriction to the patterns in order for them to be
recovered correctly. Vectors are required to be orthonormal. Given this, some researchers
have tried to use the Gram–Schmidt orthogonalization process, which creates orthogonal
projections for the vectors that are presented to it [12]. However, this solution has serious
drawbacks [13]. This paper presents a proposal that does not use the Gram–Schmidt
process, but rather a powerful mathematical tool: singular value decomposition [14,15].

The rest of the paper is organized as follows. Section 2 consists of three subsections,
where the linear associator, its use as a pattern classifier, and in addition, the singular value
decomposition are briefly described and exemplified. In Section 3, the central proposal of
this paper will be described in detail. Section 4 is very important because it describes the
datasets and the classification algorithms against which our proposal will be compared.
Additionally, the experimental results are presented and discussed. Finally, in Section 5,
the conclusions and future works are offered.

2. Related Methods

This section consists of three subsections. Section 2.1 describes the model that has been
taken as the basis for this paper: the linear associator. Section 2.2 describes and exemplifies
the possible use of the linear associator as a pattern classifier. In addition, some reflections
on its advantages and disadvantages are discussed. On the other hand, Section 2.3 contains
a brief description of the singular value decomposition, which is a powerful mathematical
tool that strongly supports the central proposal of this paper. A wealth of illustrative
numerical examples is presented across the three subsections.

2.1. Linear Associator

The linear associator requires a dataset D that consists of ordered pairs of patterns
(also called associations) whose components are real numbers. The first element of each
association is an input column pattern, while the second element is the corresponding
output column pattern [5,6]. By convention, the three positive integers p, m, n facilitate
symbolic manipulation. The symbol p represents the number of associations, such that

D = {(xµ, yµ)|µ = 1, 2, . . . , p} (1)

In addition, n and m represent the dimensions of the input and output patterns,
respectively, so that the µth input pattern and the µth output pattern are expressed as
follows:

xµ =
(

xµ
1 , xµ

2 , . . . , xµ
n

)t
=


xµ

1

xµ
1
...

xµ
n

 ∈ Rn; yµ =
(

yµ
1 , yµ

2 , . . . , yµ
m

)t
=


yµ

1

yµ
2
...

yµ
m

 ∈ Rm (2)
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The linear associator algorithm consists of two phases: the training (or learning) phase
and the recalling phase. To carry out these two phases, the dataset D is partitioned into
two disjoint subsets: a training or learning set L and a test set T.

For each training couple of patterns (xµ, yµ), the matrix that represents its association
is calculated with the outer product:

yµ·(xµ)t =


yµ

1

yµ
2
...

yµ
m

·
(

xµ
1 , xµ

2 , . . . , xµ
n

)
=



yµ
1 xµ

1 yµ
1 xµ

2 · · · yµ
1 xµ

j · · · yµ
1 xµ

n

yµ
2 xµ

1 yµ
2 xµ

2 · · · yµ
2 xµ

j · · · yµ
2 xµ

n
...

...
...

...
yµ

i xµ
1 yµ

i xµ
2 · · · yµ

i xµ
j · · · yµ

i xµ
n

...
...

...
...

yµ
mxµ

1 yµ
mxµ

2 · · · yµ
mxµ

j · · · yµ
mxµ

n


(3)

If l is the cardinality of L, then l < p, and l matrices will be generated, which will be
added to obtain the matrix M that represents the linear associator.:

M =
l

∑
µ=1

yµ·(xµ)t =
[
mij
]

m×n (4)

The previous expression shows the trained memory, where the ijth component of M is
expressed as follows:

Mij =
l

∑
µ=1

yµ
i xµ

j (5)

Once the memory is trained, the recalling phase takes place. For this, the product of
the trained memory with a test pattern xω is performed:

M·xω =

[
l

∑
µ=1

yµ·(xµ)t

]
·xω (6)

Ideally, Equation (6) should return the output pattern yω . In the specialized literature,
it is not possible to find theoretical results that establish sufficient conditions to recover, in
all cases, the output pattern yω from the input pattern xω.

However, it is possible to use the well-known resubstitution error mechanism in order
to establish the recovery conditions for the patterns in the learning set; that is, the memory
will be tested with the patterns of the learning set. The following theorem establishes the
necessary and sufficient conditions for this to occur.

Theorem 1. Let M be a linear associator which was built from the learning set D by
applying Equation (4), and let (xω, yω) be an association in D. Then, the output pattern
yω is correctly retrieved from the input pattern xω if and only if all input patterns are
orthonormal.

Proof. Given that in the set D there are p associations, by applying Equation (4), we obtain M:

M =
p

∑
µ=1

yµ·(xµ)t

We will try to retrieve the output pattern and, by applying Equation (6), we find

M·xω =

[
p

∑
µ=1

yµ·(xµ)t

]
·xω
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M·xω =

[
y1·
(

x1
)t

+ y2·
(

x2
)t

+ · · ·+ yω ·(xω)t + · · ·+ yp·(xp)t
]
·xω

M·xω =

[
y1·
(

x1
)t
]
·xω + · · ·+

[
yω ·(xω)t

]
·xω + · · ·+

[
yp·(xp)t

]
·xω

M·xω = y1·
[(

x1
)t
·xω

]
+ · · ·+ yω ·

[
(xω)t·xω

]
+ · · ·+ yp·

[
(xp)t·xω

]
M·xω = yω ·

[
(xω)t·xω

]
+ ∑

µ 6=ω

yµ·
[
(xµ)t·xω

]
Therefore, the right term will be yω if and only if two conditions are met:

(xω)t·xω = 1 and ∑
µ 6=ω

yµ·
[
(xµ)t·xω

]
= 0

In other words, (xω)t·xω = 0 and yµ·
[
(xµ)t·xω

]
∀µ 6= ω.

These conditions are met if and only if the input vectors are orthonormal. �

In order to illustrate the operation of both phases of the linear associator, it is pertinent
to follow each of the algorithmic steps through a simple example. In order for the example
to satisfy the hypothesis of Theorem 1, it is assumed that the training or learning phase
is performed with the complete dataset and that the trained memory is tested with each
and every one of the dataset patterns; that is, L = D = T. In the specialized literature, this
method is known as the resubstitution error calculation [16].

The example consists of three pairs of patterns, where the input patterns are of
dimension 3, and the output patterns are of dimension 5; namely, p = 3, m = 5, n = 3:

x1 =

 1
0
0

 y1 =


1
0
1
0
1

; x2 =

 0
1
0

 y2 =


1
1
0
0
1

; x3 =

 0
0
1

 y3 =


1
0
1
1
0

 (7)

By applying Equation (3) to the associations in Equation (7), it is possible to get the three outer
products as in Equation (8):

y1·(x1)
t
=


1
0
1
0
1

·(1 0 0) =


1 0 0
0 0 0
1 0 0
0 0 0
1 0 0



y2·(x2)
t
=


1
1
0
0
1

·(0 1 0) =


0 1 0
0 1 0
0 0 0
0 0 0
0 1 0



y3·(x3)
t
=


1
0
1
1
0

·(0 0 1) =


0 0 1
0 0 0
0 0 1
0 0 1
0 0 0



(8)

According to Equation (4), the three matrices obtained are added to generate the linear
associator M:

M =
p

∑
µ=1

yµ·(xµ)t =


1 0 0
0 0 0
1 0 0
0 0 0
1 0 0

+


0 1 0
0 1 0
0 0 0
0 0 0
0 1 0

+


0 0 1
0 0 0
0 0 1
0 0 1
0 0 0

 =


1 1 1
0 1 0
1 0 1
0 0 1
1 1 0

 (9)
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With the linear associator trained in Equation (9), it is now possible to try to recover the output
patterns. For this, the matrix M is operated with the input patterns as in Equation (10):

M·x1 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x1 =


1 1 1
0 1 0
1 0 1
0 0 1
1 1 0

·
 1

0
0

 =


1
0
1
0
1

 = y1

M·x2 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x2 =


1 1 1
0 1 0
1 0 1
0 0 1
1 1 0

·
 0

1
0

 =


1
1
0
0
1

 = y2

M·x3 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x3 =


1 1 1
0 1 0
1 0 1
0 0 1
1 1 0

·
 0

0
1

 =


1
0
1
1
0

 = y3

(10)

As shown in Equation (10), the recalling of the three output patterns from the three correspond-
ing input patterns was carried out correctly. This convenient result was obtained thanks to the fact
that the input patterns complied with Theorem 1; in other words, the three input patterns were
orthonormal [17].

Interesting questions arise here. What about real-life datasets? Is it possible to find datasets of
medical, financial, educational, or commercial applications whose patterns are orthonormal? The
answers to the previous questions are daunting for the use of this classic associative model, as it is
almost impossible to find real-life datasets that comply with this severe restriction imposed by the
linear associator.

What will happen if an input pattern that is not orthonormal to the others is added to the set in
Equation (7)? In order to illustrate how this fact affects the linear associator, the set in Equation (7) is
incremented with the association (x4, y4):

x4 =

 1
0
1

 y4 =


0
1
0
1
1

 (11)

The outer product of the pair in Equation (11) is presented in Equation (12):

y4·(x4)
t
=


0
1
0
1
1

·(1 0 1) =


0 0 0
1 0 1
0 0 0
1 0 1
1 0 1

 (12)

According to Equation (4), the matrix M must then be updated:

M4 pairs = M + y4·
(

x4
)t

=


1 1 1
0 1 0
1 0 1
0 0 1
1 1 0

+


0 0 0
1 0 1
0 0 0
1 0 1
1 0 1

 =


1 1 1
1 1 1
1 0 1
1 0 2
2 1 1

 (13)
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With the memory updated in Equation (13), we proceed to try to recover the four output
patterns from the corresponding four input patterns:

M4 pairs·x1 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x1 =


1 1 1
1 1 1
1 0 1
1 0 2
2 1 1

·
 1

0
0

 =


1
1
1
1
2

 6= y1

M4 pairs·x2 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x2 =


1 1 1
1 1 1
1 0 1
1 0 2
2 1 1

·
 0

1
0

 =


1
1
0
0
1

 = y2

M4 pairs·x3 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x3 =


1 1 1
1 1 1
1 0 1
1 0 2
2 1 1

·
 0

0
1

 =


1
1
1
2
1

 6= y3

M4 pairs·x4 =

[
p
∑

µ=1
yµ·(xµ)t

]
·x4 =


1 1 1
1 1 1
1 0 1
1 0 2
2 1 1

·
 1

0
1

 =


2
2
2
3
3

 6= y4

(14)

By performing a quick analysis and a comparison between the results obtained in Equation (10)
and those obtained in Equation (14), we can observe the devastating effects that non-orthonormality
has on the performance of the linear associator.

While in Equation (10), where all input patterns are orthonormal, 100% of the patterns were
recalled correctly, the results of Equation (14) indicate that it was enough that one of the patterns
was not orthonormal to the others, leading the performance to decrease in a very noticeable way.
There were 75% errors. As can be seen, adding a pattern that is not orthonormal to the training set is
detrimental to the linear associator model. The phenomenon it generates is known as cross-talk [5].

In an attempt to improve the results, some researchers tried preprocessing the input patterns.
In some cases, orthogonalization methods were applied to the input patterns of the linear associa-
tor [10–13]. The results were not successful, and this line of investigation was abandoned.

The key to understanding the reasons these attempts failed is found in elementary linear
algebra [17]. It is well known that given a vector in a Euclidean space of dimension n, the max-
imum number of orthonormal patterns is precisely n. For this reason, even if orthogonalization
methods such as Gram–Scmidt are applied, in a space of dimension n, there cannot be more than n
orthonormal vectors.

In specifying these ideas in Equation (7), the results of elementary linear algebra tell us that it is
not possible to find a fourth vector of three components that is orthonormal to the vectors x1, x2, and
x3. Additionally, if the vectors have four components, the maximum number of orthonormal vectors
will be five. In general, for a set of input vectors of the linear associator of n compents, in a set of
n + 1 vectors or greater, it will no longer be possible to make all vectors orthonormal.

2.2. The Linear Associator as a Pattern Classifier
The key to converting an associative memory into a pattern classifier is found in the encoding

of the output patterns. If class labels can be represented as output patterns in a dataset designed
for classification, it is possible to carry out the classification task through an associative memory.
For instance, the linear associator (whose natural task is recalling) can be converted into a classifier
of patterns that represent the absence or presence of some disease. To achieve this, each label is
represented by a positive integer. By choosing this representation of the labels as patterns, the p
patterns yµ of dimension m in Equation (1) are converted to positive integers, so in Equation (2), the
value of m is 1.

During the training phase of the linear associator, each outer product yµ·(xµ)t in Equation (3)
will be a matrix of dimension 1 × n, and the same happens with the matrix M in Equation (4),
whose dimension is 1× n. Consequently, and as expected, during the recalling phase of the linear
associator, the product M1×n·xω will have dimension 1, because the test pattern xω is a column
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vector of dimension n; that is, a real number is recalled, which will have a direct relationship with a
class label in the dataset.

An example will illustrate this process of converting the linear associator (which is an associative
memory) into a pattern classifier. For this, one of the most famous and long-lived datsets that has
been used for many years in machine learning, pattern recognition, and related areas will be used.
It is the Iris Dataset, which consists of 150 patterns of dimension 4. Each pattern consists of four
real numerical values that represent measurements on three different kinds of iris flowers. It is a
balanced dataset with 3 classes of 50 patterns each: Iris setosa, Iris versicolor, and Iris virginica. These
three classes are assigned the three labels—1, 2, and 3—so that the class Iris setosa corresponds to
label 1, the class Iris versicolor corresponds to label 2, and finally, label 3 is for the class Iris virginica.

In the file distributed by the UCI Machine Learning Repository [18], the patterns are ordered by
class. The file contains the 50 patterns of class 1 first, the patterns from 51 to 100 are those of class 2,
and finally, the patterns from l101 to 150 are found, which belong to class 3.

According to Equation (2), the first two patterns of the Iris Dataset are

x1 =


5.1
3.5
1.4
0.2

 ∈ R4; x2 =


4.9
3.0
1.4
0.2

 ∈ R4 (15)

As these first two patterns belong to the class Iris setosa, they are labeled 1; namely

y1 = 1 ∈ R; y2 = 1 ∈ R (16)

Additionally, the remaining patterns of the class Iris setosa are labeled 1:

y3 = 1; y4 = 1; · · · ; y50 = 1 (17)

It is at this moment that we should mention a very relevant note in relation to the patterns that
feed the linear associator. Typically, in datasets distributed by repositories, patterns appear as rows in
a matrix. Figure 1 illustrates the first two patterns (Iris setosa) and the last pattern (Iris virginica) from
the iris.data file, which was downloaded from the UCI Machine Learning Repository [18]. Regardless
of class labels, this is a 150× 4 matrix (i.e., there are 150 row patterns of 4 real numbers each).
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However, the algorithmic steps of the linear associator require column patterns, both for
the input and output. Therefore, when implementing the algorithm, each of the row patterns is
simply taken and converted into a column pattern as in Equation (15), thus avoiding unnecessary
excess notation.

Below is an example of an Iris versicolor class pattern and the corresponding class labels for
patterns 51 through 100:

x51 =


7.0
3.2
4.7
1.4

 ∈ R4 (18)

y51 = 2; y52 = 2; · · · ; y100 = 2 (19)

Similarly, the class pattern is as follows for the class Iris virginica:

x101 =


6.3
3.3
6.0
2.5

 ∈ R4 (20)

y101 = 3; y102 = 3; · · · ; y150 = 3 (21)
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As in any pattern classification experiment, the first thing to do is choose a validation method.
For this example, leave-one-out [16] has been selected. Therefore, the first pattern of class 1, x1, is
chosen as the test pattern, while all the remaining 149 patterns constitute the training set.

The training phase of the linear associator is started by applying Equation (3) to the first pattern
of the training set, which is x2, and whose class label is y2:

y2·
(

x2
)t

= (1)·


4.9
3.0
1.4
0.2


t

= (1)·(4.9 3.0 1.4 0.2) = (4.9 3.0 1.4 0.2) (22)

The same process is carried out with the following association, which is
(

x3, y3):
y3·
(

x3
)t

= (1)·


4.7
3.2
1.3
0.2


t

= (1)·(4.7 3.2 1.3 0.2) = (4.7 3.2 1.3 0.2) (23)

This continues until concluding with the 49 pattern associations of class 1. Then, the same
process is applied to the first association of class 2, which is

(
x51, y51):

y51·
(

x51
)t

= (2)·


7.0
3.2
4.7
1.4


t

= (2)·(7.0 3.2 4.7 1.4) = (14.0 6.4 9.4 2.8) (24)

This continues until concluding with the 50 pattern associations of class 2. Then, the same
process is applied to the first association of class 3, which is

(
x101, y101):

y101·
(

x101
)t

= (3)·


6.3
3.3
6.0
2.5


t

= (3)·(6.3 3.3 6.0 2.5) = (18.9 9.9 18.0 7.5) (25)

This process continues until the last association is reached, which is
(

x150, y150). At the end,
there are 149 matrices of dimensions 1× 4, which are added according to Equation (4) to finally obtain
the linear associator. The matrix M representing the linear associator is also of dimensions 1× 4:

M(1) = (1827.0 890.5 1330.6 448.5) (26)

The symbol (1) as a superscript in M(1) indicates that the pattern x1, being the test pattern, has
not participated in the learning phase.

Now that the linear associator M(1) has been trained, it is time to move on to the classification
phase. For this, Equation (6) is applied to linear associator M(1) in Equation (26) and to the test
pattern x1 in Equation (15):

M(1)·x1 = (1827.0 890.5 1330.6 448.5)·


5.1
3.5
1.4
0.2

 = 14387 (27)

The returned value in Equation (27), 14,281, is a long way from the expected value, which is
the class label y1 = 1. This is because the 149 patterns the linear associator trains with are far from
orthonormal, as is required by the original linear associator model for pattern recalling to be correct
(Theorem 1).

This is where one of the original contributions of this paper comes into play. By applying this
idea, it is possible to solve the problem of obtaining a number that is very far from the class label. By
applying a scaling and a rounding, it is possible to bring the result closer to the class label of the test
pattern x1:

M(1)·x1 = 14, 387→ round
(

14, 387
10, 000

)
= round(1.4387) = 1 = y1 (28)
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The class label for test pattern x1 was successfully recalled. It was a hit of the classifier, but
what will happen to the other patterns in the dataset?

To find out, let us go to the second iteration of the leave-one-out validation method, where the
pattern x2 will now become a test pattern, while the training set will be formed with the 149 remaining
patterns from the dataset, which are

x1, x3, x4, · · · , x150 (29)

When executing steps similar to those of iteration 1 based on Equations (3) and (4), the linear
associator is obtained:

M(2) = (1827.2 891.0 1330.6 448.5) (30)

Again, the symbol (2) as a superscript in M(2) indicates that the pattern x2, being the test pattern,
has not participated in the learning phase. Now that the linear associator M(2) has been trained, it is
time to move on to the classification phase. For this, Equation (6) is applied to linear associator M(2)

in Equation (30) and to the test pattern x2 in Equation (15):

M(2)·x2 = (1827.2 891.0 1330.6 448.5)·


4.9
3.0
1.4
0.2

 = 13579 (31)

Again, by applying a scaling and a rounding, it is possible to bring the result closer to the class
label of the test pattern x2:

M(2)·x2 = 13579→ round
(

13579
10000

)
= round(1.3579) = 1 = y2 (32)

Something similar happens when executing iterations 3, 4 and 5, where the class labels of the
test patterns x3, x4, and x5 are correctly recalled. However, it is interesting to observe what happens
in iteration 6, where the test pattern is now x6:

M(6) = (1826.7 890.1 1330.3 448.3) (33)

M(6)·x6 = (1826.7 890.1 1330.3 448.3)·


5.4
3.9
1.7
0.4

 = 15776 (34)

M(6)·x6 = 15, 776→ round
(

15, 776
10, 000

)
= round(1.5776) = 2 6= y6 (35)

This is a classifier error, because the result should be label 1, while the linear associator assigns
label 2 to the test pattern x6. However, this is not the only mistake. The total number of patterns in
class 1 (Iris setosa) that are mislabeled is 12.

Now, it is the turn of iteration 51, which corresponds to the first test pattern of class 2 (Iris
versicolor). When executing steps similar to those of iteration 1, based on Equations (3) and (4), the
linear associator is obtained:

M(51) = (1818.1 887.6 1322.6 445.9) (36)

M(51)·x51 = (1818.1 887.6 1322.6 445.9)·


7.0
3.2
4.7
1.4

 = 22407 (37)

M(51)·x51 = 22, 407→ round
(

22, 407
10, 000

)
= round(2.2407) = 2 = y51 (38)

This is a hit of the classifier, because the linear associator correctly assigns label 2 to the test
pattern x51. The same happens with all 50 patterns of class 2. There are zero errors in this class.
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Now, it is the turn of iteration 101, which corresponds to the first test pattern of class 3 (Iris
virginica). When executing steps similar to those of iteration 1, based on Equations (3) and (4), the
linear associator is obtained:

M(101) = (1813.2 884.1 1314.0 441.2) (39)

M(101)·x101 = (1813.2 884.1 1314.0 441.2)·


6.3
3.3
6.0
2.5

 = 23328 (40)

M(101)·x101 = 23, 328→ round
(

23, 328
10, 000

)
= round(2.3328) = 2 6= y101 (41)

This is a classifier error, because test pattern x101 belongs to class 3. There are 43 errors in
this class, and only 7 of the 50 patterns in class 3 (Iris virginica) are correctly classified by the linear
associator.

The sum of all the errors of the linear associator in the Iris Dataset is 55. That is, the Linear
Associator acting as a pattern classifier on the Iris Dataset obtains 95 total hits. Since the Iris Dataset
is balanced, it is possible to use accuracy as a good performance measure [16]:

Accuracy =

(
Number o f hits

Total tested patterns

)
·(100) =

(
95

150

)
·(100) = 63.33% (42)

How good or bad is this performance? A good way to find out is to compare the accuracy
obtained by the linear associator with the performances exhibited by the classifiers of the state
of the art.

For this, seven of the most important classifiers of the state of the art have been selected,
which will be detailed in Section 4.2: a Bayesian classifier (Naïve Bayes [19]), two algorithms of the
nearest neighbors family (1-NN and 3-NN [20]), a decision tree (C4.5 [21]), a support vector machine
(SVM [22]), a neural network (MLP [23]), and an ensemble of classifiers (random forest [24]).

In all cases, the same validation method has been used: leave-one-out. Table 1 contains the
accuracy values (best in bold), where LA stands for linear associator.

Table 1. Accuracy values (as percentages) exhibited by the state-of-the-art classifiers in the Iris Dataset.

Naïve Bayes 1-NN 3-NN C4.5 SVM MLP Random Forest LA

Iris
Dataset 95.33 95.33 95.33 95.33 96.00 96.66 94.66 63.33

The accuracy obtained by the linear associator is more than thirty percentage points be-
low the performance exhibited by the seven most important classifiers of the state of the art for
different approaches.

This means that if the linear associator is to be converted into a competitive classifier, at least in
the Iris Dataset, it is necessary to improve performance by thirty or more percentage points when
accuracy is used as a performance measure.

That is not easy at all.
In Section 2.1, it was pointed out that, based on the known results of elementary linear algebra,

it happens to be that, in general, for a set of input vectors of the linear associator of n compents, in
a set of n + 1 vectors or greater, it will no longer be possible to make all vectors orthonormal. This
means, among other things, that it is not possible to orthonormalize the 150 patterns of 4 attributes of
the Iris Dataset.

The central and most relevant proposal of this paper is to improve the performance of the
linear associator through a transformation of the patterns. That transformation is achieved through a
powerful mathematical tool called singular value decomposition.

2.3. Singular Value Decomposition (SVD)
Given a matrix A ∈ Rm×n where m, n are positive integral numbers, it is possible to represent

that matrix using the singular value decomposition (SVD) [14] as in Equation (43):

A = USVT (43)
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where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices with respect to the columns. In addition,
S ∈ Rm×n is a non-negative matrix diagonal containing the square roots of the eigenvalues (which
are called singular values) from U or V in descending order and the zeros off the diagonal.

If m > n, it is possible to establish the equality S =

[
Ŝ
0

]
.

Therefore, matrix A in Equation (43) can be represented by the “economy SVD” [15]:

A = USVT =
[

Û Û⊥
][ Ŝ

0

]
VT = ÛŜVT (44)

where Û⊥ contains the columns that make up a complementary vector space orthogonal to Û. Note
that matrix Û has the same dimensions as matrix A. In Figure 2, the economy SVD is schematized.
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The process followed to obtain the SVD from matrix A in Equation (45) is exemplified below:

A =

 −2 4
5 0
−2 −1

 (45)

The first step is to find AT in Equation (46) and then calculate AAT in Equation (47):

AT =

[
−2 5 −2
4 0 −1

]
(46)

AAT =

 −2 4
5 0
−2 −1

[ −2 5 −2
4 0 −1

]
=

 20 −10 0
−10 25 −10

0 −10 5

 (47)

Next, we need to find the eigenvectors of AAT and their corresponding eigenvalues. Therefore,
we will use Equation (48), which defines the eigenvectors of the matrix AAT : 20 −10 0

−10 25 −10
0 −10 5

 x1
x2
x3

 = λ

 x1
x2
x3

 (48)

From Equation (48), we obtain the system of equations shown in Equation (49):

(20− λ)x1 − 10x2 = 0
−10x1 + (25− λ)x2 − 10x3 = 0
−10x2 + (5− λ)x3 = 0

(49)

Solving for λ by the method of minors in Equation (50) yields∣∣∣∣∣∣
20− λ −10 0
−10 25− λ −10

0 −10 5− λ

∣∣∣∣∣∣ = 0 (50)

Therefore, the eigenvalues of AAT are

λ = 0, λ = 15, λ = 35 (51)

To obtain the eigenvector of λ = 35, the system in Equation (49) is used:

x1 − 2x3 = 0
x2 + 3x3 = 0
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Consequently, the eigenvector for the eigenvalue λ = 35 is

→
ν1 =

[
2 −3 1

]
(52)

The corresponding expressions to find the eigenvectors of the remaining eigenvalues λ = 15
and λ = 0 are

x1 + 2x3 = 0
x2 + x3 = 0

→
ν2 =

[
−2 −1 1

]
(53)

4x1 − x3 = 0
2x2 − x3 = 0

→
ν3 =

[
1 2 4

]
(54)

When ordering the eigenvectors
→
ν1,
→
ν2, and

→
ν3 with Equations (52)–(54) as columns of a matrix,

we obtain  2 −2 1
−3 −1 2
1 1 4

 (55)

By normalization of Equation (55), the matrix U is obtained [17]:

U =


−2√

14
−2√

6
1√
21

3√
14

−1√
6

2√
21

−1√
14

−1√
6

4√
21

 (56)

The calculation of V is similar, but this time, it will be based on the matrix AT A, which is
calculated in Equation (57), from the matrices AT in Equation (46) and A in Equation (45):

AT A =

[
−2 5 −2
4 0 −1

] −2 4
5 0
−2 −1

 =

[
33 −6
−6 17

]
(57)

After executing the algorithmic steps corresponding to those performed in Equations (48)–(54),
this matrix is obtained: [

3 −1
−1 −3

]
(58)

By normalization of Equation (58), the matrix V is obtained [17]:

V =

[ 3√
10

−1√
10

−1√
10

−3√
10

]
(59)

The matrix S is built from a matrix full of zeros of dimensions m× n. Then, the zeros of the
diagonal are replaced with the singular values (which are the square roots of the eigenvalues) of
matrix U in descending order.

In our example, the singular values of the matrix U are obtained with the square root of the first
two eigenvalues in Equation (51):

S =


√

35 0
0

√
15

0 0

 (60)

Therefore, according to Equation (43), the SVD of matrix A is expressed as in Equation (61):

A = USVT =


−2√

14
−2√

6
1√
21

3√
14

−1√
6

2√
21

−1√
14

−1√
6

4√
21



√

35 0
0

√
15

0 0

[ 3√
10

−1√
10

−1√
10

−3√
10

]T

(61)

Now, from Equation (60), it is possible to obtain the matrix Ŝ:

Ŝ =

[ √
35 0
0

√
15

]
(62)
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Finally, according to Equation (44), the economy SVD of matrix A is expressed as in Equation (63):

A = ÛŜVT =


−2√

14
−2√

6
3√
14

−1√
6

−1√
14

−1√
6

[
√

35 0
0

√
15

][ 3√
10

−1√
10

−1√
10

−3√
10

]T

(63)

The matrices Ŝ and VT in Equations (44) and (63) have something in common. For both matrices,
the inverse matrix is defined, and its calculation is extremely simple [15]. The importance of this
property for this paper will be evident in Section 3, where the proposed methodology is described.

The inverse matrix of V is calculated as follows:(
VT
)−1

=
(

VT
)T

= V (64)

On the other hand, let Ŝ be of dimensions n × n, whose elements on its diagonal are
s11, s22, · · · , snn. Then, the inverse matrix of Ŝ is calculated as follows:

(
Ŝ
)−1

=


1

s11
· · · 0

...
. . .

...
0 · · · 1

snn

 (65)

It can be easily verified that Equations (64) and (65) are fulfilled in the matrices of Equation (63).
An interesting application of Equations (64) and (65) is that it is possible to express the matrix

Û in Equation (44) as a function of Ŝ and V:

A = ÛŜVT

(A)
(

VT
)−1

=
(

ÛŜVT
)(

VT
)−1

(A)
(

VT
)−1

=
(
ÛŜ
)[(

VT
)(

VT
)−1

]
(A)

(
VT
)−1

= ÛŜ

(A)
(

VT
)−1(

Ŝ
)−1

=
(
Û
)[(

Ŝ
)(

Ŝ
)−1
]

(A)
(

VT
)−1(

Ŝ
)−1

= Û

Û = AV
(
Ŝ
)−1 (66)

It is possible to interpret Equation (66) in an unorthodox way. This novel interpretation gives
rise to one of the original contributions of this paper.

If the matrices A, V, and Ŝ are known, it is possible to interpret Equation (66) as the gener-
ation of the matrix Û by transforming the data in A through the modulation of these data by the

V
(
Ŝ
)−1 product.

However, there is something else of great relevance for the original proposal of this paper,
which will be explained in Section 3. It is possible to set a vector as A so that Û will be a vector
transformed in the same way as matrix Û in Equation (66).

3. Our Proposal
It is assumed that a dataset D is available which is designed for the classification task in

machine learning. As such, the dataset consists of p associations of patterns whose components
are real numbers as in Equation (1). As was the case before, p is a positive integer indicating the
cardinality of the dataset:

D = {(xµ, yµ)|µ = 1, 2, . . . , p} (67)

However, in this special D, there is something new. While the first element of each association
is an input pattern of dimension n (as before, n is a positive integer indicating the dimension of
the input patterns), the second element of each association is the corresponding output pattern of
dimension m = 1. The novelty occurs in this second element of each association, because each output
pattern represents the encoding of the corresponding class label of the input pattern (1, 2, 3, · · ·). It is
also assumed that the number of classes is less than 10.
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Therefore, Equation (2) for D is modified as follows:

xµ =
(

xµ
1 , xµ

2 , . . . , xµ
n

)t
=


xµ

1
xµ

1
...

xµ
n

 ∈ Rn; yµ ∈ Z+ ⊂ R (68)

When implementing the algorithm of this proposal, each input pattern is considered a
column vector.

It is also assumed that a validation method is applied. The result of applying the validation
method is a partition of the dataset D into two disjoint subsets: a training or learning set L and a
test set T, which will change with each iteration of the algorithm. The number of iterations that the
algorithm performs is directly determined by the choice of the validation method to be applied.

At each iteration, it is possible to explicitly identify the conformation of the sets L and T. If the
cardinality of the training or learning set L is l, then l < p, and L is made up of two sets of different
natures but with the same cardinality l. On the one hand, there exists the set of training or learning
patterns XL, which contains l patterns of n real components each. On the other hand, L also contains
a set YL, which is an ordered list of the corresponding labels that are elements of XL. In the training
or learning phase of the new algorithm, both sets XL and YL are actively involved.

Something similar happens with the test set T, which will have a cardinality equal to p− l. The
test set T is made up of two sets of different natures but with the same cardinality p− l. On the one
hand, there exists the set of test patterns XT , which contains p− l patterns of n real components each.
On the other hand, T also contains a set YT , which is an ordered list of the corresponding labels of
that are elements of XT . In the classification phase of the new algorithm, only the patterns of the
XT set are involved, and the algorithm itself will respond with the class labels. Since the proposed
algorithm belongs to the supervised paradigm, the set YT will only be used by the practitioner, who
must verify if the algorithm had success or an error when classifying a specific pattern extracted from
the set XT . The labels of the set YT are never known by the algorithm.

Without loss of generality, it is possible to assume that the well-known K-fold cross-validation
method is chosen [16]. In this paper, we use the value K = 10.

The rest of this section contains three subsections. Sections 3.1 and 3.2 describe the training or
learning phase and the classification phase of the proposed algorithm, respectively. Both sections
include original proposals that ostensibly enrich the performance of the linear associator as a pattern
classifier. Due to the important role that SVD plays in the design and implementation of the proposed
algorithm, we have called the new algorithm the linear associator with singular value decomposition
(LA-SVD).

Section 3.3 is relevant because it exemplifies the benefits of the proposed algorithm. The same
example of Section 2.2 is carried out with the new algorithm, and the results are compared, which
show the superiority of the LA-SVD algorithm.

3.1. LA-SVD Training or Learning Phase
To start the training or learning phase, first, the XL set is transformed using the economy SVD

into a new transformed X̂L set. Then, the algorithmic steps of the training or learning phase of the
original linear associator are applied.

3.1.1 In Equation (44), replace A with XL:

XL = ÛŜVT (69)

3.1.2 In Equation (66), establish that Û is the transformed set X̂L:

X̂L = XLV
(
Ŝ
)−1 (70)

This step is really disruptive because a new set of training or learning has been obtained

through the modulation of XL by the V
(
Ŝ
)−1 product. Note that both sets XL and X̂L have the same

cardinality l. Note also that the set of class labels YL remains unchanged.
3.1.3 Each transformed training column pattern (x̂L)

µ is operated with its corresponding class
label yµ, µ ∈ {1, 2, · · · , l} to form the µ-th matrix of dimensions 1× n:

yµ·
[
(x̂L)

µ]t = yµ·
[
(x̂L)

µ
1 (x̂L)

µ
2 · · · (x̂L)

µ
n

]
=
[
yµ·(x̂L)

µ
1 yµ·(x̂L)

µ
2 · · · y

µ·(x̂L)
µ
n

]
(71)
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3.1.4 The l µ-th matrices are added to form the matrix M̂ of dimensions 1 × n:

M̂ =
l

∑
µ=1

yµ·
[
(x̂L)

µ]t (72)

This obtained matrix M̂ is precisely the already trained LA-SVD.
For each iteration, which is determined by the validation method, steps 3.1.1–3.1.4 are repeated.

3.2. LA-SVD Classification Phase
In this phase, the already trained LA-SVD will be matrix-operated with a test pattern, and

a class label will be predicted. Subsequently, the practitioner will contrast the result given by the
LA-SVD with the real class label and will use that information to determine the performance of the
new algorithm. Two disruptive original ideas are important parts in this LA-SVD classification phase.

In a specific iteration where the training or learning phase has been carried out with the set
XL, a test pattern (xT)

test is selected from the test set XT . Note that the label of this test pattern is
unknown by the algorithm, because neither this pattern nor its label intervene in the training phase.

3.2.1 The first disruptive original idea of this subsection consists of making the decision that the
test pattern (xT)

test must be transformed in the same way that the training or learning set XL was
transformed into X̂L by Equation (70):

(x̂T)
test = (xT)

testV
(
Ŝ
)−1 (73)

3.2.2 The product between the matrix M̂ in Equation (72) is performed with the transformed
testing column pattern (x̂T)

test:

M̂·(x̂T)
test =

[
M̂1 M̂2 · · · M̂n

]
·


(x̂T)

test
1

(x̂T)
test
2

...
(x̂T)

test
n

 = r ∈ R (74)

3.2.3 This step contains the second disruptive original idea of this subsection. The result of the
previous step is a number r ∈ R that is not necessarily a class label, which is typically represented by
a small positive integer, as was discussed earlier in this paper. Therefore, the label predicted by the
classifier is obtained by rounding the real number r to the nearest positive integer:

(ŷ)test = round(r) (75)

The value (ŷ)test is a positive integer less than 10, and it is expected to correspond with the true
class label of the test pattern (xT)

test.

3.3. Illustrative Example
In this subsection, the example developed and detailed in Section 2.2, where the linear associator

was applied to the Iris Dataset, will be replicated. This time, the new LA-SVD algorithm will be
applied to the same dataset, and the results will be compared.

It should be emphasized that the Iris Dataset meets the previously specified assumption, because
in this dataset, the number of classes is 3 (i.e., less than 10).

As in the example in Section 2.2, leave-one-out has been selected as the validation method.
The first pattern of class 1 is chosen as the test pattern so that (xT)

test = x1, while all the remaining
149 patterns constitute the training or learning set XL.

For this first iteration, the matrices Ŝ and VT are

Ŝ =


95.7685 0 0 0

0 17.5720 0 0
0 0 3.4693 0
0 0 0 1.8789

 (76)

VT =


−0.7507 0.2870 0.4994 0.3235
−0.3790 0.5455 −0.6750 −0.3212
−0.5142 −0.7081 −0.0547 −0.4808
−0.1684 −0.3445 −0.5403 0.7490

 (77)
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From here, Equations (64) and (65) are used to get the inverse matrices
(
VT)−1 and

(
Ŝ
)−1:

(
VT
)−1

= V =


−0.7507 −0.3790 −0.5142 −0.1684
0.2870 0.5455 −0.7081 −0.3445
0.4994 −0.6750 −0.0547 −0.5403
0.3235 −0.3212 −0.4808 0.7490

 (78)

(
Ŝ
)−1

=


0.0104 0 0 0

0 0.0569 0 0
0 0 0.2882 0
0 0 0 0.5322

 (79)

Applying Equation (70) results in the transformed set X̂L, whose first pattern is the transformed
pattern of x2:

(x̂L)
2 =


−0.0582
0.1128
0.0684
0.0521

 ∈ R4 (80)

By applying Equation (71), we get

y2·
[
(x̂L)

2
]t

= [−0.0582 0.1128 0.0684 0.0521] (81)

In addition, after calculating and adding the 149 matrices, by Equation (72), we get

M̂(1) = [−25.7790 − 4.9314 − 1.0944 0.5880] (82)

According to Equation (15), the test pattern is

(xT)
test = x1 =


5.1
3.5
1.4
0.2

 ∈ R4 (83)

By applying Equations (73), (78), (79), and (83), we get

(x̂T)
test = (xT)

testV
(
Ŝ
)−1

=


−0.0617
0.1316
−0.0001
0.0011

 (84)

By applying Equations (74), (82), and (84), we get

M̂(1)·(x̂T)
test = [−25.7790 − 4.9314 − 1.0944 0.5880]·


−0.0617
0.1316
−0.0001
0.0011

 = 0.9422 (85)

By applying the rounding specified in Equation (75) to the real number obtained in Equation (85),
the label predicted by the LA-SVD classifier is obtained:

(ŷ)test = round(0.9422) = 1 (86)

This is the label predicted by the LA-SVD classifier for the test pattern (xT)
test = x1. Note that

this is a hit for the LA-SVD classifier because, in effect, the test pattern label is 1, since it belongs to
the Iris setosa class.

When executing iterations 2, 3, 4 and 5, which correspond to the test patterns x2, x3, x4, and x5,
the following values were obtained: 0.8972, 0.8763, 0.9049, and 0.9417. When the rounding specified
in Equation (75) was applied to these four real numbers, in all cases, the label predicted by the
LA-SVD classifier was 1, which matched the true labels.

Then comes iteration 6, in which the test pattern is x6. The interest of this sixth iteration is that
the linear associator erroneously predicts the corresponding label y6. It is time to check how the
LA-SVD behaves when it tries to classify test pattern x6.
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Since test pattern x6 belongs to the class Iris setosa, it corresponds to label 1. However, according
to Equation (35), the linear associator erroneously assigns label 2 to test pattern x6. In contrast, the
real number generated by applying Equation (74) was 1.1625, so rounding it using Equation (75)
gave the correct label y6 = 1.

When concluding with the classification of the 50 patterns of class 1, it is now possible to contrast
the performances of both classifiers. While the linear associator classified 12 patterns incorrectly
(12 errors), the new LA-SVD classifier exhibited zero errors; that is, all 50 patterns of the Iris setosa
class were classified correctly.

After testing the 150 patterns of the Iris Dataset with the performance shown by the proposed
LA-SVD, it was possible to compare these results with the classifiers in Table 1. While the linear
associator returned 53 errors, the new classifier only made a mistake in the assignment of 6 labels.
Knowing that there were only 6 errors, the accuracy value of the LA-SVD classifier was calculated
with the 144 correct answers. For this, Equation (42) was used:

Accuracy o f LA− SVD on Iris Dataset =
(

144
150

)
·(100) = 96% (87)

Table 2 contains the values of Table 1 updated with the accuracy result obtained by the LA-SVD
classifier.

Table 2. Accuracy values updated with the result of the LA-SVD classifier.

Naïve Bayes 1-
NN

3-
NN C4.5 SVM MLP Random Forest LA LA-

SVD

Iris
Dataset 95.33 95.33 95.33 95.33 96.00 96.66 94.66 63.33 96.00

The results in Table 2 show the superiority of the proposed algorithm (LA-SVD) over the original
linear associator, but on top of that, the LA-SVD is in second place in the comparison table against the
best classifiers in the state of the art. By classifying the Iris Dataset, the LA-SVD classifier becomes a
competitive classifier, because it improved the performance of the original linear associator by more
than thirty percentage points when accuracy was used as a performance measure.

It is very important to clarify that this notable improvement in the results reported by the LA-
SVD was not due to the orthonormality of the input patterns of the Iris Dataset. The explanation for
this improvement in results lies in the fact that the benefits of orthonormality were taken advantage
of in the columns of matrix Û in SVD.

Now is the time to take advantage of the benefits of the LA-SVD classifier by applying it to data
that are very sensitive for humans because they are related to health: medical datasets.

4. Experimental Results
In order to achieve impact applications of the new classifier, fourteen datasets were selected

whose data refer to a very sensitive topic for human societies: health. The LA-SVD classifier would
be applied to fourteen medical datasets.

This section consists of three subsections. In Section 4.1, the datasets used to carry out the
experiments are described. Section 4.2, for its part, contains descriptions of nine of the pattern
classifiers of the most important approaches to the state of the art, including three classifier ensembles.
The results obtained by these state-of-the-art algorithms are presented in Section 4.3, which also
includes discussions and statistical comparative analyses. All of this will be of great support to
measure the performance of the new algorithm proposed (LA-SVD) and the relevance that it will
potentially acquire in the state of the art of machine learning and its applications.

4.1. Datasets
The fourteen medical datasets described had two classes and were balanced datasets. The

balance or imbalance was determined by calculating the imbalance ratio (IR), which is an index that
measures the degree of imbalance of a dataset. The IR index was defined as in Equation (88):

IR =
|majority_class|
|minority_class| (88)
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where |majority_class| represents the cardinality of the majority class in the dataset while
|minority_class| represents the cardinality of the minority class.

A dataset was considered balanced if its IR value was close to or less than 1.5 (note that the IR
value is always greater than 1).

To illustrate the concept of the IR index, the Diabetic Retinopathy Debrecen Dataset would be
taken as an example, which has 1151 patterns included into two classes. The majority class contains
611 patterns, while in the minority class, there are 540 patterns:

IR =
611
540

= 1.13 (89)

Therefore, the Diabetic Retinopathy Debrecen Dataset is a balanced dataset.
Arcene Dataset [25]
This dataset was created by bringing together three cancer databases detected by mass spectrom-

etry. It has 200 patterns and 10,000 attributes; the majority class has 112 patterns, and the minority
class has 88 patterns. It has no missing values, and the IR index is 1.27, which indicates that the
dataset is balanced.

Bioresponse Dataset [25]
This dataset predicts a biological response of molecules from their chemical properties. It

contains 3751 patterns and 1776 attributes. The majority class has 2034 patterns, and the minority
class has 1717 patterns. It has no missing values. The IR index is 1.18, which indicates that the dataset
is balanced.

Breast Cancer Coimbra Dataset [18]
In the process of generating this dataset, breast cancer patients and healthy patients, which

form the two classes, were examined. The dataset has 116 patterns and 9 attributes; the majority class
has 64 patterns, and the minority class has 52 patterns. The dataset has no missing values, and the IR
index is 1.23, which indicates that the dataset is balanced.

Chronic Kidney Disease Dataset [18]
Its purpose is to diagnose if a patient has diabetes. It contains 400 patterns and 8 attributes. The

majority class has 250 patterns, and the minority class has 150 patterns. It has missing values and
categorical values in some attributes, so it was necessary to apply imputation to those missing values
and label coding to the categorical values. The IR index is 1.6, which indicates that this dataset is
(almost) balanced.

Diabetic Retinopathy Debrecen Dataset [18]
This dataset contains data that allows knowing if a patient suffers from diabetic retinopathy.

The dataset contains 1151 patterns and 19 attributes. The majority class has 611 patterns, and the
minority class has 540 patterns. It has no missing values, and the IR index is 1.13, which indicates
that it is a balanced dataset.

Heart Attack Possibility Dataset [26]
This dataset contains 303 patterns and 14 attributes. The majority class has 165 patterns, and

the minority class has 138 patterns. It has no missing values. The IR index is 1.19, which indicates
that the dataset is balanced.

Hungarian Heart Dataset [25]
This dataset contains 294 patterns and 14 attributes. The majority class has 188 patterns, and the

minority class has 106 patterns. It has missing values and categorical data in some features, so it was
necessary apply imputation to those missing values, and label coding was applied to the categorical
values. The IR index is 1.7, which indicates that the dataset is (almost) balanced.

Lymphography Dataset [25]
This dataset contains 148 patterns and 18 attributes. The majority class has 81 patterns, and the

minority class has 67 patterns. It has no missing values, but it does have categorical values, so label
coding was applied to these values. The IR index is 1.2, which indicates that the dataset is balanced.

Pima Indians Diabetes Dataset [27]
Its purpose is to diagnose if a patient has diabetes. It contains 768 patterns and 8 attributes. The

majority class has 500 patrons, and the minority class has 268. It has no missing values. The IR index
is 1.8, which indicates that the dataset is slightly imbalanced.

Plasma Retinol Dataset [25]
This dataset contains 315 patterns and 13 attributes. The majority class has 182 patterns, and

the minority class has 133 patterns. It has no missing values, but it does have categorical values, so
label coding was applied to these values. The IR is 1.36, which indicates that the dataset is balanced.

Prnn Crabs Dataset [25]
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This dataset contains 200 patterns and 7 attributes. The majority class has 100 patterns, and the
minority class has 100 patterns. It has no missing values. The IR index is 1, which indicates that the
dataset is perfectly balanced.

South African Heart Disease Dataset [28]
This dataset was created through a study of men from the Western Cape in South Africa, where

there is a high rate of death from coronary heart disease (CHD). The dataset is divided into those
men who died from CHD and those men who responded to a treatment applied to them. It is worth
mentioning that this database is only a fraction of the original database described in [29]. The dataset
has 462 patterns and 10 attributes. The majority class has 302 patterns, and the minority class has
160 patterns. It has no missing values, and the IR index is 1.8, which indicates that the dataset is
slightly imbalanced. It has no missing values, but it does present mixed attributes, so the categorical
attributes were changed to numerical ones.

Statlog Heart Dataset [18]
This dataset has 270 patterns and 13 attributes. The majority class has 150 patterns, and the

minority class has 120 patterns. It has no missing values, and the IR index is 1.15, which indicates
that the dataset is balanced.

Tumors C Dataset [25]
This dataset was created to study patients with medulloblastomas. Medulloblastoma patients

were treated and divided into two classes: medulloblastoma survivors (39 patterns) and those whose
treatments failed (21 patterns). It has no missing values, and the IR index is 1.8, which indicates that
the dataset is slightly imbalanced.

Table 3 contains a summary of the specifications for the fourteen datasets.

Table 3. Description of the datasets in alphabetical order.

Dataset Number of Patterns Number of Features

Arcene 200 10,000
Bioresponse 3751 1776

Breast Cancer Coimbra 116 9
Chronic Kidney Disease 400 8

Diabetic Retinopathy Debrecen 1151 19
Heart Attack Possibility 303 14

Hungarian Heart 294 14
Lymphography 148 18

Pima Indians Diabetes 768 8
Plasma Retinol 315 13

Prnn Crabs 200 7
South African Heart Disease 462 10

Statlog Heart 270 13
Tumors C 60 7130

4.2. State-of-the-Art Classifiers for Comparison
This subsection describes the conceptual basis of nine of the most important classifiers of the

state of the art (six of them are simple classifiers, and the other three are classifier ensembles) which
were implemented on the WEKA platform [30]. These are the classification algorithms against which
our proposal, the LA-SVD classifier, will be compared.

Simple Classifiers
Naïve Bayes [19,30]
The Naïve Bayes classifier is a probabilistic algorithm with a superstructure based on Bayes’

theorem. The classifier assumes that the features are independent of each other, which is why it has
the naive name.

IBk (Instance-Based) [20,30]
Instance-based classifiers (IBk) is a family of classifiers based on metrics, which arose as an

improvement to the k-NN family of classifiers (the k nearest neighbors). The difference between
these two families of classifiers is that IBk is able to classify patterns with mixed features and missing
values thanks to the use of the Heterogeneous Euclidean-Overlap Metric (HEOM) [31].

C4.5 [21,30]
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This is a rule-based classifier with a tree structure. The algorithm goes through the leaves of the
tree until it reaches a class decision, which makes it easy to be interpreted by humans. This version
of the WEKA algorithm is robust to missing values and numerical attributes.

LibSVM [22,30]
This is a library integrated in WEKA that helps classification with an SVM. These classifiers

look for a hyperplane that separates the classes with the help of a kernel [32].
MLP [23,30]
The multi-layer perceptron classifier is an artificial neural network consisting of multiple layers

which allows for solving non-linear problems. Although neural networks have many advantages,
they also have their limitations. If the model is not trained correctly, it can give inaccurate results, in
addition to the fact that the functions only look for local minima, which causes the training to stop
even without having reached the percentage of allowed error.

Table 4 contains a summary of the specifications for the six simple classifiers.

Table 4. Simple classifier algorithms against which the LA-SVD classifier will be compared.

Algorithm Conceptual Basis

Naïve Bayes Calculation of probabilities using Bayes’ theorem
IB1 Dissimilarity: HEOM and Euclidean distance
IB3 Dissimilarity: HEOM and Euclidean distance

C4.5 Rules based on criteria such as gain or entropy
LibSVM Finding a kernel-based hyperplane

MLP Artificial neural networks

Ensemble Classifiers
AdaBoost [24,30]
AdaBoost is an ensemble algorithm that uses the boosting technique to perform binary classifi-

cation.
Bagging (Bootstrap Aggregating) [24,30]
Bagging is a classifier ensemble that divides the learning dataset into several subsets and creates

a classifier for each of the subsets. Then, it combines the results using some aggregation technique
(typically, the majority is used).

Random Forest [24,30]
Random forest is an ensemble of classifiers where several trees (typically C4.5) are combined.

The method combines bagging and the selection of traits randomly.
Table 5 contains a summary of the specifications for the seven algorithms.

Table 5. Classifier ensemble algorithms against which the LA-SVD classifier will be compared.

Algorithm Conceptual Basis

AdaBoost Performing binary classification using boosting
Bagging (Bootstrap Aggregating) Combine partial results using majority

Random Forest Ensemble of classifiers based on decision trees

4.3. Performance and Comparative Analysis
This subsection is extremely relevant to the original proposal that has been described in this

paper. In order to show the benefits of the new LA-SVD pattern classification algorithm, its perfor-
mance is compared against the most important classifiers of the state of the art in the most influential
approaches in the scientific community of machine learning and associated topics.

The six simple classifier algorithms and the three ensemble classifier algorithms described in
Section 4.2 were applied to the fourteen medical datasets described in Section 4.1. These datasets
were selected because their sensitive content was of great importance for the human being, that being
human health.

Regarding the number of datasets to use in the experiments, we were guided by what the
experts in the statistical tests recommended. In [33], the authors established that if there are k pattern
classifiers in a classification problem, the number of datasets d that are required to guarantee the
power of the statistical tests (Friedman and Wilcoxon, among others) is calculated as follows: d ≤ 2k.
In other words, the minimum number of datasets that guarantees the power of the statistical test is 2k.
Therefore, as in our study, seven simple classifiers were compared, and we used fourteen datasets.
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In all cases, the same validation method was used: the tenfold cross-validation method [16].
Additionally, since the datsets were balanced, in all cases, accuracy (in %) was used as a measure of
the performance of the 10 classifiers, including the LA-SVD.

Table 6 includes the accuracy values (in%) obtained by applying the seven simple classifiers
(including LA-SVD) in the fourteen datasets. The best values obtained for each dataset have been
blacked out and enclosed in a box.

Table 6. Accuracy values (in %) exhibited by the LA-SVD algorithm and by six simple classifiers (best values in bold
and framed).

Naïve Bayes IB1 IB3 C4.5 Lib SVM MLP LA-SVD

Arcene 70.00 84.50 87.00 81.00 56.00 52.50 89.99
Bioresponse 65.36 74.24 75.04 73.79 73.82 51.37 72.19

Breast Cancer Coimbra 60.34 66.37 67.24 68.96 55.17 65.51 69.32
Chronic Kidney Disease 98.75 99.50 99.00 99.50 62.50 98.75 96.50

Diabetic Retinopathy Debrecen 56.90 60.2 61.33 64.11 57.68 71.93 70.73
Heart Attack Possibility 82.83 76.56 81.51 78.54 54.78 77.88 82.22

Hungarian Heart 92.17 94.55 93.19 98.29 63.94 93.19 96.23
Lymphography 82.43 75.00 75.67 81.75 79.72 77.70 82.90

Pima Indians Diabetes 76.30 70.18 72.65 73.82 65.1 75.13 100
Plasma Retinol 45.71 55.23 55.55 57.14 57.77 55.55 47.10

Prnn Crabs 62.50 97.00 95.50 91.50 98.00 99.50 99.50
South African Heart Disease 70.56 63.20 67.53 70.77 65.36 67.09 72.23

Statlog Heart 83.70 75.18 78.88 76.66 55.92 77.40 84.07
Tumors C 61.66 56.66 56.66 58.33 65.00 58.33 65.29

The experimental results obtained by the proposed algorithm, LA-SVD, were very remarkable.
In eight of the fourteen datasets of the experiments, the LA-SVD algorithm obtained first place
(Arcene, Breast Cancer Coimbra, Lymphography, Pima Indians Diabetes, Prnn Crabs, South African
Heart Disease, Statlog Heart, and Tumors C). This was neither more nor less than 57% of the datasets.

It is worth emphasizing the consistency of the results exhibited by the proposed LA-SVD
classifier, which came in second place in three datasets (Diabetic Retinopathy Debrecen, Heart Attack
Possibility, and Hungarian Heart).

In none of the 14 datasets did the LA-SVD algorithm come in last.
To clearly establish whether or not there were statistically significant differences between the

classifiers, it was necessary to apply a test of statistical significance.
To carry out the statistical analysis, non-parametric tests were used. In particular, the Friedman

test was used for the comparison of multiple related samples [34], and the Holm test was used for
post hoc analysis [35].

In both cases, a significance level α = 0.05 was established for a 95% confidence interval.
The following hypotheses were established:

• H0: There are no significant differences in the performance of the algorithms.
• H1: There are significant differences in the performance of the algorithms.

The Friedman test obtained a significance value of 0.007488, so the null hypothesis was rejected,
showing that there were significant differences in performance for the compared algorithms.

Table 7 shows the ranking obtained by the Friedman test.

Table 7. Ranking obtained by the Friedman test.

Algorithm Ranking

LA-SVD 2.2500
C4.5 3.2857
IB3 3.8214

MLP 4.3214
Naïve Bayes 4.3929

IB1 4.7143
LibSVM 5.2143
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As can be seen, the first algorithm in the ranking was the LA-SVD. This indicates the high
quality of the proposed classifier, given that it ranked first, above the classifiers with a very good
historical performance.

Holm’s test (Table 8) compared the performance of the best ranking algorithm (our proposal,
LA-SVD) with that of the rest of the algorithms.

Table 8. Results obtained by the Holm’s test.

Algorithm z p-Value Holm

6 LibSVM 3.630494 0.000283 0.008333
5 IB1 3.018121 0.002543 0.010000
4 Naïve Bayes 2.624453 0.008679 0.012500
3 MLP 2.536972 0.011182 0.016667
2 IB3 1.924599 0.054280 0.025000
1 C4.5 1.268486 0.204625 0.050000

The Holm’s test rejected those hypotheses that had an unadjusted p − value ≤ 0.025. The
results of the Holm’s test show that there were no significant differences in the performance of the
proposed algorithm and the algorithms C4.5 and IB3. However, the proposed classifier LA-SVD had
significantly better performance than the MLP, Naïve Bayes, IB1, and Lib-SVM algorithms.

Table 9 includes the accuracy values (in %) obtained by applying the LA-SVD classifier and the
three ensemble classifiers in the fourteen datasets. The best values obtained for each dataset have
been blacked out and enclosed in a box.

The proposed LA-SVD classifier is a simple classifier. Therefore, the comparison with the ensem-
bles of classifiers is not entirely fair. Still, we decided to compare the LA-SVD performance against
three ensembles of pattern classifiers, including one of the best in the state of the art: random forest.

Surprisingly, the experimental results in Table 9 show that the LA-SVD ranked first in 7 of the
14 datasets (50%).

Again, to carry out the statistical analysis, non-parametric tests were used. In particular, the
Friedman test was used for the comparison of multiple related samples [34], and the Holm’s test was
used for the post hoc analysis [35]. In both cases, a significance level α = 0.05 was established for a
95% confidence interval.

The following hypotheses were established:

• H0: There are no significant differences in the performance of the algorithms.
• H1: There are significant differences in the performance of the algorithms.

The Friedman test obtained a significance value of 0.274878, so the null hypothesis was not
rejected, showing that there were no significant differences in the performance of the compared
algorithms. Table 10 shows the ranking obtained by the Friedman test.

As can be seen, the first algorithm in the ranking was random forest, closely followed by the
proposed LA-SVD. This shows that our proposal, despite being a simple classifier, had a performance
comparable to that of one of the classifier committees with the best performance in the literature. In
this case, it was not necessary to perform the Holm’s test, since no significant differences were found
in the performance.

Table 11 is included for the purpose of illustrating the remarkable superiority of the proposed
LA-SVD qualifier over the original linear associator algorithm. Considering the LA-SVD was
competitive with the classifiers of the state of the art, these results show the valuable contribution
that the creation of the LA-SVD makes.
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Table 9. Accuracy values (in %) exhibited by the LA-SVD algorithm and by three ensemble classifiers
(best values in bold and framed).

AdaBoost Bagging Random
Forest LA-SVD

Arcene 71.00 84.00 73.00 89.99
Bioresponse 74.43 79.44 78.27 72.19

Breast Cancer Coimbra 75.00 74.13 75.86 69.32
Chronic Kidney Disease 99.5 100 99.50 96.50

Diabetic Retinopathy Debrecen 61.77 69.33 68.37 70.73
Heart Attack Possibility 71.21 81.84 82.17 82.22

Hungarian Heart 97.27 96.93 97.27 96.23
Lymphography 80.4 86.48 79.72 82.9

Pima Indians Diabetes 74.34 76.17 75.26 100
Plasma Retinol 61.58 54.28 58.09 47.10

Prnn Crabs 83.00 93.50 90.00 99.50
South African Heart Disease 71.21 67.96 67.96 72.23

Statlog Heart 80.00 81.11 80.00 84.07
Tumors C 63.33 66.66 66.66 65.29

Table 10. Ranking obtained by the Friedman test.

Algorithm Ranking

Random Forest 2.1429
LA-SVD 2.2857
Bagging 2.5357

AdaBoost 3.0357

Table 11. Accuracy values (in %) exhibited by both classifiers: linear associator and LA-SVD.

Linear Associator LA-SVD

Arcene 0 89.99
Bioresponse 0 72.19

Breast Cancer Coimbra 10.75 69.32
Chronic Kidney Disease 8.00 96.50

Diabetic Retinopathy Debrecen 30.75 70.73
Heart Attack Possibility 0 82.22

Hungarian Heart 0.34 96.23
Lymphography 68.14 82.9

Pima Indians Diabetes 25.78 100
Plasma Retinol 10.15 47.10

Prnn Crabs 22.50 99.50
South African Heart Disease 65.73 72.23

Statlog Heart 0 84.07
Tumors C 56.38 65.29

5. Conclusions and Future Works
The results of Tables 6–8 show that the proposed LA-SVD algorithm was competitive with

state-of-the-art classifiers. Furthermore, the results of Tables 9 and 10 show that our proposal was a
competitive algorithm with respect to the ensembles of classifiers. This represents good news for
those who use machine learning to support decision-making in the area of human health care. This
is due to the fact that there is now a reliable algorithm which is in first place in the classification
performance, with results that surpass the most famous and prestigious algorithms within machine
learning and related areas. In this way, the proposal is adequate, which is why its application for the
classification of medical data is recommended [36–38].

Here, it is pertinent to mention the deep learning algorithms [39], which have recently become
fashionable in application areas related to machine learning. However, it is also pertinent to clarify
that this type of algorithm, in addition to the great demand for computational resources that they
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require to exhibit impressive performance, are suitable for very large files of digital images and
not for datasets with little data such as those used in the present paper, where their results are
rather modest [3].

However, there are still some results pending. Certainly, the proposed LA-SVD algorithm
outperformed some of the best classifiers today. However, much work remains to be done to make
this proposal a solid option within pattern classifiers in medical datasets.

As for future work, in the short term, the authors should propose a solution to use the LA-SVD
in datasets that have 10 or more classes. In addition, the labeling policy is not entirely clear. We will
work on this in the medium term.
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