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Abstract: In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player
case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which
can be used to investigate the payoff of each player. As demonstration, two cases (2-player and
3-player) are studied to illustrate the superiority of quantum strategy in the game theory. Specifically,
the non-unique entanglement parameter is found to maximize the total payoff, which oscillates
periodically. Finally, the optimal strategic set is proved to depend on the selection of initial states.

Keywords: quantum game theory; quantum entanglement; quantum strategy; Prisoner’s Dilemma

1. Introduction

Game theory is the study of mathematical models of strategic selection among rational
decision-makers [1,2]. It has been widely applied to many fields, such as economics, social
science, information technology, systems theory and computer science. Due to the rapid
development of precision instrument manufacture, quantum game theory attracts more
and more attention and shows its superiority in many research fields [3–8].

Quantum game theory is an extension of classical game theory to the quantum cate-
gory. In contrast to classical game theory, the states of quantum game theory are superposed
on many basis states of the corresponding Hilbert space, which can be further entangled
by quantum manipulation. This manipulation follows the quantum principles developed
in [9,10]. Roughly speaking, the choices of “Cooperate” and “Defect” in the Prisoner’s
Dilemma can be regarded as a two-level quantum bit (qubit) with two possible states (e.g.,
|0〉 and |1〉 in a 2-dimensional Hilbert space) in quantum game theory. Each player in this
quantum Prisoner’s Dilemma has their own qubit and can only manipulate it without
communications. These relatively independent qubits are entangled by a quantum gate,
which is known to all players. The quantum theory of the Prisoner’s Dilemma, pioneered
by Eisert et al. [11], has been extensively studied in [12–14]. Particularly, the multiplayer
quantum game is considered in [13], which points out the possibility of a quantum game
employed in the architecture of quantum computers. A review of theoretical and experi-
mental developments in quantum game theory is given in [14], together with their role in
the development of quantum algorithms and communication protocols.

Recently, the superiority of quantum strategy has been shown to solve the difficulties
of reaching a Pareto optimal in the classical games. For example, multipartite zero-sum
game with quantum settings have been considered in [15]. The quantum single-photon
states are employed to prepare the strategy, which realizes tripartite quantum fair zero-sum
games with Nash equilibrium. Nash equilibria and correlated equilibria for classical and
quantum games have been discussed in [16] with their Pareto efficiency. The advantages
of quantum mixed Pauli strategies are shown to make the games close to Pareto optimal.
In [5], all possible variants of the PQ penny flip game have been investigated, which
constructs a semiautomaton that captures the corresponding intrinsic behaviors. New
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concepts of winning automaton and complete automaton for each player are also proposed.
The classical Prisoner’s Dilemma associated with quantum automata is considered in [6],
which presents a quantum version of conditional strategy and its performance analysis.
Besides, the quantum Prisoner’s Dilemma game has been proposed to study the food
loss and waste in a two-echelon food supply chain [17]. Both the classical game and the
separable quantum game are proved to be useless for the Pareto optimal strategy. However,
it can be achieved in the context of maximally entangled quantum game. The quantum
Prisoner’s Dilemma with 3 players is theoretically investigated in [18] and experimentally
realized in [19].

In this paper, we extend the quantum theory of the Prisoner’s Dilemma to the N-
player case, which exhibits the following features. The total payoff of the game is proved
to oscillate periodically with the entanglement parameter. The minimum period of this
oscillation is found and the optimal entanglement parameter of maximizing the total
payoff is not unique. Besides, the quantum Prisoner’s Dilemma with different initial states
is also extensively investigated, which illustrates that the optimal strategic set depends
on the selection of initial states. Finally, an invariant optimal strategic set is derived by
changing the form of entanglement gate, which yields a “Pareto optimum” of the quantum
Prisoner’s Dilemma. Based on the discussions above, a comprehensive study on the
3-player Prisoner’s Dilemma is presented in this paper.

The rest of this paper is organized as follows. We firstly introduce the Prisoner’s
Dilemma in the case of quantum game theory in Section 2, then the general form of
the N-player Prisoner’s Dilemma is derived. The 2-player Prisoner’s Dilemma is briefly
discussed in Section 3, and it is shown that the quantum strategy has no advantage without
entanglement in the game. The total payoffs of the 3-player Prisoner’s Dilemma with
respect to several parameters are extensively presented in Section 4, including the initial
state, the choices of other players, and the entanglement gate. Section 5 concludes this
paper.

Notation. i =
√
−1. |φ〉 is the state of the game, which can be mathematically described

by a column vector. σ̂x, σ̂y, and σ̂z are Pauli operators. Z+ denotes the set of positive integers.
The adjoint operator or complex conjugate transpose is denoted by †, i.e., X† = (X∗)T .
Finally, ⊗means the tensor product.

2. The General Case

In this section, we discuss the Prisoner’s Dilemma with N players. Assume the N
players are arrested and they cannot communicate with each other. The police separately
question each of them, and they can choose “Cooperate” or “Defect”. Each player does not
know the other players’ choices. We assume that each of them cares more for their own
freedom (payoff) than the total welfare of their accomplices. Normally, choosing “Defect”
can give each player more payoff than choosing “Cooperate”. Two explicit payoff tables
are given as examples in the following sections. In the quantum game theory, |0〉 and |1〉
denote the choices of “Cooperate” and “Defect”, which are mathematically represented
by the two bases of a 2-dimensional Hilbert space. The strategy is under player’s control.
Each of the players can choose “Cooperate” (|0〉) or “Defect” (|1〉), which corresponds to
the manipulation on the initial state. For example, we have iσ̂x|0〉 = i|1〉, iσ̂x|1〉 = i|0〉.
Similarly, iσ̂y|0〉 = −|1〉, iσ̂y|1〉 = |0〉. That is, the Pauli operators, σ̂x and σ̂y, can be used to
swap the choices from “Cooperate” to “Defect”, and vice versa.

We denote the N players by z1, z2, . . . , zN . The initial state is chosen to be

|ψini〉 = Ĵx|z1z2 · · · zN〉, (1)

where |zj〉 can be |0〉 (Cooperate) or |1〉 (Defect), 1 ≤ j ≤ N, and the entanglement gate of
the game is



Mathematics 2021, 9, 1443 3 of 10

Ĵx = exp

i
γ

2
σ̂x ⊗ σ̂x ⊗ · · · ⊗ σ̂x︸ ︷︷ ︸

N copies

, γ ≥ 0. (2)

Here, the entanglement gate Ĵx is known to all of the N players. Particularly, γ denotes
the entanglement parameter and γ = 0 means the separated quantum game.

The strategic move of each player zi, i = 1, 2, . . . , N, is denoted by

Û(θ, φ) =

[
cos θ

2 eiφ sin θ
2

−e−iφ sin θ
2 cos θ

2

]
, (3)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ π
2 . A more general form of the unitary operator Û can be

found in [20], Equation (7). Clearly, we have Û(0, 0) = Î, which means that the player zj

keeps to choose the original choice |zj〉, 1 ≤ j ≤ N; while Û(π, π
2 ) = iσ̂x, Û(π, 0) = iσ̂y,

which denote that the player swaps the original choice.
After measurement, the final state is

|ψfin〉 = Ĵ†
x(Û1 ⊗ Û2 ⊗ · · · ⊗ ÛN) Ĵx|z1z2 · · · zN〉. (4)

The succeeding measurement yields a particular result with a certain probability.
Therefore the payoff of player zj, 1 ≤ j ≤ N, should be the expected payoff

Pj =
2N

∑
k=1

sj,kP|z1z2···zN〉, z1, z2, . . . , zN ∈ {0, 1}, (5)

where P|z1z2···zN〉 = |〈z1z2 · · · zN |ψfin〉|2, which means the probability of collapsing the final

state |ψfin〉 to |z1z2 · · · zN〉. Clearly, we have ∑2N
z1z2,···zN

P|z1z2···zN〉 = 1. sj,k is the payoff of
player zj with all the 2N possible states |z1z2 · · · zN〉, and z1, z2, . . . , zN ∈ {0, 1}. Inserting
the final state (4) into the expected payoff (5), yields the payoff of player zj

Pj =
2N

∑
k=1

sj,k

∣∣∣〈z1z2 · · · zN | Ĵ†
x(Û1 ⊗ Û2 ⊗ · · · ⊗ ÛN) Ĵx|z1z2 · · · zN〉

∣∣∣2, (6)

where j = 1, . . . , N, and z1, z2, . . . , zN ∈ {0, 1}.

3. The 2-Player Prisoner’s Dilemma

In this section, we mainly discuss the case of 2-player Prisoner’s Dilemma. The payoff
matrix of the two players, Alice and Bob, is given in Figure 1. To be specific, strategy C
means that the player remains silent, while strategy D denotes that the player confesses. If
both of them choose strategy C (remain silent), each of them will get the payoff 3; if both of
them choose strategy D (confess), each of them will get the payoff 1. On the other hand, if
Alice chooses strategy C and Bob chooses strategy D, Alice will get the payoff 0 and 5 will
be the payoff of Bob, and vice versa.

Figure 1. The payoff matrix of the 2-player Prisoner’s Dilemma. The first number in the parenthesis
denotes the payoff of Alice, the second number denotes the payoff of Bob.
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Since Alice and Bob cannot communicate with each other, strategy D is the dominant
choice for each of them no matter which strategy the other one chooses. In terms of classical
game theory, the strategic set (D, D) is the unique Nash equilibrium of the game and each
of the two players will get the payoff 1.

In what follows, we firstly focus on the separated quantum game, i.e., γ = 0 in (2),
which results in Ĵx = Î. Assume that the initial state is

|ψini〉 = Ĵx|00〉 = |00〉. (7)

Alice chooses the quantum strategy ÛA(θ, φ), and Bob chooses the classical strategy
D, which can be represented by ÛB(π, π

2 ), i.e., ÛB(π, π
2 )|0〉 = i|1〉. After time evolution,

the final state can be calculated as

|ψfin〉 = Ĵ†
x

(
ÛA(θ, φ)⊗ ÛB(π,

π

2
)
)

Ĵx|00〉 = i cos
θ

2
|01〉 − ie−iφ sin

θ

2
|11〉. (8)

By the expected payoff given in (5), one can obtain the payoff of Alice

PA = 0×
∣∣∣∣i cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣−ie−iφ sin

θ

2

∣∣∣∣2 = sin2 θ

2
. (9)

Clearly, Alice will choose θ = π to maximize the payoff, which corresponds to the
quantum strategies ÛA(π, π

2 ) = iσ̂x or ÛA(π, 0) = iσ̂y. As a result, Alice also swaps the
initial state |0〉 and choose the strategy |1〉, which leads to the classical Nash equilibrium
(D, D). Indeed, even if both of the two players choose the quantum strategy (3), all the
resulting Nash equilibria are the same as the classical strategic set (D, D).

On the other hand, we turn to the maximum entangled case, i.e., γ = π
2 in (2). In this

case, both Alice and Bob choose the same strategies as the separate quantum game above.
After time evolution, the final state is given by

|ψfin〉 = Ĵ†
x

(
ÛA(θ, φ)⊗ ÛB(π,

π

2
)
)

Ĵx|00〉

= − cos φ sin
θ

2
|00〉+ i cos

θ

2
|01〉 − sin φ sin

θ

2
|11〉.

(10)

By the expected payoff given in (5), the payoff of Alice is given by

PA = 3×
∣∣∣∣− cos φ sin

θ

2

∣∣∣∣2 + 0×
∣∣∣∣i cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣− sin φ sin

θ

2

∣∣∣∣2
= (1 + 2 cos2 φ) sin2 θ

2
≤ 3.

(11)

Consequently, Alice will choose ÛA(π, 0) to maximize the payoff, which leads to
the quantum strategy iσ̂y. Considering the symmetry of the game, iσ̂y is also the optimal
strategy for Bob. Thus, (iσ̂y, iσ̂y) is a Nash equilibrium in the maximally entangled case and

PA(iσ̂y, iσ̂y) = PB(iσ̂y, iσ̂y) = 3. (12)

Notice that no improvement of the payoff can be made by deviating from the strategic
set (iσ̂y, iσ̂y), which yields a “Pareto optimum”.

4. The 3-Player Prisoner’s Dilemma

In this section, we consider the case of a 3-player Prisoner’s Dilemma. Alice, Bob and
Colin are separated and cannot communicate with each other. The strategies C, D mean
that the player remains silent and confesses, respectively. The payoff matrix [18] of the
three players is given with three numbers in triplets. The first number in the parenthesis
denotes the payoff of Alice, the second number denotes the payoff of Bob, and the third
one denotes the payoff of Colin. To be specific, if they all choose the strategy C, each of
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them will get the payoff 3, i.e., (C, C, C) 7→ (3, 3, 3); on the other hand, if they all choose
the strategy D, each of them will get the payoff 1, i.e., (D, D, D) 7→ (1, 1, 1). Moreover,
if one of them chooses the strategy C and the others choose the strategy D, the former
will get the payoff 0 and the latter will get the payoff 4, e.g., (C, D, D) 7→ (0, 4, 4) (or
(D, C, D) 7→ (4, 0, 4), (D, D, C) 7→ (4, 4, 0)); if one of them chooses the strategy D and the
others choose the strategy C, 5 is the payoff of the former and 2 is the payoff of the latter,
e.g., (D, C, C) 7→ (5, 2, 2) (or (C, D, C) 7→ (2, 5, 2), (C, C, D) 7→ (2, 2, 5)).

Again, the dominant strategy for each of them is still the strategy D, i.e., choosing
“defect” is better than “cooperate” to earn more payoff no matter what strategies the other
two players choose. Due to the symmetry of the game, the strategic set (D, D, D) is a
Nash equilibrium. However, it is obviously not a “Pareto optimum”. In what follows, we
introduce the quantum strategy and investigate the payoff of each player.

4.1. The Separated Case

In this section, we firstly consider the separated case, i.e., γ = 0. Assume that the
initial state is given by

|Ψini〉 = Ĵx|000〉 = |000〉, (13)

and both Bob and Colin choose the strategy ÛB(π, π
2 ) = ÛC(π, π

2 ) = iσ̂x. For comparison,
Alice chooses the quantum strategy ÛA(θ, φ). After time evolution, the final state can be
calculated as

|Ψfin〉 =
(

ÛA(θ, φ)⊗ ÛB(π,
π

2
)⊗ ÛC(π,

π

2
)
)
|000〉

= − cos
θ

2
|011〉+ e−iφ sin

θ

2
|111〉.

(14)

According to the payoff matrix given in the 3-player case, the payoff of Alice is
given by

PA = 0×
∣∣∣∣− cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣e−iφ sin

θ

2

∣∣∣∣2 = sin2 θ

2
. (15)

Thus, it is better to choose θ = π for Alice to maximize the payoff, which correspond-
ing to the strategy ÛA(π, π

2 ) = iσ̂x or ÛA(π, 0) = iσ̂y. As a result, the total game attains a
Nash equilibrium (D, D, D), which is not a “Pareto optimum”.

4.2. The Entanglement Parameter

If γ 6= 0 in (2), then the payoffs of all players are connected by the entanglement gate.
In this section, we firstly investigate the maximal entanglement parameter by considering
the payoff of Alice. The initial state is fixed to be

|Ψini〉 = Ĵx|000〉, (16)

where the entanglement gate is given by (2) with γ 6= 0. According to prior knowledge
in the 2-player Prisoner’s Dilemma discussed above, it has been concluded that both iσ̂x
and iσ̂y can be used to swap the initial state |0〉 and choose the strategy |1〉. However, only
iσ̂y can make the game reach a “Pareto optimum” in the maximum entangled case. In this
section, the strategic sets are respectively denoted by (iσ̂x, iσ̂x, iσ̂x) and (iσ̂y, iσ̂y, iσ̂y) for
comparison. Then the final state of the game can be calculated by

|Ψfin(iσ̂x, iσ̂x, iσ̂x)〉 = Ĵ†
x(iσ̂x ⊗ iσ̂x ⊗ iσ̂x) Ĵx|000〉 = −i|111〉,

|Ψfin(iσ̂y, iσ̂y, iσ̂y)〉 = Ĵ†
x(iσ̂y ⊗ iσ̂y ⊗ iσ̂y) Ĵx|000〉 = i sin γ|000〉 − cos γ|111〉,

(17)

which yields the corresponding payoffs of Alice for the two cases
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PA(iσ̂x, iσ̂x, iσ̂x) = 1

PA(iσ̂y, iσ̂y, iσ̂y) = 3× |i sin γ|2 + 1× |− cos γ|2 = 2 sin2 γ + 1.
(18)

In Figure 2, the payoffs of Alice with the two strategic sets are simulated. It can be
confirmed that (iσ̂y, iσ̂y, iσ̂y) is the optimal strategic set, which enables the game to attain a
“Pareto optimum”. Moreover, the maximal entanglement parameter γ is not unique. In
Figure 2, the payoff oscillates periodically and reaches its maximum at γ = (2k−1)π

2 , k ∈ Z+.
In what follows, we mainly discuss the “Pareto optimum” of the game based on two initial
states ( Ĵx|000〉 and Ĵx|111〉) with the maximally entangled gate, e.g., γ = π

2 .

0 π

2

π 3π

2

2π 5π

2

3π 7π

2

4π
0

0.5

1

1.5

2

2.5

3

γ

P
A

Figure 2. The red line denotes the payoff of Alice with the strategic set of (iσ̂x, iσ̂x, iσ̂x); while the
blue curve is that with the strategic set of (iσ̂y, iσ̂y, iσ̂y).

4.2.1. The Initial State Ĵx|000〉
Assume that the initial state is given by

|Ψini〉 = Ĵx|000〉, (19)

and the maximally entangled gate is

Ĵx = exp
{

i
π

4
σ̂x ⊗ σ̂x ⊗ σ̂x

}
. (20)

Alice chooses the quantum strategy ÛA(θ, φ), while Bob and Colin choose the strategy
ÛB(π, π

2 ) = ÛC(π, π
2 ) = iσ̂x. After time evolution, the final state is given by

|Ψfin〉 = Ĵ†
x

(
ÛA(θ, φ)⊗ ÛB(π,

π

2
)⊗ ÛC(π,

π

2
)
)

Ĵx|000〉

= −i cos φ sin
θ

2
|000〉 − cos

θ

2
|011〉 − i sin φ sin

θ

2
|111〉.

(21)

According to the payoff matrix given in the 3-player case, the payoff of Alice is
given by

PA = 3×
∣∣∣∣−i cos φ sin

θ

2

∣∣∣∣2 + 0×
∣∣∣∣cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣−i sin φ sin

θ

2

∣∣∣∣2
= (1 + 2 cos2 φ) sin2 θ

2
≤ 3.

(22)

Thus, it is better to choose θ = π, φ = 0 for Alice to maximize the payoff, which
corresponding to the strategy ÛA(π, 0) = iσ̂y. Similarly, in the case where other two players
choose the strategy iσ̂x, the maximum payoff of Bob and Colin can be derived as

PB(iσ̂x, ÛB(θ, φ), iσ̂x) ≤ PB(iσ̂x, iσ̂y, iσ̂x),

PC(iσ̂x, iσ̂x, ÛC(θ, φ)) ≤ PC(iσ̂x, iσ̂x, iσ̂y).
(23)
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Due to the symmetry property of the game, it can be verified that the optimal strategic
set is (iσ̂y, iσ̂y, iσ̂y). In this case, the total game reaches a Nash equilibrium (C, C, C), which
is also a “Pareto optimum”.

4.2.2. The Initial State Ĵx|111〉
For comparison, in this section we assume that the initial state is given by

|ψini〉 = Ĵx|111〉, (24)

and the maximally entangled gate has the form (20). All of the three players choose the
same strategies as the case discussed above, that is, Alice chooses the quantum strategy
ÛA(θ, φ), while Bob and Colin choose the strategy ÛB(π, π

2 ) = ÛC(π, π
2 ) = iσ̂x. After time

evolution, the final state is given by

|Ψfin〉 = Ĵ†
x

(
ÛA(θ, φ)⊗ ÛB(π,

π

2
)⊗ ÛC(π,

π

2
)
)

Ĵx|111〉

= −i sin φ sin
θ

2
|000〉 − cos

θ

2
|100〉+ i cos φ sin

θ

2
|111〉.

(25)

According to the payoff matrix given in the 3-player case, the payoff of Alice is
given by

PA = 3×
∣∣∣∣−i sin φ sin

θ

2

∣∣∣∣2 + 5×
∣∣∣∣− cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣i cos φ sin

θ

2

∣∣∣∣2
= 5 + 2(sin2 φ− 2) sin2 θ

2
≤ 5.

(26)

Thus, it is better to choose θ = 0 for Alice to maximize the payoff, which corresponding
to the strategy ÛA(0, φ) = Î. Similarly, when the other two players choose the strategy iσ̂x,
the maximum payoff of Bob and Colin can be derived as

PB(iσ̂x, ÛB(θ, φ), iσ̂x) ≤ PB(iσ̂x, Î, iσ̂x),

PC(iσ̂x, iσ̂x, ÛC(θ, φ)) ≤ PC(iσ̂x, iσ̂x, Î).
(27)

However, if all of the three players choose the quantum strategy Î, the total game
attains at a Nash equilibrium (D, D, D), which is not a “Pareto optimum”. Consequently,
any player choosing iσ̂x is not a proper way to obtain a Nash equilibrium for the maximally
entangled game. Therefore, in what follows we focus on the case of the other two players
choosing the strategy iσ̂y, instead of iσ̂x.

4.3. The Case of the Other Two Players Choosing iσ̂y

Firstly, we assume that the initial state is |ψini〉 = Ĵx|000〉, and Alice chooses the quan-
tum strategy ÛA(θ, φ), while Bob and Colin choose the strategy ÛB(π, 0) = ÛC(π, 0) = iσ̂y.
After time evolution, the final state is given by

|Ψfin〉 = Ĵ†
x
(
ÛA(θ, φ)⊗ ÛB(π, 0)⊗ ÛC(π, 0)

)
Ĵx|000〉

= i cos φ sin
θ

2
|000〉+ cos

θ

2
|011〉+ i sin φ sin

θ

2
|111〉.

(28)

According to the payoff matrix given in the 3-player case, the payoff of Alice is
given by

PA = 3×
∣∣∣∣i cos φ sin

θ

2

∣∣∣∣2 + 0×
∣∣∣∣cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣i sin φ sin

θ

2

∣∣∣∣2
= (1 + 2 cos2 φ) sin2 θ

2
≤ 3.

(29)
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Thus, Alice will choose θ = π, φ = 0 to maximize the payoff, which corresponding to
the strategy ÛA(π, 0) = iσ̂y. Indeed, in the case of the other two players choose the strategy
iσ̂y, the payoff of Bob and Colin can be calculated as

PB(iσ̂y, ÛB(θ, φ), iσ̂y) ≤ PB(iσ̂y, iσ̂y, iσ̂y),

PC(iσ̂y, iσ̂y, ÛC(θ, φ)) ≤ PC(iσ̂y, iσ̂y, iσ̂y).
(30)

As a result, all of the three players will get the payoff PA = PB = PC = 3, which is a
Nash equilibrium (C, C, C) and also a “Pareto optimum”.

Secondly, we assume that the initial state is |ψini〉 = Ĵx|111〉, and Alice, Bob and Colin
choose the same strategy as the discussions above. After time evolution, the final state is
given by

|Ψfin〉 = Ĵ†
x
(
ÛA(θ, φ)⊗ ÛB(π, 0)⊗ ÛC(π, 0)

)
Ĵx|111〉

= i sin φ sin
θ

2
|000〉+ cos

θ

2
|100〉 − i cos φ sin

θ

2
|111〉.

(31)

According to the payoff matrix given in the 3-player case, the payoff of Alice is

PA = 3×
∣∣∣∣i sin φ sin

θ

2

∣∣∣∣2 + 5×
∣∣∣∣cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣−i cos φ sin

θ

2

∣∣∣∣2
= 5 + 2(sin2 φ− 2) sin2 θ

2
≤ 5.

(32)

Thus, Alice will choose θ = 0 to maximize the payoff, which yields the strategy
ÛA(0, φ) = Î. Moreover, it can be verified that

PB(iσ̂y, ÛB(θ, φ), iσ̂y) ≤ PB(iσ̂y, Î, iσ̂y),

PC(iσ̂y, iσ̂y, ÛC(θ, φ)) ≤ PC(iσ̂y, iσ̂y, Î).
(33)

Consequently, the total game will attain at the Nash equilibrium (D, D, D). In sum,
when the initial state is |ψini〉 = Ĵx|000〉, we can obtain the optimal strategic set (iσ̂y, iσ̂y, iσ̂y)
no matter whether the other two players initially choose iσ̂x or iσ̂y, which yields a “Pareto
optimum” (C, C, C). However, when the initial state is prepared as |ψini〉 = Ĵx|111〉, we
can only get a Nash equilibrium (D, D, D). That is, the optimal strategic set depends on
the initial state of the game.

4.4. The Entanglement Gate

Based on the discussions above, it can be observed that the strategic set (iσ̂y, iσ̂y, iσ̂y)
is invalid to get a “Pareto optimum” (C, C, C) with the entangled gate

Ĵx = exp
{

i
π

4
σ̂x ⊗ σ̂x ⊗ σ̂x

}
. (34)

In this section, we aim to seek another entangled gate, which can keep the optimal
strategic set to be (iσ̂y, iσ̂y, iσ̂y) and yield a “Pareto optimum” (C, C, C) under the initial
state |111〉. In what follows we assume that the maximally entangled state is changed to be

Ĵy = exp
{

i
π

4
σ̂y ⊗ σ̂y ⊗ σ̂y

}
. (35)

On the one hand, if Alice chooses the quantum strategy ÛA(θ, φ), while Bob and Colin
choose the strategy ÛB(π, π

2 ) = ÛC(π, π
2 ) = iσ̂x, then the final state after time evolution is

given by

|Ψfin〉 = Ĵ†
y

(
ÛA(θ, φ)⊗ ÛB(π,

π

2
)⊗ ÛC(π,

π

2
)
)

Ĵy|111〉

= − cos φ sin
θ

2
|000〉 − cos

θ

2
|100〉+ i sin φ sin

θ

2
|111〉.

(36)
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According to the payoff matrix given in the 3-player case, the payoff of Alice is
given by

PA = 3×
∣∣∣∣− cos φ sin

θ

2

∣∣∣∣2 + 0×
∣∣∣∣− cos

θ

2

∣∣∣∣2 + 1×
∣∣∣∣i sin φ sin

θ

2

∣∣∣∣2
= (1 + 2 cos2 φ) sin2 θ

2
≤ 3.

(37)

Thus, Alice will choose θ = π, φ = 0 to maximize the payoff, which corresponding to
the strategy ÛA(π, 0) = iσ̂y. Due to the symmetry among the three players, the inequalities
(23) also hold, which means that (iσ̂y, iσ̂y, iσ̂y) is the optimal strategic set.

On the other hand, if Alice chooses the quantum strategy ÛA(θ, φ), while Bob and
Colin choose the strategy ÛB(π, 0) = ÛC(π, 0) = iσ̂y, then the payoff of Alice can be
calculated in a similar way. Moreover, the inequalities (30) hold in this case.

In fact, no matter Bob and Colin initially choose the strategies ÛB(π, π
2 ) = ÛC(π, π

2 ) =
iσ̂x or the strategy ÛB(π, 0) = ÛC(π, 0) = iσ̂y, Alice will persist in choosing the strategy
ÛA(π, 0) = iσ̂y to maximize the payoff under the entangled gate Ĵy with the initial state
|111〉, see Figure 3.

Figure 3. The payoff of Alice with respect to the strategy parameters θ and φ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ π
2 .

Consequently, when the initial state is prepared as |111〉, we can still choose the
strategic set (iσ̂y, iσ̂y, iσ̂y) to get the “Pareto optimum” (C, C, C) of the game by introducing
another different maximally entangled state (35).

In this section, a comprehensive study for the 3-player Prisoner’s Dilemma has been
presented, which exhibits some interesting features. It should be noted that once the
parameter sj,k in (5) is fixed, the payoff of player zj, j = 1, . . . , N, in the N-player Prisoner’s
Dilemma can be solved by (6). As a result, those features can be generalized to the N-player
case in a similar way.

5. Conclusions

In this paper, the general form of N-player Prisoner’s Dilemma in the quantum game
theory has been derived explicitly, and yields the payoff of each player under the range of
strategic choices. In addition, we have illustrated the advantages of quantum strategy in
game theory by introducing the 2-player and 3-player cases. The entanglement parameter
is proved to be non-unique, which can be used to obtain the “Pareto optimum” of the game.
To be specific, the 3-player Prisoner’s Dilemma with different initial states is discussed and
it has been found that the optimal strategic set depends on the selection of the initial state.
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From the point of view of the players, each of them can choose the optimal quantum
strategy to maximize the payoff based on the initial state of the game. Compared with
the classical case, the advantages of quantum features in game theory are determined by
the entanglement parameter. Moreover, considering quantum games with incomplete
information is in the perspective of our future research.
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