
mathematics

Article

A Multispecies Cross-Diffusion Model for Territorial Development

Abdulaziz Alsenafi 1,* and Alethea B. T. Barbaro 2

����������
�������

Citation: Alsenafi, A.; Barbaro, A.B.T.

A Multispecies Cross-Diffusion

Model for Territorial Development.

Mathematics 2021, 9, 1428. https://

doi.org/10.3390/math9121428

Academic Editor: Sergei Petrovskii

Received: 26 April 2021

Accepted: 17 June 2021

Published: 19 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Kuwait University, Kuwait City 12037, Kuwait
2 Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer

Science, Delft University of Technology, 2628 CD Delft, The Netherlands; a.b.t.barbaro@tudelft.nl
* Correspondence: abdulaziz.alsenafi@ku.edu.kw

Abstract: We develop an agent-based model on a lattice to investigate territorial development
motivated by markings such as graffiti, generalizing a previously-published model to account for K
groups instead of two groups. We then analyze this model and present two novel variations. Our
model assumes that agents’ movement is a biased random walk away from rival groups’ markings.
All interactions between agents are indirect, mediated through the markings. We numerically
demonstrate that in a system of three groups, the groups segregate in certain parameter regimes.
Starting from the discrete model, we formally derive the continuum system of 2K convection–
diffusion equations for our model. These equations exhibit cross-diffusion due to the avoidance
of the rival groups’ markings. Both through numerical simulations and through a linear stability
analysis of the continuum system, we find that many of the same properties hold for the K-group
model as for the two-group model. We then introduce two novel variations of the agent-based
model, one corresponding to some groups being more timid than others, and the other corresponding
to some groups being more threatening than others. These variations present different territorial
patterns than those found in the original model. We derive corresponding systems of convection–
diffusion equations for each of these variations, finding both numerically and through linear stability
analysis that each variation exhibits a phase transition.

Keywords: agent-based model; phase transition; cross-diffusion; movement ecology; segregation
model; pattern formation

1. Introduction

Many types of organisms are known to exhibit territoriality. Examples include insects,
fish, amphibians, reptiles, birds, mammals [1], and, of course, human beings [2]. Even
plants could be considered to display this trait [3], with some such as Eucalyptus excreting
a chemical that inhibits the growth of other species [4]. Reasons for territorial behavior
include protection of breeding sites and access to resources, and territorial organisms have
several ways of claiming their territory. Two common ways are through some sort of
marking, either chemical or physical, and through direct confrontation.

In this paper, we focus on the case of territory formation for a mobile species through
territorial markings. We use the example of gangs of human beings reacting to the graffiti
of other gangs, though the model could also be applied to other mobile species. In [5,6],
Moorcroft et al. modeled how different packs of animals like coyotes and wolves base
their movement on scent marking. It was discovered that both coyotes and wolves use
scent marking to tag territories [7]. Once wolves or coyotes encounter foreign scents, they
in turn mark their territory with their scent and usually head back to their own home
territory. This dynamic was studied in detail in [8], where it was found that different packs
of wolves can live in the same region without having contact with other packs, but each
has its own territory.

More recently, advances have been made in the field of movement ecology with
models of territorial development motivated by scent marking, many exhibiting cross-
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diffusion. Some, such as those in [9], are similar to the continuum systems derived in [10]
and in Sections 1.1–3.2 of the current work, though there are several subtle but important
differences. The interested reader is referred to [9,11,12], which provide an excellent
overview of the current state of this ecological literature and important new results for cross-
diffusion models in spatial population dynamics. Our work here provides a mechanistic
underpinning for this type of PDE model, along with the formal derivation of convection–
diffusion systems. Section 5 also offers two novel variations, which can be adapted to
particular species and ecological situations.

Researchers studying gang dynamics have based the gang movement dynamics
on existing ecological models of animal species that exhibit territorial behavior. Gangs
have distinctive graffiti and other special identifiers, such as handshakes and tattoos, to
distinguish themselves from other gangs [13,14]. In addition, it is found that in major cities
around the world, gangs claim territory by marking it with graffiti, and gangs tend to avoid
territory claimed by other gangs unless they are actively seeking out retaliation [15,16].
Smith et al. [17] combined the ecological model in [6] with Hegemann et al.’s network
model [18] to produce a model for gang territoriality. The new model was then solved
numerically, and their results were compared to real data about gang territories in Los
Angeles. In [19], Barbaro et al. used a statistical mechanics approach to study how gang
territories could be formed based on graffiti. This also drew on ideas from coyote and
wolf scent-marking. The authors chose to use a spin system similar to the Ising model [20]
that simulates ferromagnetism. A two-dimensional lattice was used, with an agent and a
graffiti spin at each site, and there were only indirect interactions between the agent spins.
The authors showed that their model exhibits a phase transition in which gangs cluster
together to form territory.

Other work on modeling criminal behavior has also been done. This work is tangential
to the work presented here, but is summarized for the interested reader. Clustering methods
have been used to study gang affiliations between gang members in Los Angeles [21].
Network models are also used to study gangs. In [18], the authors present an agent-
based model, which is coupled with a rivalry network to explore how gang rivalries are
formed. In [22], a model for burglary was developed, and a continuum system consisting of
coupled reaction–diffusion equations was derived. This and similar systems were analyzed
in [23–25]. Modifications of the model were explored in [26,27]. The reaction–diffusion
equations were analyzed further in [28], which showed that they exhibit similar behavior
to chemotactic systems with cross-diffusion. Recently, in [29], Wang et al. extended the
burglary model by including independent Poisson clocks in the time steps; a martingale
with both a deterministic and a stochastic part was derived and analyzed. Work on riots
and social segregation have also followed from this line of research [30,31]. For a more
in-depth review of the crime modeling literature, the reader is referred to [32].

Our paper is based on the work of [10], wherein the authors performed a bottom-up
approach similar to the Moorcroft model [6], producing a discrete system to describe gang
territorial development and formally deriving from it the following system of convection–
diffusion equations:

∂ξA
∂t

(x, y, t) = γρA(x, y, t)− λξA(x, y, t)
∂ξB
∂t

(x, y, t) = γρB(x, y, t)− λξB(x, y, t)
∂ρA
∂t

(x, y, t) =
D
4
∇ · [∇ρA(x, y, t) + 2β(ρA(x, y, t)∇ξB(x, y, t))]

∂ρB
∂t

(x, y, t) =
D
4
∇ · [∇ρB(x, y, t) + 2β(ρB(x, y, t)∇ξA(x, y, t))],

(1)

where ξi is the graffiti density of gang i and ρi is the agent density from gang i. The
model undergoes a phase transition from no territorial development to distinct territorial
formation as the parameter β is changed. This phase transition was found both at the
discrete and continuum level. The authors consider only the case of two gangs. A modified
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version of the convection–diffusion system in [10] was analyzed in [33], where they proved
a weak stability result and identified equilibrium solutions; interestingly, though, they did
not find segregated equilibrium solutions in this modified system.

In this paper, we generalize the model and results of [10] to consider any finite number
K of groups. This is important, because it gives the model much more flexibility. Often
when considering territorial formation, there are more than two groups involved. We
define a lattice model with K groups, each of whom tries to avoid the graffiti of the other
groups. We neglect births and deaths, considering instead fixed population sizes in each
gang, so that any losses of population are compensated by gains. This is reasonable, since
we would not expect the size of the gangs to change significantly over the course of time
that we simulate the territorial dynamics. The birth and death neglect is in line with other
territorial ecological models that concentrate on short term movement where the individual
response is faster than the population changes [9,12]. We work on a periodic lattice, which
we think of as tiling a very large or infinite space, since we do not have specific geographic
constraints in mind. We also assume that all agents move to a neighboring lattice site at
every time step for simplicity, since this will help in the derivation of the continuum limits.
As in the two-gang model, we observe that our model undergoes a phase transition, and
we numerically examine the phase transition and how it is affected by changing our spatial
discretization. We then follow [10] in deriving a continuum system. We perform a two-
dimensional linear stability analysis to identify the critical parameter, showing that above
the bifurcation value of β all wave numbers are unstable, in agreement with the observed
behavior of the discrete model. We then explore two variations of the model, where we
allow each group to have a different β value. In the first variation, called the Timidity
Model, this β affects the strength with which they avoid other groups’ graffiti. In the
second, called the Threat Level Model, a group’s β value affects how strongly other groups
avoid their graffiti. We derive corresponding continuum systems of both models, and find
the critical value at which the behavior changes from well-mixed groups to segregated
groups in the case of two groups. This also gives us an intuition to the critical parameter
for K groups, both in the variations and the original model, which we numerically validate
in the three group case.

This paper is a significant contribution both to the field of movement ecology and to
the mathematical literature. We derive three discrete models for an arbitrary number of
groups, each assuming different motivations and each showing distinct territorial dynamics.
We also derive three novel systems of convection–diffusion equations exhibiting cross-
diffusion, where the only interaction between groups occurs between agents and the
markings of groups other than their own. Furthermore, we find the critical parameters
for the transition between well-mixed and segregated territories for all three models we
introduce for two groups, with a proposed formula for K groups.

This paper’s outline is as follows: In Section 1.1, we introduce our extension of
the original two-gang agent-based model [10]. The rest of the article is based upon this
extension. We next define an order parameter in Section 1.2 that will be used to analyze
our system’s different states and characterize phase transitions. In Section 2, we present
the results of a special case of our discrete model numerical simulations as well as show
our analysis of the systems’ phase transitions. In Sections 3.1 and 3.2, we will derive the
general continuum limit from the discrete model. In Sections 3.3 and 4, we will derive
a steady-state solution for our continuum model and perform linear stability analysis to
determine whenever the well-mixed solution becomes unstable. In Section 5, we introduce
and study two variations on the model, where parameter β is made gang-dependent.
Finally, in Section 6, we conclude with a discussion of the results and open problems.

1.1. Discrete Model

In this paper, we extend and generalize the interacting particle model in [10] to now
include K gangs as opposed to only two, keeping all other dynamics similar. We shall
use a square lattice S with area 1 and grid discretization L× L, with periodic boundary
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conditions. Since the lattice length is assumed to be equal to one, and L is a dimensionless
quantity that represents the number of lattice sites, l = 1

L is the lattice spacing with units
of length.

We assume that we have K gangs, 1, 2, . . . K, and the number of agents belonging in
each gang j is denoted by Nj. The systems’ total number of agents is denoted by N:

N =
K

∑
i=1

Ni.

These agents are distributed over the lattice. Our model allows multiple gang agents
regardless of their gang affiliation to be on the same site. We denote the number of agents of

gang j at site (x, y) at time t by nj(x, y, t) and their densities are ρj(x, y, t) =
nj(x,y,t)

l2 , where
l = 1

L is the lattice spacing. The amount of graffiti belonging to gang j at site (x, y) on time

t is denoted by gj(x, y, t). We denote the graffiti density of gang j by ξ j(x, y, t) =
gj(x,y,t)

l2 .
Our model assumes that every agent moves at every time step to one of their four

neighboring sites, which are the sites up, down, to the left, and to the right of it. That
is, an agent currently occupying site (x, y) would move to an element of the set of sites
{(x + l, y), (x− l, y), (x, y + l), (x, y− l)}. The neighboring sites of (x, y) will be denoted
by (x̃, ỹ) ∼ (x, y). In our model, each agent performs a biased random walk, trying to
avoid the opposing gangs graffiti. Following [10], our model assumes that every agent
has some probability of putting down its own gang’s graffiti on the lattice and this graffiti
discourages the movement of agents from a different gang onto that lattice site. However,
now that we are considering more than two gangs, each gang must avoid the graffiti of all
other gangs, leading us to define the opposition sum for gang j at site (x, y) at time t:

ψj(x, y, t) :=
K

∑
i=1
i 6=j

ξi(x, y, t). (2)

We use this opposition sum to inform the movement dynamics of the agents. The
movement from site s1 = (x1, y1) ∈ S to a neighboring site s2(x2, y2) ∈ S at time t is
denoted by (x1 → x2, y1 → y2, t). Here, the symbol→ represents the change of spatial
coordinates at time t. The probability of an agent from gang j to move from site (x1, y1) ∈ S
to one of the neighboring sites (x2, y2) is defined to be

Mj(x1 → x2, y1 → y2, t) =
e−βψj(x2,y2,t)

∑
(x̃,ỹ)∼(x1,y1)

e−βψj(x̃,ỹ,t)
, (3)

again defined analogously to [10]. Here, the parameter β encodes the strength of the
avoidance of other gangs’ graffiti. As our model assumes that all of the agents must move
at each time step, it is easily seen that

∑
(x̃,ỹ)∼(x,y)

Mj(x → x̃, y→ ỹ, t) = 1. (4)

The expected density of gang j is therefore

ρj(x, y, t + δt) =ρj(x, y, t) + ∑
(x̃,ỹ)∼(x,y)

ρA(x̃, ỹ, t)Mj(x̃ → x, ỹ→ y, t)

− ρj(x, y, t) ∑
(x̃,ỹ)∼(x,y)

Mj(x → x̃, y→ ỹ, t)

= ∑
(x̃,ỹ)∼(x,y)

ρA(x̃, ỹ, t)Mj(x̃ → x, ỹ→ y, t). (5)
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For the graffiti density update rules, each agent adds graffiti at its current site with
probability γ. It is also assumed that the graffiti decays at every site with a rate of λ. Both
the graffiti addition and decay are scaled by the time step δt. Therefore, the graffiti density
at site (x, y) ∈ S at time t + δt is

ξ j(x, y, t + δt) = ξ j(x, y, t)− (δt · λ)ξ j(x, y, t) + (δt · γ)ρj(x, y, t). (6)

In all of our simulations, we initially randomly distribute the agents’ locations using
the multivariate uniform distribution on the lattice S. We also assume that the lattice is
initially empty of graffiti.

1.2. Phases and an Order Parameter

In our simulations, we shall observe two phases, the well-mixed phase and the
segregated phase. These phases, we will see, are determined by parameter β, introduced
in (3). In the well-mixed phase, the agents are distributed randomly throughout the lattice
and their movement approximates a random walk. However, for the segregated phase, the
agents’ movement is a biased random walk, and the agents form territories by clustering
together. In this Section, we shall define an order parameter and use it to quantify these
different phases.

1.2.1. Expected Agent Density

We first compute the expected agent density for the well-mixed state at site (x, y) for
each gang j. In this phase, the agents from each gang are uniformly spread over the whole
lattice S. Thus, the expected agent density for gang j at any given site is:

E
(
ρj
)
= ∑

(x,y)∈S
ρj(x, y)× 1

L2

= ∑
(x,y)∈S

nj(x, y)
l2 × 1

L2

= ∑
(x,y)∈S

nj(x, y)

= Nj. (7)

For the segregated phase, the agents are entirely separated into different territories,
each occupied by a distinct gang. To determine the expected agent density for the seg-
regated phase, we will need the following definitions and assumptions. We define the
territory Sj to be the set of all sites that are dominated by gang j agents, i.e., all sites that
have more gang j agents than agents of another type. We also note that Sj need not be
connected. We also define the number of grid sites in sublattice Sj by Rj, which is the
number of sites dominated by gang j. We note that Rj has the same units as L2, which is
dimensionless. We assume that the agents from each gang are uniformly distributed in
their territory, and that all sites are occupied by agents; hence, every site is assumed to
contain agents from exactly one gang. These assumptions are validated in our simulation
in Section 2. Accordingly, {Sj}K

j=1 form a partition for the lattice S for j = 1, 2, . . . , K.
Under these assumptions, we now calculate the expected agent density for the agent

density for gang j in the segregated state by splitting the lattice S into two disjoint territories,
Sj and its complement Sj

c. Calculating the expected agent density within the complement
of gang j’s territory easily finds:

E
(
ρj
)
= ∑

(x,y)∈Sj
c

ρj(x, y)
Rj

c = 0.
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This last equality follows because all agents for gang j are assumed to be in Sj in the
(perfectly) segregated phase, hence none are in Sj

c. Next, calculating the expected agent
density within Sj gives us:

E
(
ρj
)
= ∑

(x,y)∈Sj

ρj(x, y)
Rj

= ∑
(x,y)∈Sj

nj(x, y)
l2 × Rj

=
Nj

l2Rj
.

Thus, the expected agents density within Sj is

E
(
ρj(x, y)

)
=


Nj

l2Rj
, (x, y) ∈ Sj

0, (x, y) ∈ Sj
c.

(8)

If we further assume that the areas dominated by each gang are almost equal and that
there are an equal number of agents in each gang, we deduce that Rj =

L2

K , where K is the
number of gangs. Under these assumptions, the expected density in a segregated state for
an agent from gang j is

E
(
ρj(x, y)

)
=


Nj

l2Rj
, (x, y) ∈ Sj

0, (x, y) ∈ Sj
c

=

{
KNj, (x, y) ∈ Sj

0, (x, y) ∈ Sj
c.

1.2.2. An Order Parameter

To investigate the phase transition, we define the following order parameter:

E(t) = 1
4(K− 1)

(
1

LN

)2 K

∑
j=1

K

∑
i>j

∑
(x,y)∈S

∑
(x̃,ỹ)∼(x,y)

∣∣∣∣(ρj(x, y, t)− ρi(x, y, t)
)
×

(
ρj(x̃, ỹ, t)− ρi(x̃, ỹ, t)

)∣∣∣∣. (9)

This order parameter is modeled after the order parameter in [10] and the Hamiltonian
function for the Ising Model [20,34]. In terms of our model, our order parameter becomes
more positive if a site and its neighbors are dominated by the same gang and becomes
extremely small when a site and its neighbors are dominated by different gangs. It is approx-
imately zero if the agents are well-mixed and none of the gangs are dominating territory.

This is due to the fact that in the segregated phase, the agents cluster together and
this leads to there being only one gang present at site (x, y). This makes the term inside
the sum in Equation (9) to have a large magnitude; if the same is true at the neighboring
site, the second term inside the sum is identical and once we multiply the two together, the
resulting value would be a positive number. Thus, the order parameter should attain its
maximum when the system is perfectly segregated. However, whenever agents from all
gangs become uniformly distributed throughout the lattice, the result is that the two sets of
parenthesis tend to be extremely small and close to zero. After summing over the whole
lattice and all the gangs, the order parameter ends up near zero. Thus, the order parameter
should attain its minimum value when the system is completely well-mixed.
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We now calculate an approximation for the order parameter when the phases are
well-mixed and when they are perfectly segregated. For simplicity, in this subsection and
all of our simulations, we consider the special case of three gangs and we assume that
the number of agents in each gang is equal, so that Nj =

N
3 for j in {1, 2, 3}. The order

parameter for this special case is

E =
1
8

(
1

LN

)2

∑
(x,y)∈S

∑
(x̃,ỹ)∼(x,y)

∣∣∣∣(ρ1(x, y)− ρ2(x, y))(ρ1(x̃, ỹ)− ρ2(x̃, ỹ))
∣∣∣∣

+

∣∣∣∣(ρ1(x, y)− ρ3(x, y))(ρ1(x̃, ỹ)− ρ3(x̃, ỹ))
∣∣∣∣

+

∣∣∣∣(ρ2(x, y)− ρ3(x, y))(ρ2(x̃, ỹ)− ρ3(x̃, ỹ))
∣∣∣∣. (10)

In the well-mixed state, based on Equation (7) and on our assumptions that the agents
from all gangs are uniformly distributed and that each lattice site has four neighbors, our
equation simplifies to

E =
1
8

(
1

LN

)2

∑
(x,y)∈S

∣∣∣∣4(N1 − N2)(N1 − N2)

∣∣∣∣+∣∣∣∣4(N1 − N3)(N1 − N3)

∣∣∣∣
+

∣∣∣∣4(N2 − N3)(N2 − N3)

∣∣∣∣.
Simplifying the terms in the brackets yields that

E =
4
8

(
1

LN

)2

∑
(x,y)∈S

[
(N1 − N2)

2 + (N1 − N3)
2 + (N2 − N3)

2
]

=
1
2

(
1
N

)2[
(N1 − N2)

2 + (N1 − N3)
2 + (N2 − N3)

2
]

.

However, since we assumed that the number of agents from each gang N1, N2, and N3
are equal, it follows easily that the order parameter for the agents in a well-mixed phase is

E ≈ 0. (11)

We will next calculate the order parameter for the segregated phase. Here, we assume
a perfectly segregated phase and split the lattice S into the three regions S1, S2 and S3
belonging to each gang, which gives us:

E =
1
8

(
1

LN

)2
[

3

∑
j=1

3

∑
i>j

∑
(x,y)∈Sk
k∈{1,2,3}

∑
(x̃,ỹ)∼(x,y)

∣∣∣∣(ρj(x, y)− ρi(x, y)
)(

ρj(x̃, ỹ)− ρi(x̃, ỹ)
)∣∣∣∣
]

.

Using Equation (8), we substitute the expectation of each ρi for each region, which
gives us the following approximation:

E ≈ 1
8

(
1

LN

)2
[

∑
(x,y)∈S1

[
4
(

N1

l2R1

)2
+ 4
(

N1

l2R1

)2]

+ ∑
(x,y)∈S2

[
4
(
−N2

l2R2

)2
+ 4
(

N2

l2R2

)2]

+ ∑
(x,y)∈S3

[
4
(
−N3

l2R3

)2
+ 4
(
−N3

l2R3

)2]]
.
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Further simplifying yields:

E ≈ 1
8

(
1

LN

)2( 8
l4

) ∑
(x,y)∈S1

(
N1

R1

)2
+ ∑

(x,y)∈S2

(
N2

R2

)2
+ ∑

(x,y)∈S3

(
N3

R3

)2


=

(
1

LN

)2( 1
l4

)[
R1

(
N1

R1

)2
+ R2

(
N2

R2

)2
+ R3

(
N3

R3

)2
]

=

(
L
N

)2
[

N2
1

R1
+

N2
2

R2
+

N2
3

R3

]
.

By further assuming that all gangs have the same number of agents Ni = N/3 and
that the regions have equal number of sites Ri =

L2

3 , the previous equation can be further
simplified to

E ≈
(

L
N

)2
(
(N/3)2

L2/3
+

(N/3)2

L2/3
+

(N/3)2

L2/3

)
.

By further simplifying the equation, we easily see that

E ≈ 1. (12)

Therefore, the order parameter for the perfectly segregated system is approximately
equal to one. Moreover, based on our assumption that in the perfectly segregated state all
gangs dominate equal areas, and are uniformly distributed over it, then the expected order
parameter is bounded, with 0 ≤ E ≤ 1. We note that when the order parameter is such that
0.1 ≤ E ≤ 0.9, then the system is in an ‘in-between’ state, which we refer to as a partially
segregated state. We will show in Section 2 that the system exhibits segregation starting
around E = 0.1, and that the higher the order parameter value will correspond to a more
obvious segregation.

2. Simulations of the Discrete Model

We now will present the results of the simulations of our discrete model. For simplicity,
unless otherwise stated, in our simulations we assume we only have three gangs 1, 2 and
3, and that all gangs are assumed to have 50,000 agents. The case K = 3 will give us
insight into the differences between the two-gang model and the multi-gang model that
we consider here, while remaining both analytically and visually tractable. We shall also
assume that the lattice size L× L is 100× 100 with lattice spacing l = 1/L, and we will use
100,000 time steps with each step size δt = 1.

2.1. Well-Mixed State

We start our simulations with β = 5× 10−6, and the resulting lattice simulations are
visualized in Figure 1. The first two lattices in Figure 1 represent the time evolution of
agent density, whereas the last two lattices represent the graffiti density over time. We
assign the colors red, blue and green for gangs 1, 2 and 3, respectively. The color white is
used if there are the same number of agents or the same amount of graffiti from all gangs
at a site. The colors cyan, magenta and yellow are used if a site has two gangs (blue and
green, blue and red, or red and green, respectively). Finally, if the site is empty, then it will
be assigned the color black.

From Figure 1, we clearly see that the gangs remain well mixed over time for
β = 5 × 10−6. We do not see any patterns being formed for the graffiti, with the ini-
tial graffiti lattice black and the final graffiti lattice white, and the gang agents’ movement
is in essence a two-dimensional random walk, hardly taking the opposing gangs graffiti
into consideration due to the low β value. This is due to the way the agents are allowed to
move in Equation (3), where a very small β values give the agent a probability of nearly
0.25 to move to each one of the four neighboring sites.
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Figure 1. Agent (left two) and graffiti (right two) densities’ temporal evolution for a well-mixed
state. Here we have N1 = N2 = N3 = 50,000, with λ = γ = 0.5, β = 5× 10−6, δt = 1 and the lattice
size is 100× 100. Note that the initial graffiti lattice appears black because it is empty. The final
graffiti lattice appears white because all sites have (almost) the same graffiti densities from all three
gangs. It is clear from this figure that the agents remain well mixed over time.

2.2. Segregated State

The value of β is now increased so that it is equal to 3× 10−5, and we keep all other
parameters the same. The resulting lattice is visualized in Figure 2. The top row illustrates
the time evolution of agent density, and the bottom row shows the graffiti density over time.
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Figure 2. Agent (top) and graffiti (bottom) densities temporal evolution for a segregated state. Here,
we have N1 = N2 = N3 = 50,000, with λ = γ = 0.5, β = 3× 10−5, δt = 1 and the lattice size is
100× 100. We see that the agents segregate into distinct territories, coarsening over time.

From Figure 2, we see that initially the agents are well-mixed. However, as time
evolves, we see that agents from each gang cluster together to form all-red, all-green and
all-blue territories. As time increases, the patterns in both the agent and graffiti densities
coarsen. From the same figure, we clearly see that the graffiti density is similar to the
agents density and the agents’ movements are based on the other gangs’ graffiti. That is,
in this state, the β value is large enough that the agents are reacting to the opposing gang
graffiti and the agents movement is no longer close to an unbiased random walk. We can
also observe from this figure that the areas with more than one gang’s graffiti lie at the
boundaries of the territories dominated by each gang. Similarly, this is where we observe
the agents overlapping, though to a lesser extent. Presumably, this overlap enables the
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coarsening seen in the figure. We notice that the segregation seen here in the K group case
differs from the patterns seen in the two group model [10]. Here, the territories formed by
each of the gangs are convex areas that coalesce over time, remaining convex throughout
the territorial evolution. In the two gang model, the patterns are more serpentine and
closer to the patterns seen in the Cahn–Hilliard system [35].

2.3. System Parameters and the Discrete Phase Transition
2.3.1. Effects of β

In Sections 2.1 and 2.2, we saw that changing the value of the parameter β could lead
to a phase transition. In order for us to study the phase transitions, we use the concept of
order parameter that we introduced in Section 1.2.2. In Equation (10), we defined an order
parameter for a system of three gangs. This order parameter is defined to have a low value
for a well-mixed phase and a high value for a segregated phase; in Section 1.2.2, we saw
that the order parameter E ≈ 0 for a well mixed state and E ≈ 1 for a fully segregated state.
For our simulations, we graph the order parameter over the course of the simulation for
different values of β, visualizing the output in Figure 3.
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Figure 3. How changing the β parameter affects the system. Here we have N1 = N2 = N3 = 50,000,
with λ = γ = 0.5 and the lattice size is 100× 100. (Left) It is seen that for a small β value, the system
remains well-mixed and the order parameter is almost zero over all time steps. For larger β values,
we see that the order parameter increases quickly as the system segregates and levels off to around
one. (Right) After 100,000 time steps, we take the order parameter value for different β values. We
clearly see that as the β value increases, there is a critical β value at which a phase transition occurs.

We see in the left plot in Figure 3, the time evolution of the order parameter for
different β values. Here, we easily see that given enough time steps, the order parameter
levels off to a certain value, presumably its asymptotic value. We see that for β = 0 and
β = 0.000005, the order parameter remained approximately zero throughout all time steps.
This is expected, as the system remains well-mixed for these relatively small β values.
However, we see that once we increase the values of β, then the order parameter starts
to increase. For instance, if β = 0.000025 or β = 0.000030, then the order parameter
increases fairly quickly in the first 10, 000 time steps before leveling off to just under the
fully-segregated value of 1 for the remaining time steps. This shows us that for these
relatively large β values, the system segregates fairly quickly and remains segregated
throughout the simulation. Finally, we also see that if we choose β = 0.00001, then the
order parameter does increase and the system does exhibit some segregation, but this is
not perfect segregation as the order parameter levels off to around 0.4.

It is evident from the right plot of Figure 3 that there is a critical β in which the system
undergoes a phase transition. We define the critical β to be the value where the order
parameter is equal to 0.01, and denote it by β∗. To find the value of β∗, we take the final
value of the order parameter, which was computed after 100,000 time steps and plot it
against different β values. The output is then visualized on the right plot of Figure 3. From
that plot, we can see that the phase transition occurs when β∗ ∈ (0.000005, 0.000010).
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To gain better insight into how the system behaves on the steeply rising part of the
phase transition curve, we present Figure 4. Here, we can observe how the system looks
when it neither well-mixed nor fully segregated, but is instead in a partially segregated state.
We visualize in this figure the agent densities after 100,000 time steps for different β values.
We see that when the order parameter is between 0.1 and 0.9, then the system is in a partially
segregated state. An interesting observation in Figure 4 is that as β increases, the territories
emerge from within a well-mixed state and gradually become more defined. However,
in many of these partially-segregated states, we see a zone between those territories that
is not dominated by any specific gang. We see in the aforementioned figure that this
zone gets smaller as β increases. In ecological literature, such as the wolf pack model by
Lewis et al. [8], it is found that between each neighboring pack, there are buffer zones that
are hardly visited by the wolf packs. The buffer zones size changes with time, and the
change depends on the different pack scent markings and other different environmental
factors such as the climate, and on prey’s existence. This model may be exhibiting a similar
phenomenon here.
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Figure 4. Agent density lattices taken after 100,000 time steps for different β values for
δt = 1, L = 100, γ

λ = 1, and N1 = N2 = N3 = 50,000 agents. Starting from the top left, the re-
sulting order parameter was around 0, 0.20, 0.39, 0.69, 0.83, and 0.96, respectively. The β values used
were 5× 10−6, 9.4× 10−6, 1× 10−5, 1.2× 10−5, 1.4× 10−5 and 3× 10−5, respectively. The critical β

value is around 9.3× 10−6. We clearly see when the order parameter is between 0.1 and 0.9, then
the system is in a partially segregated state. The territories formed also become more evident as β

increases, which also results in the order parameter value becoming larger.

2.3.2. Effects of Other Parameters

In order to investigate how other parameters such as system mass, time step, lattice
size, graffiti rate and decay rate affect the system phase transition, we vary one parameter
at a time while keeping all other parameters fixed. This is important, since in the derivation
of the continuum equations for our system, we will assume that both the time step δt and
the lattice spacing l approach zero. It is therefore essential to know if a finer grid affects
our discrete model as opposed to a coarser grid. We also would like to know if taking
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smaller or bigger time steps might affect the rate of segregation and if it has any effect on
the phase transition.

We begin by studying how the time step might affect the system. To do that, we keep
all our system parameters constant and decrease the time step δt from 1 to 0.1; we then
plot the final order parameter value for different β values, which were computed after
100,000 time steps. The results are visualized on the right plot in Figure 3. In the plot, it
is clear that the smaller time step does not affect the rate of segregation, nor does it affect
where the phase transition occurs.

We were also interested in how the mass might affect our system. For our investigation,
we compute the final order parameter value after 100,000 time steps. In Figure 5, we see in
the first plot that when the mass is 75,000 the critical β at which the phase transition occurs
is about 1.8× 10−5. However, in the middle plot, the mass is increased to 150,000 and this
time the phase transition occurs around 0.9× 10−5. Thus, we notice that as the systems’
mass increases, the resulting phase transition happens at a smaller β value. Physically, this
makes sense, since having a larger number of agents implies that there will be more graffiti
being added at each site and thus a smaller β value should be sufficient for the agents to
react to the graffiti field.
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Figure 5. The Effect of Parameters on the Phase Transition. Here we have N1 = N2 = N3 = 50,000,
with λ = γ = 0.5 and δt = 1. The order parameter values were computed after 100,000 time steps.
On the top three plots, it is seen that for small β values, the system remains well-mixed and the
resulting order parameter values is approximately zero over time. However, for larger β values we
see that the order parameter increases quickly as the system segregates and levels off to around one.
We clearly see that as the β value increases there is a critical β value in which a phase transition
occurs. The plots also show the effects of changing the lattice grid, mass and the ratio γ/λ. The
bottom three plots are magnified versions of the top three plots.

We also investigated how the ratio γ
λ might change where the phase transition occurs.

Again, we kept all other parameters fixed and changed the value of the ratio by altering the
decay rate λ. Having a higher decay rate means that the graffiti is decaying more quickly
and thus each site would have less graffiti. We found that by decreasing the γ

λ ratio, a
higher β value is needed for segregation. This is evident in the middle and right plots in
Figure 5. There, we clearly see that when the γ

λ = 1, the critical β is around 0.9× 10−5,
whereas when the γ

λ is decreased to 0.5, the critical β is around 1.8× 10−5. Physically, this
is due to the fact that less graffiti on a site means that a larger β value is necessary for the
agents to react to it.

We are also interested in investigating how changing the grid size affects the segrega-
tion when we alter the other parameters. For our investigation, we keep all our parameters
constant and vary the grid size by taking L = 50, L = 100, and L = 150. After 100,000 time
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steps, we compute the order parameter for each grid size. The results of all three cases are
visualized in Figure 5, where the blue, red, and black curves represent L = 50, L = 100, and
L = 150, respectively. When comparing the three curves, we see that all curves intersect
near the order parameter value of 0.1, which is where we choose the critical β value of our
system. Although the critical parameter remains the same, making the grid finer leads to
the phase transition curve becoming smoother, which is evident in the first and third plots
in Figure 5. We see that the process of reaching full segregation becomes more gradual
as the grid becomes finer, indicating that our phase transition changes from first-order to
second-order as the number of grid points increases.

In Figure 6, we visualize the temporal evolution of the graffiti density for the grid sizes
L = 50, L = 75, L = 100, and L = 150. In all four cases, the graffiti density is similar by
time 100,000. However, at time 10, 000, we see finer structures as L increases and the grid
becomes finer. Additionally, we can also see that the boundary region where we observe
overlap in the graffiti becomes smaller as L increases, and the territories become smoother
and less pixelated.
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Figure 6. Temporal evolution of the graffiti densities lattice for a segregated state for different grid
sizes. Here we have N1 = N2 = N3 = 50,000, with λ = γ = 0.5, β = 3× 10−5, δt = 1. First row,
L = 50, Second row L = 75, third row L = 100, and fourth row L = 150. We see that the graffiti
density is similar as L increases.

3. Deriving the Convection-Diffusion System

In this Section, we will formally derive the continuum equations of our system and
prove that the limiting system of convection–diffusion equations is

∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t)

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2β

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ξi(x, y, t)



 (13)

on a one-by-one domain with periodic boundary conditions, where j ∈ {1, 2, . . . , K}. Since
our discrete model is a multiple-gang extension of the two-species model in [10], we
proceed with finding the continuum equations by following the steps of the derivation of
the continuum model therein. With minor modifications, the same derivation goes through
for this multiple-gang case.

Deriving the continuum limits from discrete models is of great interest to the math-
ematical community; for example, just from the crime modeling literature, we can refer
you to papers [22,26,36,37]. These continuum equations are often formally derived by
assuming appropriate smoothness of the gang density and graffiti density and taking
both the grid spacing and time step to zero, as we will do here. The continuum partial
differential equations give us more tools for understanding the macroscopic behavior of
the model.

3.1. Continuum Graffiti Density

We start by formally deriving the continuum equations for graffiti densities, recalling
for j ∈ {1, 2, . . . , K}, the discrete model (6):

ξ j(x, y, t + δt) = ξ j(x, y, t)− δt · λ · ξ j(x, y, t) + δt · γ · ρj(x, y, t).

Rearranging the equation and dividing by δt gives us:

ξ j(x, y, t + δt)− ξ j(x, y, t)
δt

= γ · ρj(x, y, t)− λ · ξ j(x, y, t).

This is now in the form of a difference equation. Assuming sufficient smoothness of
the agent and graffiti densities ρj and ξ j, we take δt→ 0. This gives us the final form of the
graffiti continuum equation for gang j:

∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t). (14)
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3.2. Continuum Agent Density
3.2.1. Tools for the Derivation

Deriving the continuum equations for the agent densities is more complex, so before
we begin, we define several quantities that will be useful in the derivation. We will need
the opposition sum described by Equation (2), which we recall here:

ψj(x, y, t) :=
K

∑
i=1
i 6=j

ξi(x, y, t).

Employing this notation, the first quantity we define is

Tj(x, y, t) :=
eβψj(x,y,t)

4 + l2
(

β2
(
∇ψj(x, y, t)

)2 − β∆ψj(x, y, t)
) . (15)

We will use Tj to account for the influences of the neighbors and neighbor’s neighbors
in the discrete model.

Next, we derive approximations to∇Tj and ∆Tj, which we will use later in this section.
For simplicity, the notation (x, y, t) will be dropped, as there will be no neighbors (x̃, ỹ, t)
in the derivation of these quantities. We start by simplifying Tj using Taylor series approxi-

mations. Applying Taylor expansion to Tj with x = 4 and h = l2
(

β2(∇ψj
)2 − β∆ψj

)
:

Tj =
eβψj

4

(
1− l2

4

(
β2(∇ψj

)2 − β∆ψj

))
+O(l4). (16)

Note that here, we are depending on the smoothness of ψj. Then, by taking the
gradient of (16), we find that

∇Tj =
eβψj

4

(
β∇ψj −

l2

4

(
β3(∇ψj)

3 + β2∇ψj∆ψj − β∇3ψj

))
+O(l4). (17)

We also can find ∆Tj:

∆Tj =
eβψj

4

((
β2(∇ψj)

2 + β∆ψj

)
− l2

4

(
4β3(∇ψj)

2∆ψj

+ β2(∆ψj)
2 + β4(∇ψj)

4 − β∇4ψj

))
+O(l4). (18)

Modifying definition (3) so that we evaluate the probability that an agent at a neigh-
boring site (x̃, ỹ) moves to site (x, y):

Mj(x̃ → x, ỹ→ y, t) =
e−βψj(x,y,t)

∑
( ˜̃x, ˜̃y)∼(x̃,ỹ)

e−βψj( ˜̃x, ˜̃y,t)
, (19)

where ( ˜̃x, ˜̃y) are the four neighbors of site (x̃, ỹ). To remove the presence of the neighbors’
neighbors ( ˜̃x, ˜̃y) from the denominator, we apply the discrete Laplacian to find that

∑
( ˜̃x, ˜̃y)∼(x̃,ỹ)

e−βψj( ˜̃x, ˜̃y,t) = 4e−βψj(x̃,ỹ,t) + l2∆
(

e−βψj(x̃,ỹ,t)
)
+O(l4). (20)

Noting that

∆e−βψj(x̃,ỹ,t) =
[

β2(∇ψj(x̃, ỹ, t)
)2 − β∆ψj(x̃, ỹ, t)

]
e−βψj(x̃,ỹ,t). (21)
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Combining Equations (20) and (21) gives us

∑
( ˜̃x, ˜̃y)∼(x̃,ỹ)

e−βψj( ˜̃x, ˜̃y,t) =e−βψj(x̃,ỹ,t)
(

4 + l2
(

β2(∇ψj(x̃, ỹ, t)
)2 − β∆ψj(x̃, ỹ, t)

))
+O(l4).

Substituting it back into Equation (19), and replacing the denominator gives us

Mj(x̃ → x, ỹ→ y, t) =
e−βψj(x,y,t)[

4 + l2
(

β2
(
∇ψj(x̃, ỹ, t)

)2 − β∆ψj(x̃, ỹ, t)
)]

e−βψj(x̃,ỹ,t) +O(l4)

≈ e−βψj(x,y,t)

 eβψj(x̃,ỹ,t)

4 + l2
(

β2
(
∇ψj(x̃, ỹ, t)

)2 − β∆ψj(x̃, ỹ, t)
)
.

The term inside the large brackets in the equation above takes the form of (15) where
(x, y, t) is replaced with (x̃, ỹ, t), yielding the following approximation:

Mj(x̃ → x, ỹ→ y, t) ≈ e−βψj(x,y,t)Tj(x̃, ỹ, t). (22)

3.2.2. The Derivation

We now have all the tools needed to formally derive the agent density continuum
equations. We will be using the discrete Laplacian approximation in order to approximate
the influence of the neighbors of site (x, y). We will also be using Equation (22) to simplify
the discrete model.

Starting from the discrete model, we recall Equation (5):

ρj(x, y, t + δt) =ρj(x, y, t) + ∑
(x̃,ỹ)∼(x,y)

ρj(x̃, ỹ, t)Mj(x̃ → x, ỹ→ y, t)

− ρj(x, y, t) ∑
(x̃,ỹ)∼(x,y)

Mj(x → x̃, y→ ỹ, t).

Rearranging the equation and dividing both sides by δt gives us

ρj(x, y, t + δt)− ρj(x, y, t)
δt

=
1
δt

 ∑
(x̃,ỹ)∼(x,y)

ρj(x̃, ỹ, t)Mj(x̃ → x, ỹ→ y, t)

−ρj(x, y, t) ∑
(x̃,ỹ)∼(x,y)

Mj(x → x̃, y→ ỹ, t)

.

By Equation (22), and noting that each agent has to move to one of the neighboring sites,

ρj(x, y, t + δt)− ρj(x, y, t)
δt

=
1
δt

[
e−βψj(x,y,t) ∑

(x̃,ỹ)∼(x,y)
ρj(x̃, ỹ, t)Tj(x̃, ỹ, t)

−ρj(x, y, t) +O(l4)

]
. (23)

The notation (x, y, t) is again dropped as there are no longer any neighbors (x̃, ỹ, t)
remaining in this derivation. Now, using the discrete Laplacian technique, we can approxi-
mate the contribution of the neighboring sites, giving on the right-hand side

1
δt

[
e−βψj

(
4ρjTj + l2∆

(
ρjTj)

))
− ρj +O(l4)

]
. (24)
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From definition (15), Tj(x, y, t) is substituted back into the first term of (24), and further
simplifying yields:

1
δt

[
4ρj

 1

4 + l2
((

β∇ψj
)2 − β∆ψj

)
− ρj + l2e−βψj ∆

(
ρjTj

)
+O(l4)

]
. (25)

Using a Taylor series expansion on the first term within the brackets yields, 1

4 + l2
((

β∇ψj
)2 − β∆ψj

)
 =

1
4
−

l2
((

β∇ψj
)2 − β∆ψj

)
42 +O(l4).

Expression (25) thus becomes,

1
δt

4ρj

1
4
−

l2
((

β∇ψj
)2 − β∆ψj

)
42

− ρj + l2e−βψj ∆
(

ρjTj

)
+O(l4)

.

Simplifying the expression yields

ρj(x, y, t + δt)− ρj(x, y, t)
δt

=
l2

δt

[
−

ρj

4

((
β∇ψj

)2 − β∆ψj

)
+ e−βψj ∆

(
ρjTj

)]
+O

(
l4

δt

)
.

(26)

However, we can further simplify this by noting that

∆
(

ρjTj

)
=
(

Tj∆ρj + 2∇Tj∇ρj + ρj∆Tj

)
.

From (16) through (18), we have

Tj =
eβψj

4
+O(l2),

∇Tj =
βeβψj

4
∇ψj +O(l2),

∆Tj =
eβψj

4

(
β∆ψj + (β∇ψj)

2
)
+O(l2).

Therefore,

∆
(

ρjTj

)
=

eβψj

4
∆ρj +

2βeβψj

4
∇ψj∇ρj +

eβψj

4
ρj

(
β∆ψj + (β∇ψj)

2
)
+O(l2)

=
eβψj

4

[
∆ρj + 2β∇ψj∇ρj + ρj

((
β∇ψj

)2
+ β∆ψj

)]
+O(l2). (27)

Substituting (27) back into (26) gives us

ρj(x, y, t + δt)− ρj(x, y, t)
δt

=
l2

4δt

[
− ρj

(
(β∇ψj)

2 − β∆ψj

)
+ ∆ρj + 2β∇ψj∇ρj

+ ρj

((
β∇ψj

)2
+ β∆ψj

)]
+O

(
l4

δt

)

=
l2

4δt
∇ ·

[
∇ρj + 2β

(
ρj∇ψj

)]
+O

(
l4

δt

)
.
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Assuming that the agent density ρj is sufficiently smooth and the following limits

l → 0,

δt→ 0,

l2

δt
→ D,

(28)

gives us the final form for the continuum equations for the density of gang j agents:

∂ρj

∂t
=

D
4
∇ ·

[
∇ρj + 2β

(
ρj∇ψj

)]
. (29)

Finally, from (14) and (29), and using Equation (2) to express everything in terms of
agent density and graffiti density, the limiting convection–diffusion system for our model is

∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t)

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2β

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ξi(x, y, t)



 (30)

for j = 1, 2, . . . , K on a one-by-one domain with periodic boundary conditions.
Upon examination of (30), we can see that each group’s graffiti evolution is entirely

dependent on the group’s own agent and graffiti densities at that location. The agent
density at that point contributes to the growth of the graffiti density, and the graffiti decays
proportionally to its current density. This is exactly what we would expect from the discrete
model. An important feature that distinguishes this model from other chemo-attractant or
chemo-repellent systems is that there is no diffusion of the graffiti.

The evolution equations for the agent densities are more complex. However, the
evolution equation takes the form of a conservation equation, so we can clearly see that
the mass of each group’s agents is conserved. We also observe that the equations retain
the features that we expect from the discrete model: the group’s agent density diffuses,
in accordance with the random walk in the discrete model, and this diffusion is the main
driver of the evolution when parameter β is close to zero. Additionally, we observe that the
coupling between different groups in the continuum system occurs entirely through the
term, which is multiplied by β. This term drives the density of the group’s agents down
the gradient of the sum of the other gangs’ graffiti. When β grows larger, this dominates
the evolution for the agent densities.

The system of convection–diffusion equations also allow us to clearly see how the
parameters affect the behavior of the system. First of all, if γ = 0, no graffiti is ever present,
hence β and λ never come into play, and the agent densities are purely diffusive. If γ 6= 0,
then large λ drives down the amount of graffiti, and β must be similarly larger to maintain
its relevance in the agent density equation. As noted above, we can see that small β allows
diffusion to dominate, while large β forces the agents away from areas with lots of graffiti
from the other groups. This agrees with the behavior of the discrete system that we can
observe in Figure 4. Finally, the new parameter introduced by this derivation, D, which
corresponds to the ratio of the square lattice spacing to the time step, affects the speed of
the evolution of the group density. Having this continuum system gives us more tools to
examine the impact of the various parameters, which we shall do in Section 4.
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3.3. Steady-State Solutions

Considering steady-state solutions for the graffiti density, we find from the evolution
equations for the graffiti density that

∂ξ j

∂t
(x, y, t) = 0

⇒ γρj(x, y, t)− λξ j(x, y, t) = 0

⇒ ξ j =
γ

λ
ρj. (31)

We now focus our attention on the steady-state solutions for the agent density of
gang j:

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2β

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ξi(x, y, t)



 = 0,

considering solutions of the form

∇ρj(x, y, t) + 2β

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ξi(x, y, t)


 = k j,

for some constant k j ∈ R. Using the steady-state graffiti density derived in Equation (31),
we find that

∇ρj(x, y, t) = −2βγ2

λ2

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ρi(x, y, t)


+ k j. (32)

Any form of ρj(x, y, t) satisfying the above equation is a steady-state solution of our
system. We observe that the steady-states are those where the gradients of the population j
and the opposition graffiti are inversely related. This explains our numerical observations
in the discrete model. In the discrete model, the solutions seem to prefer states where the
agent densities are nearly constant inside their domain, but have a steep negative gradient
at the boundary, where there is a correspondingly steep positive gradient in the sum of the
other gangs’ graffiti. This can be seen, for example, in Figure 2.

For simplicity, in the next Section, we consider the steady-states where ρj is a constant
for all j. These clearly satisfy (32). In this case, the steady-state solution of our problem
takes the form: {

ξ j = γ
λ ρj,

ρj = cj,
(33)

for j = 1, 2, . . . , K, with cj a positive constant.

4. Linear Stability Analysis

To have a better understanding of the connection between the discrete model and the
system of PDEs that we have found, we linearize our model and consider a perturbation of
the equilibrium solution (33) to the well-mixed state. We assume that our perturbations are
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of the form ε = δeαteik·x, with small parameter δ << 1 and k and x in R2. In this case, our
solution takes the following form:{

ξ j = ξ̄ j + δξ j e
αteik·x,

ρj = ρ̄j + δρj e
αteik·x.

(34)

Here, eik·x = cos(k · x) + i sin(k · x), where k represents the wave numbers of the
spatial waves in the horizontal and vertical directions. In order for the equilibrium solu-
tion to be stable, α must be negative so that it forces the perturbations to decay as time
increases. For more examples of this kind of perturbation being used to study the stability
of equilibrium solutions, the interested reader is referred to [22,26,38,39].

To analyze the dynamics of these solutions, we now substitute (34) into the evolution
Equation (30). We start with the first equation:

∂ξ j

∂t
= γρj − λξ j. (35)

Substituting (34) into (35) yields

∂

∂t

(
ξ̄ j + δξ j e

αteik·x
)
= γ(ρ̄j + δρj e

αteik·x)− λ(ξ̄ j + δξ j e
αteik·x).

Since we assumed ξ̄ j to be an equilibrium solution, its derivative with respect to time
is zero, leading to

αδξ j e
αteik·x = (γρ̄j − λξ̄ j) + (γδρj − λδξ j)e

αteik·x,

= (γδρj − λδξ j)e
αteik·x,

since γρ̄j − λξ̄ j =
∂ξ̄ j
∂t = 0. Hence,

αδξ j = (γδρj − λδξ j), for j = 1, 2, . . . , K. (36)

Next, we substitute (34) into the evolution equation for the agent density

∂ρj

∂t
=

D
4
∇ ·

[
∇ρj + 2β

(
ρj∇ψj

)]
,

giving us

∂

∂t

(
ρ̄j + δρj e

αteik·x
)
=

D
4

∆
(

ρ̄j + δρj e
αteik·x

)
+

Dβ

2
∇ ·

(ρ̄j + δρj e
αteik·x)∇

 K

∑
l=1
l 6=j

(ξ̄l + δξl e
αteik·x)


.

Since the equilibrium solution is constant in both space and time,
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αδρj e
αteik·x =

−D|k|2
4

δρj e
αteik·x +

Dβ

2
∇ ·

(ρ̄j + δρj e
αteik·x)(ik

K

∑
l=1
l 6=j

δξl e
αteik·x)



=
−D|k|2

4
δρj e

αteik·x +
Dβ

2
∇ ·

ikρ̄j

K

∑
l=1
l 6=j

δξl e
αteik·x

+O(δρj

K

∑
l=1
l 6=j

δξl )

=
−D|k|2

4
δρj e

αteik·x − Dβ|k|2
2

ρ̄j

K

∑
l=1
l 6=j

δξl e
αteik·x +O(δρj

K

∑
l=1
l 6=j

δξ2)

=
−D|k|2

4

δρj + 2βρ̄j

K

∑
l=1
l 6=j

δξl

eαteik·x +O(δρj

K

∑
l=1
l 6=j

δξl ).

We neglect the second-order termsO(δρj

K

∑
l=1
l 6=j

δξl ) and cancel the exponentials, resulting in

αδρj =
−D|k|2

4

δρj + 2βρ̄j

K

∑
l=1
l 6=j

δξl

, for j = 1, 2, . . . , K. (37)

Note that only |k| now appears, indicating that the modulus of k is all that could be
important to the stability of the system. Next, we write the equations from (36) and (37) in
a systems form:

(γδρj − λδξ j) = αδξ j

−D|k|2
4

δρj + 2βρ̄j

K

∑
l=1
l 6=j

δξl

 = αδρj , where j = 1, . . . , K.

As we have earlier, let us consider the case where K = 3, with all gangs having the
same β parameter. Writing the system in matrix-vector format gives us:

−λ 0 0 γ 0 0
0 −λ 0 0 γ 0
0 0 −λ 0 0 γ

0 −βDρ̄1|k|2
2

−βDρ̄1|k|2
2

−D|k|2
4 0 0

−βDρ̄2|k|2
2 0 −βDρ̄2|k|2

2 0 −D|k|2
4 0

−βDρ̄3|k|2
2

−βDρ̄3|k|2
2 0 0 0 −D|k|2

4





δξ1
δξ2
δξ3
δρ1

δρ2

δρ3

 = α



δξ1
δξ2
δξ3
δρ1

δρ2

δρ3

.

This gives us

F~δ = α~δ

⇐⇒ (F− αI6)~δ = 0,

which reduces to an eigenvalue problem for matrix F. For the problem to have a nontrivial
solution (i.e., ~δ 6= 0), the determinant of (F− αI4) must be zero. Therefore,
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(λ + α) 0 0 γ 0 0
0 −(λ + α) 0 0 γ 0
0 0 −(λ + α) 0 0 γ

0 −βDρ̄1|k|2
2

−βDρ̄1|k|2
2 −

(
D|k|2

4 + α
)

0 0
−βDρ̄2|k|2

2 0 −βDρ̄2|k|2
2 0 −

(
D|k|2

4 + α
)

0
−βDρ̄3|k|2

2
−βDρ̄3|k|2

2 0 0 0 −
(

D|k|2
4 + α

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

giving us the following characteristic polynomial

f (α) =
1
64

[
4αD2(α + λ)(3α2 + 6αλ + 3λ2 − 4β2γ2(ρ̄1ρ̄2 + ρ̄1ρ̄3 + ρ̄2ρ̄3))|k|4

+ D3
(

α3 + 3α2λ + λ3 + 16β3γ3ρ̄1ρ̄2ρ̄3 − 4β2γ2λ(ρ̄1ρ̄2 + ρ̄1ρ̄3 + ρ̄2ρ̄3)

+ α(3λ2 − 4β2γ2(ρ̄1ρ̄2 + ρ̄1ρ̄3 + ρ̄2ρ̄3))
)
|k|6 + 64α3(α + λ)3 + 48α2D(α + λ)3|k|2

]
= 0.

Making the assumption that ρ̄1, ρ̄2, andρ̄3 are all equal to ρ̄, the above characteristic
polynomial simplifies to

f (α) =
1
64

(
4α(α + λ) + D|k|2(α + λ− 2βγρ̄)

)2(
4α(α + λ) + D|k|2(α + λ + 4βγρ̄)

)
.

Solving the characteristic polynomial gives the following six eigenvalues:

α1,2 = −1
8

(
4λ + D|k|2 ±

√
16λ2 − 8(λ + 8βγρ̄)D|k|2 + (D|k|2)2

)
, (38)

α3 = α4 = −1
8

(
4λ + D|k|2 +

√
16λ2 − 8(λ− 4βγρ̄)D|k|2 + (D|k|2)2

)
, (39)

α5 = α6 = −1
8

(
4λ + D|k|2 −

√
16λ2 − 8(λ− 4βγρ̄)D|k|2 + (D|k|2)2

)
. (40)

We plot the six eigenvalues for different values of β in Figure 7.
To determine the stability of our system, we recall that the system becomes linearly

unstable when any eigenvalue has a positive real part. Thus, we check when this happens
in our eigenvalues in Equations (38)–(40). We start with the first eigenvalue α1:

Re
(
−1

8

(
4λ + D|k|2 +

√
16λ2 − 8(λ + 8βγρ̄)D|k|2 + (D|k|2)2

))
.

As Re(α1) can never be positive, the first eigenvalue is always stable. We now check
whether the second eigenvalue exhibits any instability. That is, we check if Re(α2) > 0 is
possible, i.e., where

Re
(
−1

8

(
4λ + D|k|2 +

√
16λ2 − 8(λ− 4βγρ̄)D|k|2 + (D|k|2)2

))
> 0.

This happens when

4λ + D|k|2 <
√

16λ2 − 8(λ + 8βγρ̄)D|k|2 + (D|k|2)2

Replacing the inequality with an equality and squaring both sides yields that α2 is
unstable when

β < − 1
8
( γ

λ

)
ρ̄

.
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As this inequality is never satisfied for the positive values of β, γ, λ, and ρ̄ that we
consider, it follows that α2 is always stable. For the third and fourth eigenvalues α3 and α4,
we consider their real part:

Re
(
−1

8

(
4λ + D|k|2 +

√
16λ2 − 8(λ− 8βγρ̄)D|k|2 + (D|k|2)2

))
.
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Figure 7. The six eigenvalues versus the wave number k plotted for different β values. Here we have
D = 0.0001, ρ1 = ρ2 = ρ3 = 50, 000 with the γ

λ ratio = 1.

Again, it is easily seen that their real part is never positive, and therefore they are
always stable. Finally, for the last pair of eigenvalues α5,6 we have instability whenever
Re(α5,6) > 0,, i.e., whenever

−1
8

(
4λ + D|k|2 −

√
16λ2 − 8(λ− 4βγρ̄)D|k|2 + (D|k|2)2

)
> 0.

This inequality is satisfied when

4λ + D|k|2 <
√

16λ2 − 8(λ− 4βγρ̄)D|k|2 + (D|k|2)2.

Squaring both sides and further simplifying yields that α5,6 is unstable when

β >
1

2
( γ

λ

)
ρ̄

. (41)

and the eigenvalues are stable whenever

β <
1

2
( γ

λ

)
ρ̄

. (42)
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From Equations (41) and (42), the critical parameter β = 1
2( γ

λ )ρ̄
is where a bifurcation

occurs as the uniform solutions lose stability. We now will check how this point compares
to our discrete model. We see in the top two rows of Figure 7 that for small β values,
none of the eigenvalues had a positive real part, and thus the system remained stable. In
terms of our model, this makes sense since in our discrete simulations, the system remains
well-mixed for these β values. However, when we increase the value of β to 0.00005, we see
in the bottom three figures that the second and sixth eigenvalues have a positive real part,
and the system has thus become linearly unstable. This again agrees with our physical
intuition. We note that the values β from the discrete model matches those of the linearized
system of partial differential equations.

We also note that the wavenumber k does not appear in the expression for this critical
β, meaning that all of the wave numbers are stable below this critical value, and all are
unstable above it. Additionally, in the derivation of the eigenvalues, D|k| is what always
appears, indicating that the wave numbers in the horizontal and vertical directions do not
matter. Only the modulus of k affects the eigenvalues, along with the parameter D (which
determines the speed of the evolution of the agent densities). This agrees with our discrete
model, where we observe no pattern formation below the critical value. However, above
the critical value, we observe pattern formation that is symmetric in the horizontal and
vertical directions, initially with a high frequency that lengthens over the simulation course
as the patterns continually coarsen.

We now plot in Figure 8 the exact point in which the β value changes stability from
Equations (41) and (42). In the figure, we first fix the value of the γ

λ = 1, and vary the
systems’ mass. We then fix the systems’ mass and vary the γ

λ ratio. We compare the
critical β value from the discrete model to that given by the stability analysis, finding that
they match almost exactly. This is a good indicator that the evolution of our continuum
equations matches the behavior of the discrete model.
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Figure 8. Critical β against the mass and γ
λ ratio. The red curves represent critical β value from the

linear stability analysis of the PDE system, and the blue curves represent the critical β value from
the discrete model. Here we have δt = 1 and the lattice size is 100× 100. (Left) Critical β against
the mass when the ratio is γ

λ = 1. (Right) Critical β against the ratio γ
λ when the mass is 50,000. We

see that the phase transitions occurs at a smaller β value whenever as the systems’ mass increase or
when the γ

λ ratio increase. We also see that the critical β value of both the discrete model and the
PDE system match, and this is a good indicator that our continuum equations replicate the behavior
of the discrete model.

Now, we want to investigate how the number of gangs K affects the phase transition.
In Figure 9, we compare the critical beta value of the three group model with the two group
model. From the figure, we can see if the system’s mass is kept constant, so that the total
number of agents in the system is constant between simulations, increasing the number
of groups will lead to a larger critical β. That is, it seems that the number of groups and
the critical β values are directly proportional. For example, when the systems’ mass is
150,000 with the ratio γ

λ = 1, the phase transition for the two group model was around



Mathematics 2021, 9, 1428 25 of 39

7.4× 10−6, while the phase transition for the three group model was around 9.4× 10−6.
When comparing the critical β value from the linear stability analysis in both the two
and three group models, we see that this relation holds, and that the critical β value for
the three group model should be 50 percent larger than the two group model. When the
systems’ mass is kept constant, having more groups will lead to each group having fewer
agents. This, in turn makes each group have a smaller mass, and as in our discussion in
Section 2.3.2, a larger critical β is therefore required for the phase transition to occur.

To check that the changes in the critical parameter are happening due to the changes
in the mass of the groups, we consider also consider the case where the system’s total
mass is increased, but the mass of each group remained the same. We hypothesize that the
phase transition should remain the same. We are able to numerically show this in Figure 10,
where we show the same plots as in Figure 9, but now with each gang maintaining its mass
of 50,000 agents. Here, we see that the plots of the two group and three group critical β
values overlap nearly perfectly.
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Figure 9. Critical β against the total preserved system mass and γ
λ ratio comparison for two and

three gangs. Here, we have δt = 1 and L = 100. (Left) Critical β against the mass when the ratio
γ
λ = 1 for both 2 and 3 gangs. (Right) Critical β against the γ

λ = 1 ration for both 2 and 3 gangs when
the total mass of the system is preserved to 150,000. We see that increasing the number of gangs from
2 to 3 makes the critical β and the phase transition larger.
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of each is 50,000. We see that increasing the number of gangs from 2 to 3 does not affect the phase
transition of the system, and that the critical β is similar when the number of gangs is increased.
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5. Variations of the Model: Varying β by Gang

In Section 1.1, Equation (3), we defined the probability that an agent from group j
moves from site s1 = (x1, y1) ∈ S to one of the neighboring sites s2 = (x2, y2) ∈ S to be

Mj(x1 → x2, y1 → y2, t) =
e−βψj(x2,y2,t)

∑
(x̃,ỹ)∼(x1,y1)

e−βψj(x̃,ỹ,t)
,

with

ψj(x, y, t) :=
K

∑
i=1
i 6=j

ξi(x, y, t)

from Equation (2). The parameter β then controls how strongly each group reacts to the
markings of the other group. However, it is reasonable to consider that this parameter
β might vary by group, for example, in situations where one of the groups is more dom-
inant than the others. Here, we explore variations of the model incorporating this idea.
In this section, we will make two different modifications of (3) and explore how these
modifications affect the system of PDEs and the segregation behavior of the model.

5.1. Timidity Model (Variation 1)

In the first modification of the model, instead of having identical β values for all gangs,
we change it so that gang j has a distinct corresponding β value, denoted by β j. This β j
determines how much attention gang j places on the graffiti of the other gangs. In essence,
this β j encodes the timidity of gang j, with higher β j corresponding to higher timidity,
causing gang j to more strongly avoid other gangs’ graffiti. Hence, the modified definition
for movement becomes,

Mj(x1 → x2, y1 → y2, t) =
e−β jψj(x2,y2,t)

∑
(x̃,ỹ)∼(x1,y1)

e−β jψj(x̃,ỹ,t)
. (43)

In this variation of the model, gang j avoids all other gangs’ graffiti with rate β j. All of
the graffiti from other gangs count equally and are identically avoided. For example, let us
consider the case of three gangs 1, 2, and 3 such that gang 2 has a relatively large β2 value,
gang 3 has a relatively small β3 value, and gang 1 has an intermediate β1 value. Then gang
2’s agents would strongly avoid areas where the other two gangs, 1 and 3, have tagged.
Gang 3’s agents, on the other hand, would more freely on the lattice, as the small β3 value
leads it to not place much importance on other gangs’ graffiti. Gang 1’s agents’ movement
dynamics would lie somewhere in between.

If one follows the derivation of the continuum equations in Section 3, but replacing (3)
with (43), it can be easily shown that the resulting system of equations for j = 1, 2, . . . , K is

∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t)

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2β j

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ξi(x, y, t)



 (44)

on a one-by-one domain with periodic boundary conditions. We can see that the β j values
will then affect the balance between the diffusion and the advection terms differently
depending on the gang affiliation, making diffusion relatively stronger for those gangs
with lower timidity values β j.
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To test how these changes affect our discrete model, we simulate the model with
three gangs, 1, 2 and 3; all gangs are assumed to have the identical number of agents
N = 50,000. We also assume that the lattice size L× L is equal to 100× 100, and we use
100,000 time steps with each step size δt = 1. We assign β values as described above, so
that the first gang has β1 = 2× 10−5, whereas the second gang 2 is assigned a larger value
of β2 = 3.5× 10−5 and the third gang was assigned a low value of β3 = 0.5× 10−5. The
results of the simulations are presented in Figures 11–13, and also in Table 1.

From Figure 11, which shows the temporal evolution of the agent and graffiti densities,
we can see that the system does segregate over time; however, the segregation differs from
the original discrete model simulations in Section 2.2. We can see that the agents from
the gang with the largest β j value, gang 2, cluster tightly together into small, highly
dense spots and do not venture outside these spots. This is because they are the most
strongly avoidant of the other gangs’ graffiti, so they are the most timid. Most of the agents
from gang 1, which has the next highest β j value, also gather into fairly dense groups,
motivated by avoiding the graffiti of gangs 2 and 3. However, because β1 is less strong
than β2, a smattering of gang 1 agents can also be seen spreading roughly evenly over the
whole domain aside from the area occupied by gang 2. The area occupied by gang 2 is
avoided by all other gangs because of the high concentration of graffiti laid down by the
strongly localized agents. Gang 3’s agents wander more freely, but still avoid the areas
with denser graffiti, avoiding gang 2’s area more strongly than gang 1’s area due to the
higher concentration of graffiti there. However, gang 3’s low β3 allows them to spread
over much more of the territory, hence they dominate more of the lattice than the other
two gangs.
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Figure 11. Top row: Agent and graffiti densities’ temporal evolution for the Timidity Model. Here,
β1 = 2× 10−5, β2 = 3.5× 10−5 and β3 = 0.5× 10−5. We also have N1 = N2 = N3 = 50,000, with
λ = γ = 0.5, δt = 1 and the lattice size is 100× 100. It is clearly seen that the agents segregate
over time. Bottom row: The densities for gangs 1 (left), 2 (middle), and 3 (right) can be seen after
100,000 time steps.

Figure 13 shows cross-sectional slices of the lattice, in order to more clearly show the
agent and graffiti density for each gang. On the left, we see the agent (top) and graffiti
(bottom) densities for the Timidity Model. We can again observe that the gang with the
highest β j value, gang 2, has the smallest and densest territory, with a high density of
graffiti and little interference from the other gangs inside this territory. Gang 1, with the
next-largest β j value, has a larger and less distinct territory, with a medium graffiti density,
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while gang 3, with the smallest β j, is dominating a very large but fairly mixed territory.
We can see agents from all gangs coexisting at different densities in the area dominated by
gang 3 due to the lower graffiti concentration there.

In Table 1, we consider three-gang simulations with six different sets of parameters and
tabulate how much of the territory at equilibrium is dominated by each of the gangs. The
β j values are listed in the third column, and we focus here on the percentage of the territory
listed in the fourth column (the fifth column contains information on the percentage of
territory at equilibrium for the second variation of the model, discussed in the subsequent
subsection). We can see from the table that the percentage of dominated territory has an
inverse relationship with the value of β j.

To better examine this relationship, in Figure 12, we plot the β j values against the
percentage of territory dominated by the corresponding gang. We can see that the territory
percentage is roughly inversely proportional to the β j value, meaning that, in the parameter
regime where territories form, one can expect this model to produce larger territories
for those gangs with smaller β j. This is an important feature of this variation at an
ecological level.

Table 1. Here, we see the results of both variations of the original model for six different sets of β j in
three-gang simulations. Here, Model 1 refers to the Timidity Model variation, while Model 2 refers to
the Threat Level Model variation. The β j values are listed, along with the percentage of the lattice
dominated by each gang at equilibrium. Note that the percentages do not add to 100% because in
each simulation, a small percentage of the lattice is not clearly dominated by any one of the gangs.

Parameter Set Gang Value of βj % Territory, Model 1 % Territory, Model 2

Set 1
Gang 1 β1 = 0.000005 55.02% 11.27%
Gang 2 β2 = 0.00002 28.23% 32.48%
Gang 3 β3 = 0.000035 10.20% 54.10%

Set 2
Gang 1 β1 = 0.000015 41.50% 25.95%
Gang 2 β2 = 0.00002 31.28% 32.62%
Gang 3 β3 = 0.000025 25.19% 39.70%

Set 3
Gang 1 β1 = 0.00001 55.13% 16.27%
Gang 2 β2 = 0.00002 28.40% 28.63%
Gang 3 β3 = 0.00004 14.15% 53.92%

Set 4
Gang 1 β1 = 0.000012 51.45% 19.39%
Gang 2 β2 = 0.000024 27.02% 34.85%
Gang 3 β3 = 0.000032 19.99% 44.58%

Set 5
Gang 1 β1 = 0.000022 33.11% 32.72%
Gang 2 β2 = 0.000022 32.71% 32.84%
Gang 3 β3 = 0.000022 32.92% 33.04%

Set 6
Gang 1 β1 = 0.000018 44.85% 23.66%
Gang 2 β2 = 0.000028 29.50% 34.32%
Gang 3 β3 = 0.000034 24.89% 41.16%
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Figure 12. Here, we plot graphs of the beta values β j against the percentage of the area dominated
by gang j for the Timidity Model (variation 1). We use six sets of parameters, enumerated in Table 1.
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Figure 13. Cross-sectional slices of the agent and graffiti densities for different β extensions at the
final time step for a segregated state. Here, we have N1 = N2 = N = 3 = 50, 000 with δt = 1 and
the lattice size is 100× 100; in both simulations, β1 = 2× 10−5, β2 = 3.5× 10−5 and β3 = 0.5× 10−5.
(Left): Here, we consider the Timidity variation of the model. We observe that the territories range
from small and very dense, with little incursion from the other gangs, to large and spread out, with
other gang members encroaching on the territory, as the gangs’ β j value varies from high to low.
(Right): Here, we consider the Threat Level variation of the model. We see that the size of the territory
here is correlated with the β j value for the gang, and that all of the territories here seem well-defined,
with little of the territorial encroachment seen in the model pictured on the left.
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5.2. Threat Level Model (Variation 2)

We now consider a different modification of movement dynamics (3). This model is
intended to apply in a situation where some gangs are more aggressive or territorial than
others. So, instead of considering a β value that is the same for all gangs, we consider
the case where the gangs have varying threat levels. To this end, each gang i has a
corresponding threat level encoded by parameter βi. This means that gang j will more
strongly avoid more threatening gangs, i.e., those gangs with relatively large β values.
Based on this, we must modify the opposition sum from Equation (2), so that it becomes

ψj(x, y, t) :=
K

∑
i=1
i 6=j

βiξi(x, y, t). (45)

Note that the βi parameters can no longer pull out of the sum. The new movement
probability then becomes

Mj(x1 → x2, y1 → y2, t) =
e−ψj(x2,y2,t)

∑
(x̃,ỹ)∼(x1,y1)

e−ψj(x̃,ỹ,t)
. (46)

Here, every gang then avoids the graffiti of gang i with rate βi. This model applies in
the case where the gangs have differing threat levels, so that some gangs are to be avoided
more than others. For example, let us suppose that gang 2 has a large β2 value, gang 3 has
a small β3 value, and gang 1 has an intermediate β1 value. As β2 is large, gang 2’s territory
will be strongly avoided by both gangs 1 and 3. Furthermore, since gang 3 has a small
threat level β3, its graffiti will not be avoided as much by the other gangs and it will need a
higher graffiti density in order to claim territory for itself.

Following the same steps used to derive the continuum equations in Section 3, but
now substituting (3) with (46), it can easily be shown that the resulting system of equations
for j = 1, 2, . . . , K is



∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t)

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

βiξi(x, y, t)



 (47)

on a one-by-one domain with periodic boundary conditions. Note that the parameters βi
now cannot be pulled to the front of the second term of the second equation, and instead
must remain inside the sum.

To test the effects of these changes with our discrete model, we ran our simulations
with three gangs 1, 2 and 3, where all gangs are assumed to have 50,000 agents. We assume
that the lattice size L× L is equal to 100× 100, and use 100,000 time steps with each step
size δt = 1. We assigned the first gang to have β1 = 2 × 10−5, the second gang 2 to
have a larger value of β2 = 3.5× 10−5, while the third gang is assigned a low value of
β3 = 0.5× 10−5. The results of these simulations are presented in Figures 13–15, as well as
Table 1.
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Figure 14. Top row: Temporal evolution of the agent and graffiti densities for the Threat Level Model.
Here β1 = 2× 10−5, β2 = 3.5× 10−5 and β3 = 0.5× 10−5. We also have N1 = N2 = N3 = 50,000,
with λ = γ = 0.5, δt = 1 and the lattice size is 100× 100. It is clearly seen that the agents segregate
over time. Bottom row: The agent and graffiti densities for gangs 1 (left), 2 (middle), and 3 (right)
can be seen after 100,000 time steps.

From Figure 14, we can see that the system can segregate over time, in the right
parameter regime. This segregation, however, differs both from that of the discrete model
in Section 2.2 and from that of the previous subsection. Here, we see that the gang with
the largest β value, whose territory appears in blue in the top row of Figure 14, has the
largest and least dense territory. This is reasonable since the other gangs avoid the graffiti
of gang 2 quite strongly; therefore, the gang does not need to put down as much graffiti to
maintain a territory. They can then spread over more space and still maintain their territory.
The gang with the smallest β value, on the other hand, whose color is green in the top row
of Figure 14, clearly has the smallest and most dense territory. This makes sense, since the
other gangs are not avoiding the territory of gang 3 very strongly; gang 3 then has to put
down a much higher density of graffiti to force the other gangs to avoid it, and it can only
do this by limiting its gang members to a smaller area.

Figure 13 shows cross-sectional slices of the lattice, to show the agent and graffiti
density for each gang. On the right, we see the agent (top) and graffiti (bottom) densities.
From this Figure, we can see that the territories formed in this variation are much more
distinct than in the last variation; there is very little overlap inside the territories. This
is in contrast to the Timidity Model. We can also observe that the β j value appears to be
proportional to the territory size. Traveling outside an agent’s own territory seemingly
happens only along the boundaries of other gangs’ territories.

In Table 1, as described in the previous subsection, we see the results of this model run
with three gangs. We ran the simulation with six different sets of β1, β2, and β3 and, in the
right-hand column of the table, we see the percentage of the lattice occupied at steady-state
by each of the three gangs. We can see that in this variation of the model, in contrast to the
last variation, the size of the territory in each simulation seems to be directly proportional
to the values of βi.

We further examine this result in Figure 15, where we plot the values of βi for each
simulation against the percentage of the lattice occupied by each of the gangs. We see
in this Figure that the βi and the percentage of occupied areas are indeed almost exactly
directly proportional. It is an interesting open question why this is the case.
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Figure 15. Here, we plot the β j values against the percentage of the area dominated by gang j for the
Threat Level variation of the model. We use the six sets of parameters enumerated in Table 1.

5.3. Finding Critical βi for the Variations: Linear Stability Analysis

To identify the critical parameters for the variations, we now perform a similar stability
analysis to that of Section 4, but this time we perform it on the two new variations. We
start with the first variation, which was the Timidity variation:

∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t)

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2β j

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

ξi(x, y, t)



.

(48)

If we consider perturbations that are similar to Section 4 and follow the same steps
then we obtain the following:

(γδρj − λδξ j) = αδξ j

−D|k|2
4

δρj + 2β jρ̄j

K

∑
l=1
l 6=j

δξl

 = αδρj , where j = 1, . . . , K.
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As β is no longer a constant for all gangs, we have K− 1 more parameters than we
had before. Simplifying the equation so that K = 3 would give us a characteristic equation,
which is too long to write and analyze here. Hence, we here consider the case where K = 2.
Writing the system in matrix-vector format gives us:

−λ 0 γ 0
0 −λ 0 γ

0 −β1Dρ̄1|k|2
2

−D|k|2
4 0

−β2Dρ̄2|k|2
2 0 0 −D|k|2

4




δξ1
δξ2
δρ1

δρ2

 = α


δξ1
δξ2
δρ1

δρ2

. (49)

Solving the above eigenvalue problem gives us the following characteristic polynomial

f (α) = (α + λ)2
(

α2 +
1
2

αD|k|2
)
+

1
16

(
(α + λ)2 − 4β1β2γ2ρ̄1ρ̄2

)
D|k|4. (50)

Solving this characteristic polynomial gives us the following four eigenvalues:

α1,2 = −1
8

(
4λ + D|k|2 ±

√
16λ2 − 8

(
λ + 4γ

√
ρ̄1ρ̄2

√
β1β2

)
D|k|2 + D2|k|4

)
, (51)

α3,4 = −1
8

(
4λ + D|k|2 ±

√
16λ2 − 8

(
λ− 4γ

√
ρ̄1ρ̄2

√
β1β2

)
D|k|2 + D2|k|4

)
. (52)

It can be shown that the first three eigenvalues of Equations (51) and (52) are always
stable. However, the fourth eigenvalue is unstable whenever

β1 · β2 >
1

22
( γ

λ

)2
ρ̄1ρ̄2

. (53)

We note that in this variation, if we assume that β1 = β2 = β, then the critical value
for the variation reduces back to the critical β from our original model.

Similarly, we perform the stability analysis on the second variation, which was the
Threat Level Model:

∂ξ j

∂t
(x, y, t) = γρj(x, y, t)− λξ j(x, y, t)

∂ρj

∂t
(x, y, t) =

D
4
∇ ·

∇ρj(x, y, t) + 2

ρj(x, y, t)∇

 K

∑
i=1
i 6=j

βiξi(x, y, t)



.

(54)

By taking the same perturbations as earlier, we obtain:

(γδρj − λδξ j) = αδξ j

−D|k|2
4

δρj + 2ρ̄j

K

∑
l=1
l 6=j

βiδξl

 = αδρj , where j = 1, . . . , K.

For simplicity, we again consider the case for K = 2, which leads to the following
matrix-vector form:

−λ 0 γ 0
0 −λ 0 γ

0 −β2Dρ̄1|k|2
2

−D|k|2
4 0

−β1Dρ̄2|k|2
2 0 0 −D|k|2

4




δξ1
δξ2
δρ1

δρ2

 = α


δξ1
δξ2
δρ1

δρ2

. (55)
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Although the above eigenvalue problem is different from that of the previous variation
in Equation (49), both systems unexpectedly produce the same characteristic polynomial:

f (α) = (α + λ)2
(

α2 +
1
2

αD|k|2
)
+

1
16

(
(α + λ)2 − 4β1β2γ2ρ̄1ρ̄2

)
D|k|4. (56)

Since both variations have the same characteristic polynomial, they share the same
eigenvalues and thus the same critical value. Therefore, this variation has the same formula
for its critical parameters:

β1∗ · β2∗ =
1

22
( γ

λ

)2
ρ̄1ρ̄2

. (57)

We now numerically verify that the above critical β value agrees with our discrete
model simulation for both variations. The results of our simulations are in Figures 16 and 17.
In our simulations, we fix the value of β1 to be 5× 10−6, and vary the values of β2. We start
by using β2 = 1× 10−6, which is then increased to 1× 10−5 and 2× 10−5. In the first lattice
of Figure 16, we see that if β1 · β2 < β∗, then the agents remain well mixed. However, in
the second lattice, we set β1 · β2 > β∗, but very close to the critical value, and the agents
do start to segregate and form territories. In the third lattice of the same Figure, we set
β1 · β2 >> β∗ and there the segregation is more clear and obvious. Figure 17 shows the
same results, but for the second variation. Hence, this indicates that the critical β value of
the system of PDEs agrees with our discrete model simulations for both variations in the
two-gang case.
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Figure 16. Agent density lattices for the first variation (Timidity Model) taken after 100,000 time
steps for δt = 1, L = 100, γ

λ = 1, and N1 = N2 = 75,000 agents. On all lattices, the first β value is
fixed to β1 = 5× 10−6. Starting from the top left, the second β value used was 1× 10−6, 1× 10−5

and 2× 10−5, respectively. The color of gang 1 is red, while gang 2’s color is blue. In the first
lattice, β1β2 < β∗, and this resulted in the agents being well-mixed. In the second and third lattice,
β1β2 > β∗, and this resulted in the agents segregating.

Finally, we now are interested in obtaining a general formula to calculate the critical
β value for an arbitrary number K of gangs. However, solving a degree K characteristic
polynomial and studying the stability is not a straightforward task. Having said that, by
examining the way our equations looks and behaves, we claim with numerical evidence,
but without proof, that generally, the critical β value for K gangs is

K

∏
i=1

βi∗ =
1

2K
( γ

λ

)K
∏K

i=1 ρ̄i
. (58)

To test our claim numerically, we use K = 3, and we want to show that our numerical
results hold for:

β1∗ · β2∗ · β3∗ =
1

23
( γ

λ

)3
ρ̄1ρ̄2ρ̄3

. (59)
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To numerically test this proposed relationship, we perform similar simulations to the
two-gang model, but this time we numerically simulate the three-gang discrete model for
both variations. Our results are visualized in Figures 18 and 19. Again, we see in both
Figures that the results seem to validate our claim. It remains an open problem to study
how to vary βi in order to produce three distinct territories.

Agent Density

t = 100,000

0 1

x

0

1

y
Agent Density

t = 100,000

0 1

x

0

1

y

Agent Density

t = 100,000

0 1

x

0

1

y

Figure 17. Agent density lattices for the second variation (Threat Level) taken after 100,000 time
steps for δt = 1, L = 100, γ

λ = 1, and N1 = N2 = 75,000 agents. On all lattices, the first β value is
fixed to β1 = 5× 10−6. Starting from the top left, the second β value used was 1× 10−6, 1× 10−5

and 2× 10−5, respectively. The color of gang 1 is red, while gang 2’s color is blue. In the first
lattice, β1β2 < β∗, and this resulted in the agents to be well-mixed. In the second and third lattice,
β1β2 > β∗, and this resulted in the agents to segregate.
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Figure 18. Agent density lattices for the first variation (Timidity Model) taken after 100,000 time steps
for δt = 1, L = 100, γ

λ = 1, and N1 = N2 = N3 = 50,000 agents. On all lattices, the first and second β

values were fixed to β1 = 6× 10−6, β2 = 8× 10−6. Starting from the top left, the third β value used
was 1× 10−5, 2.2× 10−5 and β3 = 3× 10−5, respectively. The color of gang 1 is red, while gang 2
and 3’s colors are blue and green, respectively. In the first lattice, β1β2β3 < β∗, and this resulted in
the agents being well-mixed. In the second and third lattice, β1β2β3 > β∗, and this resulted in the
agents segregating.
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Figure 19. Agent density lattices for the second variation (Threat Level) taken after 100,000 time steps
for δt = 1, L = 100, γ

λ = 1, and N1 = N2 = N3 = 50,000 agents. On all lattices, the first and second β

values were fixed to β1 = 6× 10−6, β2 = 8× 10−6. Starting from the top left, the third β value used
was 1× 10−5, 2.2× 10−5 and β3 = 3× 10−5, respectively. The color of gang 1 is red, while gang 2
and 3 colors are blue and green, respectively. In the first lattice, β1β2β3 < β∗, and this resulted in
the agents being well-mixed. In the second and third lattice, β1β2β3 > β∗, and this resulted in the
agents segregating.

6. Discussion

In this work, we have presented an extension of a previous agent-based system that
models gang territorial development motivated by graffiti tagging [10] to now include a
finite number K of gangs as opposed to only two. In the special case of three gangs, we have
shown by using numerical simulation that our model also undergoes a phase transition as
we change the value of different parameters. We formally derived the continuum limit for
our model, giving us a set of 2× K convection–diffusion equations with cross-diffusion.
By using linear stability analysis on the continuum equations, we showed that there is a
bifurcation point in which the well-mixed state becomes linearly unstable. Furthermore, we
have numerically shown that the bifurcation point matches the critical parameter found in
the numerical simulations for the case of K = 3 for the discrete model. This generalization
from two to K gangs makes the model much more flexible. In the form presented in this
paper, the model can be applied to many coexisting gangs or many packs of animals. This
is important in practice, since it can rarely be assured that there are only two.

We have also presented two novel variations of the model, each of which exhibits
different segregation dynamics from the original model and from the other variation. These
variations allow for further flexibility. For the Timidity model (variation 1), each gang is
allowed a different value of the β parameter, allowing some more timid gangs (with large β)
to be more sensitive to the existence of graffiti and some (with small β) to be less sensitive.
Assuming the gangs have identical memberships, this resulted in the more timid gangs
having smaller and more distinct territories, while the less timid gangs had larger and less
distinct territories where members of other gangs were also occasionally present. For the
Threat Level model (variation 2), each gang i has a threat level βi associated to their graffiti,
so that other gangs react more strongly to the graffiti of gangs with a large βi and less
strongly to those with a small βi. When gangs have identical memberships, this variation
results in larger territories for gangs with higher threat level βi and smaller territories for
gangs with lower threat levels. In contrast to the Timidity model, all of the territories are
distinct, with very little overlap from other gangs’ agents. These two variations could
prove useful in ecological applications where more is known about the traits of the groups.

The system of PDEs derived in this paper also are interesting in their own right.
The form is reminiscent of the Patlak–Keller–Segel model [40,41], with chemo-repellent
rather than chemo-attractant and no diffusion of the chemical. The graffiti densities
evolve in response only to the agent and graffiti densities of the corresponding gang,
while the agent densities evolve only in response to the corresponding gang’s agent
density and the graffiti densities of all the other gangs. This leads to the system’s cross-
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diffusion form. Originating in spatial ecology [42–44], cross-diffusion is widely recognized
as a mechanism for pattern formation [45]. Recent interest in cross-diffusion has led to
advances in analytical understanding of these systems [46–49]. Since this paper offers
three variations on a novel cross-diffusion system, new avenues are opened for further
numerical and analytical study to better understand the properties and behavior of these
systems, such as the analytical work done on the two-gang system [33]. One open problem
to study, for example, is the formation of segregated states for the original K group model.
From numerical simulations of the discrete system, we see territories form with uniform
distribution of only one group’s agents within each territory and sharp boundaries between
them. It remains an interesting and challenging open problem to numerically validate this
also for the continuum system. Additionally, there remains the open question of if one
can analytically prove blow-up of the gradients of the agent and graffiti densities along
these boundaries.

The models are also intriguing from the perspective of pattern formation and ecology.
The segregation dynamics for the system with constant β and the two variations give three
different dynamics for the territory formation. These new models open the possibility of
further studies, such as comparing pattern formation with similarly segregating systems
such as Cahn–Hilliard [35]. Additionally, we have shown that these models exhibit a phase
transition from non-segregating populations to segregating populations as β increases.
However, this can be reframed to think of the phase transition occurring as λ, the parameter
in charge of the decay of the graffiti density, increases. An interesting problem with
significant ecological consequences is to consider the phase transitions from this perspective.
Thinking of the critical parameter as being λ rather than β provides an indication that
climate change, in particular increased precipitation, could have an effect on the territorial
dynamics for animals such as wolves and coyotes.
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