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Abstract: Showing whether the longest-edge (LE) bisection of tetrahedra meshes degenerates the
stability condition or not is still an open problem. Some reasons, in part, are due to the cost for
achieving the computation of similarity classes of millions of tetrahedra. We prove the existence
of tetrahedra where the LE bisection introduces, at most, 37 similarity classes. This family of new
tetrahedra was roughly pointed out by Adler in 1983. However, as far as we know, there has been
no evidence confirming its existence. We also introduce a new data structure and algorithm for
computing the number of similarity tetrahedral classes based on integer arithmetic, storing only
the square of edges. The algorithm lets us perform compact and efficient high-level similarity class
computations with a cost that is only dependent on the number of similarity classes.

Keywords: longest edge; bisection; similarity classes; meshes; algorithm; tetrahedra

1. Introduction

The simplest method to subdivide tetrahedral meshes is probably the bisection method.
In many areas of mathematics and engineering, this partitioning method is very useful
for constructing discretized volumes of domain spaces, for example, in the finite element
method. Refinement algorithms based on the longest edge (LE bisection) have been
pursued by Rivara, Plaza, Carey, and Korotov and coworkers [1–3]. The stability condition
means that the tetrahedra generated during the refinement process must not degenerate,
i.e., the interior angles of all elements must be bounded uniformly away from zero.

In 2D, a consequence of the stability of the LE bisection algorithm is the self-improvement
of quality. This scheme refinement improves interior angles [4], and this improvement
has been studied in depth in [5]. In practice, the self-improvement confirms that the
meshes obtained tend to be improved in the following sense: the minimum interior angle
of triangles appearing in the refinement of meshes is bound from below. Unfortunately,
in higher dimensions, it is still an open problem, in particular for the three-dimensional
case [4,6–10]. Some works have addressed the so-called numerical regularity [1–3,10],
although mathematical proofs have not been given yet.

It should be noted that for numerical studies trying to prove the behavior of minimum
angles, in general, it is considered special targeted initial tetrahedral shapes. In previous
works [1–3,10], the starting idea focuses on some prescribed initial meshes, usually a single
well-defined initial tetrahedron. Experimental studies have provided restricted conclusions
on LE bisection due to the high cost of achieving a large number of elements (less than a
million) and the numerical error in relation to minimum angles or quality shapes.

As a methodology to study the stability of refinement methods, many authors concen-
trate on the number of similarity tetrahedral classes generated in subsequent refinement
steps. Two tetrahedra are in the same equivalence class if one can be transformed into
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the other by translation, uniform scaling, etc. Thus, any pair of tetrahedra in the same
equivalence class is similar to each other after any affine transformation. A finite number
of similarity classes is necessary for stability. Moreover, for practical reasons, it is often
desirable that the number of similarity classes is not only finite but also as small as possible.

In 1983, A. Adler in [11] set the following statement: “We have a proof of the finite
family conjecture for certain classes of tetrahedral meshes”. Adler mentioned that if a
tetrahedron is nearly equilateral and the second-largest edge is opposite to the longest
edge, then new elements generated by the LE bisection will fall into ≤37 similarity classes.
However, he did not give any rigorous definition of “nearly equilateral”, although he
remarked on the difficulty of overcoming the definition. However, Adler offered the
following significant idea: a nearly equilateral tetrahedron is satisfied if all its edge lengths
are within 5% of each other. As far as we know, no other study has addressed the Adler
conjecture.

The main contribution of this paper is to confirm that a special family of tetrahedra
exists where the LE bisection introduces, at most, 37 similarity classes. We continue the
work of Adler [11] and prove the existence of a family of tetrahedra where their similarity
classes fall into ≤37. We confirm that there is such a family of tetrahedra and give some
examples together with an algorithm as proof.

We also contribute with a data structure for representing tetrahedra based on square-
of-edge lengths that let us perform compact and efficient high-level computations that
reach up to 40 levels (up to 2ˆ40 tetrahedra) of refinements in a reasonable time. In addition
to the Adler study, experiments are provided for studying five other types of well-known
shape tetrahedra, and we find new evidence for the stability of the LE bisection.

2. Computing Exact Number of Similarity Classes in the Longest Edge Bisection of
Tetrahedra

Let T be an arbitrary (non-degenerate) tetrahedron, as depicted in Figure 1, where its
six edge lengths are a, b, c, d, e, and f. A common representation of T is given by a sextuple
of positive real numbers, each one representing the edge lengths, as seen, for example,
in [12]. In this way, only the edge lengths of the tetrahedron are considered, no matter its
position or orientation.
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Proposition 1. The longest-edge bisection of a given tetrahedron, T = [A, B, C, D, E, F, n], 
yields two new tetrahedra, T1 and T2, represented as: 

T11 = [ A, 4B, 2B + 2C − A, 2E + 2D − A, 4E, 4F, n + 2] 

T12 = [ A, 2B + 2C − A, 4C, 4D, 2E + 2D − A, 4F, n + 2] 

Figure 1. (Left) Tetrahedron with edges a, b, c, d, e, and f. (Right) Two new tetrahedra that result
from the bisection through edge a.

The order of edges in the array is important as different combinations may repre-
sent different tetrahedra. Then, to be consistent, we set the following order in the array
representation:

• The first position in the array can be any one of the six edges; let us fix, for instance,
edge a.

• Second edge b is any edge connected to a.
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• Third edge c is the edge closing the triangle abc.
• Fourth edge d is the one connecting a and c.
• Fifth edge e is the edge closing triangle ade.
• Sixth edge f is the last edge opposite the initial edge a.

Then, performing the bisection of a tetrahedron, T = { a, b, c, d, e, f }, through edge a
leads to two new tetrahedra, as in Figure 1 (right), where the new edges g and h are:

g = 1
2

√
2b2 + 2c2 − a2

h = 1
2

√
2e2 + 2d2 − a2

Thus, each new tetrahedron can be represented as { a/2, b, g, h, e, f } and { a/2, g, c, d,
h, f }.

In order to remove the roots in the expressions of g and h, it is more appropriate to
store not the edge lengths but the square of lengths. In this manner, the initial tetrahedron
T becomes { a2, b2, c2, d2, e2, f2 } = { A, B, C, D, E, F }, and the new tetrahedra become { A/4,
B, G, H, E, F } and { A/4, G, C, D, H, F }, where G = g2 and H = h2.

We can also remove all the fractions from these values, adding a seventh value in the
array, n acting as a scaling factor, and considering that the six square lengths are divided
by 2n. Therefore, the final proposed representation for tetrahedron T is {A, B, C, D, E, F, n },
where the edge lengths are

a2 = A/2n

b2 = B/2n

c2 = C/2n

d2 = D/2n

e2 = E/2n

f2 = F/2n

Thus, each new tetrahedron can be represented as{
A
4 , B, G, H, E, F, n

}
= {A, 4B, 4G, 4H, 4E, 4F, n + 2}

{
A
4 , G, C, D, H, F, n

}
= {A, 4G, 4C, 4D, 4H, 4F, n + 2}

It is easy to see that
4G = 2B + 2C−A
4H = 2E + 2D−A

Proposition 1. The longest-edge bisection of a given tetrahedron, T = [A, B, C, D, E, F, n],
yields two new tetrahedra, T1 and T2, represented as:

T11 = [ A, 4B, 2B + 2C − A, 2E + 2D − A, 4E, 4F, n + 2]

T12 = [ A, 2B + 2C − A, 4C, 4D, 2E + 2D − A, 4F, n + 2]

Efficiency of Integer Arithmetic

Proposition 2. The longest-edge bisection applied to a given tetrahedron, T = [A, B, C, D,
E, F, n], where its seven values are integer values, yields two new tetrahedra, as depicted
in Proposition 1, which are formed from integer values too.
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Let us note that the last proposition guarantees that only integer arithmetic is needed
for the whole process of LE subdivision. Using integer arithmetic provides three main
benefits:

• Basic arithmetic operations are much faster than floating-point operations.
• Integer comparisons are exact, unlike floating-point comparisons that can produce

inexact results due to accumulated errors. This fact is crucial for the computing
of similarity classes, where we must match tetrahedra exactly if two tetrahedrons
generated in different levels of the bisection are to be in the same class.

• There are no accumulated errors produced in the iterative process because only basic
arithmetic operations are involved in every iteration. For instance, in each iteration,
the square of the main edge of the tetrahedron is divided by 4, so after 100 recursive
subdivision iterations, the initial value will have been divided by 2200. There is
absolutely no error after all these iterations.

If we want to represent tetrahedra with coordinate values with a large number of
decimal digits or even irrational coordinates, we will obviously have small precision errors
due to the chosen numeric type in the computer. However, these errors are more similar
to our representation than those obtained using double precision floating data types. A
traditional double-precision floating point of 64 bits has an accuracy of 16 significant
decimal digits approximately. This is very similar when using our representation with long
integers of 64 bits, depending on the value we choose for our scale factor, n. For instance,
let us consider an edge where its square length is a2 = 1/

√
2 ≈ 0.707106781186547. In this

case, we can use n = 50 and A = round(a22n) = 796,131,459,065,722 and still keep a similar
accuracy, representing the square length of the edge by A/2n.

3. Longest-Edge Bisection of a Single Tetrahedron

Given a tetrahedron, T, we have up to 24 different combinations for the array, depend-
ing on which edge we take as first and second positions. We must choose only one of the 24
possibilities and then use it as the pattern in the normalized form. It should be noted that
comparing the shape of two tetrahedra to determine if they fall in the same similarity class
will be straightforward as we are comparing integer length values and not coordinating
the positions of the elements. This means that to compare the shape of two tetrahedra, we
need to first obtain the normalized representation for both and then compare the array
values to each other. Algorithm 1 shows the steps to convert a tetrahedron [A, B, C, D, E, F,
n] into its normalized form.

Algorithm 1 Normalize Tetrahedron (T)

Input: Tetrahedron T = [A, B, C, D, E, F, n]
Output: A new tetrahedron in normalized form

1. While A, . . . , F values are even integers and n > 0, divide each value in A, . . . , F by 2, and
subtract 1 from n.

2. Let us form the matrix S of length 24 × 7, with all 24 possible combinations for the
tetrahedron.

3. Remove from S all repeated rows, and leave in S only one row of this representation instead.
4. For each i = 1 to 6 do.

4.1 Let Mi be the maximum value in column i of matrix S. Remove all rows in S that
have values in this column that are lower than Mi

5. At the end, only one row remains in S, which is the normalized form of tetrahedron T.

Note that in the previous algorithm, we have as input an arbitrary tetrahedron repre-
sented by its edge-based data structure. Additionally, at the end, we get a new representa-
tion of it, where the normalization imposes a unique form for its representation. From now
on, the edge data structure for representing tetrahedra will include the array described
before and the normalization process depicted in this algorithm. Figure 2 shows in detail
the trace of this algorithm for a sample tetrahedron.



Mathematics 2021, 9, 1447 5 of 13

Mathematics 2021, 9, x FOR PEER REVIEW 5 of 14 
 

 

4.1. Let Mi be the maximum value in column i of matrix S. Remove all rows in S 
that have values in this column that are lower than Mi  

5. At the end, only one row remains in S, which is the normalized form of tetrahe-
dron T. 

Note that in the previous algorithm, we have as input an arbitrary tetrahedron rep-
resented by its edge-based data structure. Additionally, at the end, we get a new repre-
sentation of it, where the normalization imposes a unique form for its representation. 
From now on, the edge data structure for representing tetrahedra will include the array 
described before and the normalization process depicted in this algorithm. Figure 2 shows 
in detail the trace of this algorithm for a sample tetrahedron. 

 
Figure 2. Algorithm trace for the normalization of the tetrahedron T = [1, 1, 2, 2, 3, 3, 0]. 

It should be noted that the previous method of obtaining the normalized form of a 
tetrahedron ensures that the first value in the array is always the maximum edge value 
and, therefore, represents the longest edge in the tetrahedron. This is the reference edge 
used for subdivision. 

Note also that, in some cases, a tetrahedron can yield more than two new subtetra-
hedra, depending on whether there is only one longest edge or if more than one longest 
edge exists. Therefore, the bisection algorithm must find these cases to apply bisections 
on all the edges that share the maximum value. It should be noted that it is quite important 
to cover all possible new shape elements arising from the LE bisection. New branches of 
tetrahedra refinement should be triggered through each one of the longest-edge paths. 
Algorithm 2 shows the steps to perform the LE bisection on a single tetrahedron using the 
edge-based data structure. 

 

 

Algorithm 2 Subdivide_Tetrahedron (T) 
Input: Tetrahedron T = [A, B, C, D, E, F, n] 
Output: List L of new tetrahedra produced in the bisection 

Figure 2. Algorithm trace for the normalization of the tetrahedron T = [1, 1, 2, 2, 3, 3, 0].

It should be noted that the previous method of obtaining the normalized form of a
tetrahedron ensures that the first value in the array is always the maximum edge value
and, therefore, represents the longest edge in the tetrahedron. This is the reference edge
used for subdivision.

Note also that, in some cases, a tetrahedron can yield more than two new subtetra-
hedra, depending on whether there is only one longest edge or if more than one longest
edge exists. Therefore, the bisection algorithm must find these cases to apply bisections on
all the edges that share the maximum value. It should be noted that it is quite important
to cover all possible new shape elements arising from the LE bisection. New branches
of tetrahedra refinement should be triggered through each one of the longest-edge paths.
Algorithm 2 shows the steps to perform the LE bisection on a single tetrahedron using the
edge-based data structure.

Algorithm 2 Subdivide_Tetrahedron (T)

Input: Tetrahedron T = [A, B, C, D, E, F, n]
Output: List L of new tetrahedra produced in the bisection

1. Normalize_Tetrahedron(T)
2. T1 = [ A, 4B, 2B + 2C − A, 2E + 2D − A, 4E, 4F, n + 2]
3. T2 = [ A, 2B + 2C − A, 4C, 4D, 2E + 2D − A, 4F, n + 2]
4. Initialize output list L = {T1, T2}
5. If B = A

1. Make a valid permutation of T that sets B as the first value in the representation
2. Apply again proposition 1 to obtain two new tetrahedra
3. Add these new two tetrahedra to list L

6. Do the same with the rest of values C, D, E, and F
7. Normalize all the tetrahedra in list L
8. Remove all the repeated tetrahedra in list L

The iterative LE bisection applied to tetrahedron T is, therefore, a recursive algorithm:
bisect T by its longest edges, giving a list of new tetrahedra, T1,i. Next, bisect each T1,i in
the list by their longest edges, forming another list of new tetrahedra, T2,i. Continue thus,
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generating new lists for each level of subdivision. Thus, we may expect that the cost of
computing bisections will be faster using integer operations.

4. Similarity Class Computations

We shall denote by sn the number of non-similar tetrahedra that have been generated
during the first n steps of the LE bisection algorithm. The sequence {sn} for n = 0 to infinity,
where s0 = 1, is non-decreasing. In many cases, we get sn < sn+1 for all n, but sometimes the
sequence remains constant after several steps.

A low number of similarity classes is quite important in numerical computation, as,
for example, in the Finite Element Method. One main consequence is that the construction
of the stiffness matrix can be performed much faster. The element matrix can be computed
only once for each similarity class of tetrahedra.

Comparing the shape of two tetrahedra, no matter their scale, is crucial for obtaining
the similarity classes appearing in the LE bisection. Following the edge-based data structure
introduced in Section 2, only the first six values of the tetrahedron are considered. In this
way, let us define the similarity class of a tetrahedron as the array {A, B, C, D, E, F} that
represents the six first values of the normalized representation.

Computing the Similarity Classes in LE Bisection

In order to examine similarity classes, many authors [3,6,7,9] use matrix mapping
based on tetrahedra coordinates. This consists of, given two tetrahedra, confirming that one
is the image of the other under congruency mapping. Following this idea, it is necessary
to perform reflections, rotations, and uniform scaling. The problem can be viewed as
checking whether two tetrahedra have the same shape. This numerical mapping may
have difficulties in the computation, as the matrix computation leads to errors caused by
floating-point arithmetic in the shape comparison.

It is important to compute tetrahedra classes with a reasonable fast response for high
values of n. Especially when inspecting the iterative LE bisection of arbitrary shapes of
tetrahedra, it is important to determine the behavior of the sequence {sn}, this is, whether we
have a non-decreasing sequence or constant. For example, the sequence of the Adler tetra-
hedra studied in this paper is known to obtain 37 classes. At the same time, it is necessary
to avoid representation errors due to computer operations, such as truncation errors.

In the present work, we provide an exact method to efficiently compute the similarity
classes based on the edge-based data structure. Detecting if a new tetrahedron belongs to a
similarity class already obtained is straightforward using an integer-based data structure.
This consists of an integer array comparison as the six integers representing tetrahedral
edges are compared to each other. Note that this single operation involves only integer
values; then, the operations are faster and more accurate (no truncation errors) than using
floating-point arithmetic.

The subdivision algorithm to compute similarity classes proposed here is an iterative
process. In every subdivision step, we have as input a set of normalized tetrahedra
(generated in the previous step), and all of them will be subdivided following the longest
edge. After that, all new tetrahedra are normalized and compared with the rest of the
similarity classes already obtained in previous subdivision levels. Algorithm 3 shows the
steps to find all the similarity classes of a tetrahedron.
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Algorithm 3 Similarity_Classes (T)

Input: Tetrahedron T = [A, B, C, D, E, F, n]
Output: List of similarity classes for T

1. Normalize_Tetrahedron(T)
2. Initialize class list C = {class(T) }
3. Initalize k = 0
4. Initialize input list I0 = { T }
5. While new classes found

1. Ik+1 = { }
2. For each tetrahedron T in list Ik

1. S = Subdivide_Tetrahedron(T)
2. Add S to list Ik+1

3. Remove duplicated tetrahedrons in Ik+1
4. Remove from Ik+1 all the tetrahedra with a similarity class in C
5. Add the classes of Ik+1 to list C

5. Exact Number of Similarity Classes in the Adler Tetrahedra

We recall here the idea pointed out by Adler in [11], affirming the existence of nearly
equilateral tetrahedra that produce, at most, 37 similarity classes in the iterated LE bisection.
This allows us to theorize the existence of a family of tetrahedra where all its elements will
show the same behavior as the Adler element; that is, they will generate up to 37 similarity
classes in the LE bisection subdivision.

We use the edge data structure introduced in Section 2, which allows the use of integer
arithmetic at a reasonable computational cost. An experimental study is conducted as
follows:

1. Start with an initial tetrahedron shape, given by its four vertices
2. Convert to an array of a square-edge-based data structure of the form {A, B, C, D, E, F,

n}
3. Launch Similarity_Classes algorithm, iterating through a number of levels of refine-

ment, and compute in each level the number of similarity classes.

In addition, we are also interested in inspecting:

(i) Quality measures for each tetrahedron, [9] ϑ =
12
(

3V
2
3

)
∑6

i=1 l6i
, to obtain min(ϑ).

(ii) The time consumed.
(iii) Maximum edge lengths in each refinement level.

Here, we recall Adler’s conjecture by considering tetrahedra with all edge lengths
within 5% of each other. We set up six nearly equilateral tetrahedra, T1, T2, T3, T4, T5,
and T6, where all their edge lengths are within 5% of each other. Table 1 shows the four
(x,y,z) coordinates of these tetrahedra and the seven edge-based values of our proposed
representation.



Mathematics 2021, 9, 1447 8 of 13

Table 1. Definition of the tetrahedra in TEST 1, T = [A, B, C, D, E, F, n].

Tetrahedron Square Edge
Representation Vertex Coordinates

T1 [ 22, 19, 17, 17, 18, 20, 0 ]
(0, 0, 0),

(√
22, 0, 0

)
,
(

5
√

22
11 ,

√
1507
11 , 0

)
,(

21
√

22
44 , 49

√
1507

3014 ,
√

3480622
548

)
T2 [ 21, 19, 16, 17, 18, 20, 0 ]

(0, 0, 0),
(√

21, 0, 0
)

,
(

3
√

21
7 ,

√
595
7 , 0

)
,(

10
√

21
21 , 31

√
595

1190 ,
√

3078105
510

)
T3 [ 21, 17, 17, 17, 16, 19, 0 ]

(0, 0, 0),
(√

21, 0, 0
)

,
(√

21
2 ,

√
47
2 , 0

)
,(

11
√

21
21 , 4

√
47

47 , 2
√

2654043
987

)
T4 [ 41, 39, 38, 38, 37, 40, 0 ]

(0, 0, 0),
(√

41, 0, 0
)

,
(

20
√

41
41 ,

√
47478
41 , 0

)
,(

21
√

41
41 , 53

√
47478

7913 ,
√

935471
193

)
T5 [ 100, 98, 97, 97, 96, 99, 0 ]

(0, 0, 0), (10, 0, 0),
(

99
20 ,
√

28999
20 , 0

)
,(

101
20 , 9001

√
28999

579980 ,
√

1870811
28999

)

T6 [ 100, 98, 97, 96, 95, 99, 0 ]
(0, 0, 0), (10, 0, 0),

(
99
20 ,
√

28999
20 , 0

)
,(

101
20 , 8801

√
28999

579980 ,
√

1850713
28999

)

Figure 3 shows the results for 40 iterations of the bisection process. Note that 37
similarity classes are obtained at the end of the 7th iteration for each tetrahedron considered,
T1, T2, T3, T4, T5, and T6 (see Figure 3 (upper right)). After Level 7, no new classes are
found, and then the 37 classes remain constant, as seen in Table 2. This is in concordance
with the conjecture mentioned by Adler in [11], and, therefore, we confirm the existence
of a family of prescribed tetrahedra with 37 similarity classes when applying the LE
bisection. Several other examples for different tetrahedra with edge lengths within 5%
(nearly-equilateral), not shown here, were tested and revealed the same results.

Table 2. Number of total similarity classes obtained during several iterations of LE bisection to the
tetrahedra in Table 1.

Level T1 T2 T3 T4 T5 T6

0 1 1 1 1 1 1

1 3 3 3 3 3 3

2 7 7 7 7 7 7

3 15 15 15 15 15 15

4 21 21 21 21 21 21

5 29 29 29 29 29 29

6 33 33 33 33 33 33

7 37 37 37 37 37 37

8 37 37 37 37 37 37
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The quality measure min(ϑ) in Figure 3 (upper left) shows that after the refinement
of Level 3, we also get certain stabilization, where the worst value is never below 0.6706,
as seen in Table 3. The consumed time, in seconds, is provided in Figure 3 (lower left). In
view of this, we infer that the cost of the algorithm to obtain the similarity classes does not
depend on the number of elements. As clearly seen in the figure, the cost is always below a
fixed time of 0.02 s.

Table 3. Quality measure values, min(ϑ), obtained during the first 20 iterations of LE bisection to the
tetrahedra in Table 1.

Level T1 T2 T3 T4 T5 T6

0 0.9833 0.9842 0.9824 0.9977 0.9996 0.9995

1 0.8046 0.7933 0.8150 0.8058 0.8001 0.8007

2 0.7027 0.6964 0.7224 0.6924 0.6854 0.6850

3 0.6988 0.6914 0.7103 0.6858 0.6745 0.6744

4 0.7330 0.7244 0.7379 0.6843 0.6682 0.6706

5 0.7027 0.6964 0.7224 0.6924 0.6854 0.6850

6 0.6988 0.6914 0.7103 0.6858 0.6745 0.6744

Note that finally, as expected, the max diameter (maximum length of the tetrahedron)
in each level decreases when approaching the horizontal axis x (see Figure 3, lower right).

In order to test the algorithms and data structure on different shapes, we study, in the
following section, other non-Adler tetrahedra.
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LE Bisection of Other Tetrahedra

Usually, in the literature, we find the following tetrahedral shapes—Regular, Cap, Wedge,
Needle, and Sliver—as testing elements for different benchmarking or method comparisons.
For these tetrahedra, numerical evidence has been shown for non-degeneracy [1–3,10]. Here,
we corroborate, in Test 2, the same results after a high number (40 levels) of refinements,
guaranteeing exact arithmetic in the computation. Moreover, we provide the exact similarity
classes appearing in the LE bisection for those test cases. Table 4 shows the coordinates of
these tetrahedra and the seven edge-based values of our proposed representation.

Figure 4 shows the results of 40 iterations of the LE bisection process. Note that
the number of similarity classes increases for all the studied tetrahedra in every iteration
(Figure 4, upper right), especially for the Needle tetrahedron, which produced more than
one million similarity classes after 39 iterations in the experiment and an important curve
increase in the number of classes from the 15th refinement step (Figure 4, upper right).
Table 5 shows the number of classes for every tetrahedron and, for brevity, only shows
refinement levels 1–20. Quality measures are shown in Figure 4 (upper left). Needle and
Wedge tetrahedra show the worst quality, below 0.2, during all iterations. On the other
hand, Cap, Sliver, and Regular tetrahedra keep quality levels higher than 0.32. The detailed
results of min(ϑ) are presented in Table 6. Note that the time consumed of Needle is notably
higher compared to the others, which is in concordance with the high number of similarity
classes appearing during the LE bisection (Figure 4, lower left). Finally, as expected, the
maximum length (diameter) per level decreases when approaching the horizontal axis x, as
seen in Figure 4 (lower right).
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Table 4. Definition of the tetrahedra in TEST 2, T = [A, B, C, D, E, F, n].

Tetrahedron Square Edge Representation Vertex Coordinates

Cap [ 48, 48, 48, 18, 18, 18, 0 ] (0, 0, 0),
(

4
√

3, 0, 0
)

,
(

2
√

3, 6, 0
)

,
(

2
√

3, 2,
√

2
)

Wedge [ 4800, 4800, 4800, 12, 4572, 4572, 0 ] (0, 0, 0),
(

40
√

3, 0, 0
)

,
(

20
√

3, 60, 0
)

,
(√

3, 1, 2
√

2
)

Needle [ 12, 12, 12, 3204, 3204, 3204, 0 ] (0, 0, 0),
(

2
√

3, 0, 0
)

,
(√

3, 3, 0
)

,
(√

3, 1, 40
√

2
)

Sliver [ 400, 204, 204, 204, 204, 400, 0 ] (10, 0, 1), (−10, 0, 1), (0, 10,−1), (0,−10,−1)

Regular [ 1, 1, 1, 1, 1, 1, 0 ] (0, 0, 1), (1, 0, 1),
(

1
2 ,
√

3
2 , 0

)
,
(

1
2 ,
√

3
6 ,
√

6
3

)

Table 5. Number of similarity classes obtained during 20 iterations of LE bisection from the tetrahedra
in Table 4.

Level Cap Wedge Needle Sliver Regular

0 1 1 1 1 1

1 2 4 3 2 2

2 4 9 7 3 5

3 8 19 19 4 8

4 12 37 38 6 15

5 18 68 73 9 22

6 21 119 137 15 31

7 24 184 253 24 41

8 30 272 455 39 53

9 36 386 798 57 63

10 44 558 1333 73 80

11 53 772 2139 94 103

12 65 1080 3339 116 136

13 75 1470 5015 147 170

14 92 1968 7345 181 206

15 115 2578 10432 221 242

16 148 3341 14512 271 289

17 182 4197 19831 331 341

18 218 5218 26600 395 396

19 254 6323 34891 470 462

20 301 7517 45205 567 541
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Table 6. Quality measure values, min(ϑ), obtained during 20 iterations of LE bisection to the
tetrahedra in Table 4.

Level Cap Wedge Needle Sliver Regular

0 0.5772 0.1659 0.0550 0.4031 1.0000

1 0.5217 0.1241 0.0378 0.3677 0.7957

2 0.5040 0.1032 0.0328 0.4197 0.6350

3 0.5603 0.1030 0.0547 0.4511 0.5455

4 0.5217 0.1227 0.0377 0.3677 0.4582

5 0.5040 0.1005 0.0328 0.4197 0.4535

6 0.5603 0.0945 0.0547 0.4511 0.4615

7 0.5217 0.0804 0.0377 0.3677 0.4582

8 0.4582 0.1005 0.0328 0.4197 0.4329

9 0.4535 0.0919 0.0547 0.4511 0.4615

10 0.4615 0.0782 0.0377 0.3677 0.4582

11 0.4582 0.1005 0.0328 0.4197 0.4329

12 0.4329 0.0919 0.0547 0.4511 0.4615

13 0.4615 0.0782 0.0377 0.3677 0.4582

14 0.4582 0.1005 0.0328 0.4197 0.4329

15 0.4329 0.0919 0.0547 0.4511 0.4528

16 0.4615 0.0782 0.0377 0.3677 0.4086

17 0.4582 0.1005 0.0328 0.4197 0.3528

18 0.4329 0.0919 0.0547 0.4511 0.4364

19 0.4528 0.0782 0.0377 0.3677 0.3979

20 0.4086 0.1005 0.0328 0.4110 0.3528

6. Conclusions

We have introduced a data structure that lets us efficiently compute the similarity
classes of tetrahedra shapes when applying LE bisection subdivision. This data structure
facilitates the computation in integer arithmetic, for example, in order to compare the shape
of two tetrahedra, no matter their scale. To put this in practice and validate both the new
edge-based data structure and the algorithm, we recalled an open question formulated
by Adler in [11], who argued for the existence of a family of tetrahedra, only mentioned
but not studied in his paper, that may have a number of similarity classes ≤37. We prove
that Adler’s assumption of nearly equilateral tetrahedra was right by providing a set of
six different tetrahedra with exactly 37 similarity classes when applying LE bisections
iteratively. We have also provided more numerical tests, giving evidence of the stability
condition for the family of tetrahedra considered.

For practical reasons, getting a low number of similarity classes is quite desirable, as in
the finite element method, where the construction of the stiffness matrix can be performed
much faster, and the element matrix can be computed only once for each similarity class.

As future research, we may argue that new families of tetrahedra with a finite low
number of similarity classes exist. Together with Adler’s nearly equilateral tetrahedra,
other possible new families can be found, perhaps by extending the original definition of
“nearly equilateral”. It would also be interesting to see if there is some connection with the
Liu–Joe family of tetrahedra that produce no more than 92 classes, already proven in [8].
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