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Abstract: Session-based recommendation (SBRS) aims to make recommendations for users merely
based on the ongoing session. Existing GNN-based methods achieve satisfactory performance by
exploiting the pair-wise item transition pattern; however, they ignore the temporal evolution of
the session graphs over different time-steps. Moreover, the widely applied cross-entropy loss with
softmax in SBRS faces the serious overfitting problem. To deal with the above issues, we propose
dynamic graph learning for session-based recommendation (DGL-SR). Specifically, we design a
dynamic graph neural network (DGNN) to simultaneously take the graph structural information and
the temporal dynamics into consideration for learning the dynamic item representations. Moreover,
we propose a corrective margin softmax (CMS) to prevent overfitting in the model optimization
by correcting the gradient of the negative samples. Comprehensive experiments are conducted
on two benchmark datasets, that is, Diginetica and Gowalla, and the experimental results show
the superiority of DGL-SR over the state-of-the-art baselines in terms of Recall@20 and MRR@20,
especially on hitting the target item in the recommendation list.

Keywords: recommender systems; session-based recommendation; dynamic graph learning; graph
neural networks; corrective margin softmax

1. Introduction

Recommender systems can help provide users with personalized information ac-
cording to their preference reflected in the historical interactions [1–3], which are widely
applied in e-commerce websites, web search, and so forth [4,5]. However, in some scenar-
ios where only the user’s recent interactions are available, the general recommenders are
not applicable, since the user’s inherent preference is unknown [6]. Thus, session-based
recommendation (SBRS) is proposed, which aims to detect the user intent from the limited
interacted items in the current session and make recommendations, where the session is
defined as the user’s actions within a period of time (e.g., 24 h) [6,7].

Existing methods for SBRS mainly focus on the sequential signal [6–8] and the pair-
wise transitions between items [9–11], as well as the item importance [12–14]. For example,
traditional methods, such as Markov chains (MC) and neural models like recurrent neural
networks (RNNs) can be utilized to model the sequential information between items in the
current session [6,15,16]. Moreover, graph neural networks (GNNs) are recently applied to
take the complex pair-wise item transition relations into consideration [9,17,18], such as
adopting the gated graph neural network (GGNN) [19] to propagate the information flow
between items. In addition, the attention mechanism is widely applied to focus on user’s
main intent by distinguishing different items according their corresponding importances,
which can be utilized individually [12,13,20] or together with the sequential models [7,8]
and GNN-based methods [9,17].

Though considerable performance has been achieved, there still remains some limi-
tations. First, it has been proven by multiple works [9,10] that RNN- or attention-based
methods fail to consider the complex item transitions, leading to unsatisfying perfor-
mance [9,10]. Though the GNN-based methods alleviate the problem [9,17,21], they adopt
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the mechanism that transforms the snapshots of the session at different timestamps into
individual graphs to model the static structural information, without taking the temporal
evolution of the item transition relations into consideration. On the other hand, the state-
of-the-art methods for SBRS all adopt the cross-entropy loss with softmax for optimizing
the model parameters, where all the items (excluding the target item) are regarded as
the negative samples and treated equally for comparison during training. However, for
the negative items with low prediction scores, a continued decrease of their scores may
cause model overfitting and loss of generalization ability. Moreover, for the top-ranked
negative items, the cross-entropy with softmax cannot provide a sufficiently large gradient
for lowering their scores [16,22], limiting the convergence speed of the model.

To solve the above problems, we propose the dynamic graph learning for session-
based recommendation (DGL-SR). Specifically, given an ongoing session, we transform the
session into a dynamic graph which can simultaneously consider the structural information
through the graph attention network (GAT) and the temporal evolution of the graph
structures over different time-steps by the temporal attention. Then, we generate the
dynamic user preference, which is utilized to produce the prediction scores on all candidate
items. Finally, we design a corrective margin softmax (CMS) to correct the gradients of the
negative items for preventing overfitting and achieving effective model optimization.

We conduct comprehensive experiments on two publicly available datasets, that is,
Diginetica and Gowalla , and the experimental results show that DGL-SR can achieve
a state-of-the-art performance in terms of Recall@20 and MRR@20 on the session-based
recommendation task.

We summarize the main contributions in this paper as follows:
1. To the best of our knowledge, we are the first to consider the dynamic temporal

evolution of the item transitions in the ongoing session for a session-based recom-
mendation;

2. We propose a dynamic graph neural network (DGNN) for the item representation
learning, which can simultaneously take the structural information and the temporal
dynamics into consideration;

3. We design a corrective margin softmax (CMS) to correct the gradients of the negative items
for simultaneously achieving effective model optimization and avoiding overfitting;

4. Extensive experiments conducted on two public datasets demonstrate that DGL-SR
can outperform the baselines in terms of Recall@20 and MRR@20.

2. Related Work

The existing methods for SBRS mainly concentrate on the sequential signal in the
session or the pair-wise item transitions between items, which correspond to the sequential
methods and the GNN-based models, respectively. In this section, we first review the
related work about the sequential methods in Section 2.1, and then provide more detail of
the GNN-based models in Section 2.2.

2.1. Sequential Methods

For the sequential models, traditional methods like Markov Chains are widely ap-
plied to capture the sequential dependencies between adjacent items. For example,
Shani et al. [23] introduced the Markov decision processes (MDPs) into recommender
systems by regarding the the recommendation generation as a sequential optimization prob-
lem, and Rendle et al. [15] combined the Markov chains (MC) with the matrix factorization
(MF) to capture the user’s dynamic and inherent preferences, respectively. Moreover, deep
learning methods, such as RNNs, are also widely utilized to process the item sequence in the
ongoing session. For instance, Hidasi et al. [6] first utilized the gated recurrent units (GRUs)
to model the sequential signal in the current session; then Hidasi and Karatzoglou [16]
further improved the loss functions for SBRS to solve the gradient vanishing problems.
Moreover, some following studies have aimed to emphasize the user’s main intent [7],
incorporate collaborative information from the neighbor sessions [8,24,25], explore the
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repeated consumption of user behaviors [26], and so forth to improve the recommendation
accuracy.

However, the sequential methods simply regard the session as an item sequence,
failing to take the complex transition pattern between items into consideration [9,10].

2.2. GNN-Based Methods

In order to take the complicated transition relationship between items into considera-
tion, GNNs are introduced into SBRS [9,10,27]. For example, Wu et al. [9] first proposed to
utilize the graph structure to process the ongoing session by adopting the gated graph neu-
ral networks (GGNNs) to generate the item representations. Then, Qiu et al. [10] designed
a weighted GAT which can attentively compute the information flow between items in the
information propagation, and aggregate the item representations as the user’s preference
by a Readout function [28]. Moreover, Xu et al. [29] introduced the self-attention mech-
anism into the GNNs, and Pan et al. [17] designed a star graph neural network (SGNN)
to explore the long-range dependencies between items in the session. Furthermore, Chen
and Wong [21] focused on handling the information loss in GNNs for SBRS by preserving
the edge order and adding shortcut connections. In addition, Wang et al. [11] proposed to
enhance the representation learning of items in the current session by the global-level item
transitions.

However, the existing GNN methods all transform the session into static graphs,
without considering the temporal dynamic evolution of the graph structures over various
time-steps. Moreover, the overfitting problem in GNNs for SBRS seriously limits the
recommendation performance [9,17].

3. Approach

In this section, we first formulate the definition of the session-based recommendation
task. Then, we describe our proposed dynamic graph learning for session-based recom-
mendation (DGL-SR) in detail, which is constituted of three main components, that is, the
dynamic item representation learning, the user preference generation and prediction, and
the corrective model optimization.

The framework of the proposed DGL-SR is plotted in Figure 1.
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Figure 1. The framework of DGL-SR, which is constituted of three main components, that is,
the dynamic item representation learning, the user preference generation and prediction, and the
corrective model optimization.
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Given an ongoing session, we first construct a dynamic graph which contains the
graphs transformed from the session snapshots at different timestamps. Then, we learn the
dynamic item representations through the dynamic graph neural network (DGNN). After
that, we generate the hybrid user preference, which is utilized to make predictions on all
candidate items. Finally, we correct the gradients of the negative items using the corrective
margin softmax (CMS) to achieve effective model optimization.

We assume the item set is V = {v1, v2, . . . , v|V|}, where vi indicates an item and |V|
is the number of all items. Giving an ongoing session denoted as S = {v1, v2, . . . , vn}, the
aim of a session-based recommendation is to predict the item that the user will interact
with at the next timestamp, that is, vn+1. Specifically, we input the session S into DGL-SR
to output the prediction scores on all candidate items, then the items ranked at the top K
positions will be recommended to the user.

The main abbreviations used in this paper are listed in Table 1.

Table 1. Main abbreviations used in this paper.

Abbreviation Explanation

SBRS Session-based Recommender Systems
DGL-SR Dynamic Graph Nueral Networks for Session-based Recommendation
DGNN Dynamic Graph Nueral Networks
CMS Corrective Margin Softmax
MC Markov Chains
RNNs Recurrent Neural Networks
GNNs Graph Neural Networks
GGNNs Gated Graph Neural Networks
GATs Graph Attention Networks
MF Matrix Factorization
GRUs Gated Recurrent Units
SGNNs Star Graph Neural Networks
BPTT Back-Propagation Through Time

3.1. Dynamic Item Representation Learning

Given a session inputted to DGL-SR, we first generate the dynamic representation of
the contained items using the dynamic graph neural network (DGNN), which consists of
three components, that is, the dynamic graph construction, the structural layer, and the
temporal layer.

3.1.1. Dynamic Graph Construction

Given session S = {v1, v2, . . . , vn}, we first generate the snapshots of the session and
their corresponding target items at different timestamps as (S̃1, v2), (S̃2, v3), . . . , (S̃n−1, vn)
where S̃t = {v1, v2, . . . , vt}. This is similar to the data augmentation method widely applied
in SBRS [9,17]. However, different from the existing methods which shuffle the augmented
samples and utilize them for training individually, in our DGNN we capture the temporal
evolution of the session graphs over multi-time steps. Specifically, we construct a dynamic
graph denoted as G = {G1, G2, . . . , Gn−1}, where Gt is the session graph constructed from
the item sequence S̃t, which includes the items that the user has interacted with till the t-th
timestamp. Here, Gt = {Vt, Et}, where Vt is the items in S̃t, that is, Vt = {v1, v2, . . . , vt}.
Additionally, each edge (vi, vj) ∈ Et indicates that the items vi and vj are adjacently clicked
in the item sequence S̃t. Moreover, for the items without a self-connection, we add a
self-loop to help propagate information from the item itself. In addition, note that for
the items repeatedly interacted with, we learn different representations of the items for
various timestamps, which can help generate dynamic item representations for accurate
user preference generation, as stated in [29].



Mathematics 2021, 9, 1420 5 of 18

3.1.2. Structural Layer

After constructing the dynamic graph, we first utilize the structure layer to take
the structural information into consideration to learn the representation of the items
in session S over different time-steps. Specifically, as for the graph snapshot Gt, we
update the item representations in Gt using the graph attention network (GAT). Specifically,
for an item vi where the neighbors of vi is N(vi), we propagate information from the
neighbors N(vi) to update the item representation of vi. First, we calculate the similarity
of item vi with its neighbors to determine the importance of each neighbor using the
self-attention mechanism:

eij =
(W̃qvi)

T(W̃kvj)√
d

, (1)

where vj ∈ N(vi) is a neighbor of vi, and vi, vj ∈ Rd are the embeddings of item vi and
vj, respectively. W̃q, W̃k ∈ Rd×d are the trainable parameters, and

√
d is used to scale the

attention scores.
Then, we normalize the generated scores using the softmax layer to obtain the impor-

tance score of each neighbor as follows:

αij = Softmax(eij) =
exp(eij)

∑vk∈N(vi)
exp(eik)

. (2)

After that, we combine the representations of the neighbors of vi as the updated vector
of item vi according to the generated importance scores:

ṽt
i = σ( ∑

vj∈N(vi)

αijW̃vvj), (3)

where ṽt
i ∈ Rd is the updated representation of item vi in Gt, and W̃v ∈ Rd×d is the

trainable parameters. Through the structural layer in DGNN, we can learn the structural
representation of the items in each graph snapshot Gt ∈ G by propagating information
from the neighbors of each item.

3.1.3. Temporal Layer

To capture the temporal evolution of the session graphs over various time-steps, we
propose to generate the representation with the temporal characteristics of each item using
the temporal layer in DGNN. Specifically, for an item vi where the structural representations
generated by the structural layer at different timestamps is {ṽ1

i , ṽ2
i , . . . , ṽn

i } (here, the
superscript indicates the time index while the subscript denotes the item index. Moreover,
note that items occurring several times in the session are denoted by different subscripts to
distinguish them), we attentively combine the item vectors of vi over different time-steps
to capture the evolution of the temporal characteristics of vi.

To generate the temporal representation of item vi at the t-th timestamp, here we adopt
the self-attention mechanism to assign different importance scores for the item vectors of
vi at different timestamps, which can be denoted as follows:

εtτ =
(Ŵqṽt

i)
T(Ŵkṽτ

i )√
d

, (4)

where ṽt
i , ṽτ

i ∈ Rd are the representations of item vi at the t-th and τ-th timestamps,
respectively. Ŵq, Ŵk ∈ Rd×d are the learnable parameters, and

√
d is used for scaling the

attention. Here, the vector of item vi at the current timestamp (i.e., the t-th timestamp) is
deemed as the “query” to select information from the historical timestamps.
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Considering that the item vectors after the t-th timestamp (i.e., τ > t) are unavailable
for updating the item vector of vi at the t-th timestamp, here we add a mask operation
which can be denoted as follows:

mtτ =

{
0, τ ≤ t

−∞, otherwise
(5)

Then we normalize the sum of the attention scores generated by Equation (4) and
the mask matrix generated by Equation (5) as the importance scores, which can be noted
as follows:

βtτ = Softmax(ε′tτ),

ε′tτ = εtτ + mtτ .
(6)

After that, the representations of item vi over multi-time steps are attentively combined
according to the importance scores as follows:

v̂t
i = σ(

n

∑
τ=1

βtτŴvṽτ
i ), (7)

where v̂t
i is the generated temporal representation of item vi at the t-th timestamp, and

Ŵv ∈ Rd×d is the trainable parameters. Through the temporal layer in DGNN, we can
capture the temporal evolution of the characteristics of items over different time-steps in G,
and thus generate the dynamic item representations.

3.1.4. Multi-Layer DGNNs

Moreover, multi-layers of DGNNs can be stacked, where each DGNN layer contains
a structural layer and a temporal layer. Specifically, for Gt, the l-layer DGNN can be
formulated as:

Ṽt
l , V̂t

l = DGNN(Ṽt
l−1, V̂t

l−1), (8)

where Ṽt
l , V̂t

l are the respective structural and temporal representations of the items at the
l-th layer of DGNNs in Gt.

After that, we concatenate the structural and temporal outputs of L layers of DGNNs
as the final item representations as follows:

V̄t = W1[Ṽ
t
1; V̂t

1; Ṽt
2; V̂t

2; . . . ; Ṽt
L; V̂t

L], (9)

where V̄t = (v̄t
1, v̄t

2, . . . , v̄t
n) is the representations of the items at the t-th timestamp. Here,

[·] denotes the concatenation, L is the layer number of DGNNs, and W1 ∈ Rd×2Ld is the
trainable parameters.

3.2. User Preference Generation and Prediction

After obtaining the item representations at the t-th timestamp, that is, the item vectors
in Gt which can be denoted as (v̄t

1, v̄t
2, . . . , v̄t

n), we generate the hybrid preference at the t-th
timestamp. Specifically, we obtain the user’s preference by combining the recent interest
and the long-term preference in the ongoing session. Considering that the latest clicked
item can represent the user’s instant intent, here we directly adopt the vector of the last
item as the recent interest, that is, zt

r = v̄t
t, where zt

r ∈ Rd.
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On the other hand, since the interacted historical items have various priorities, we
utilize an attention mechanism to determine the weights for combining the historical item
vectors as the user’s long-term preference, which can be denoted as:

zt
l =

t

∑
i=1

γiv̄t
i ,

γi = Softmax(ωi),

ωi = W2σ(W3v̄t
i + W4zt

r + b),

(10)

where zt
l ∈ Rd is the generated long-term preference at the t-th timestamp, ωi and γi

are the importance scores of item vi before and after normalization, respectively, and
W2 ∈ Rd, W3, W4 ∈ Rd×d, b ∈ Rd are learnable parameters.

Then, we generate the dynamic hybrid user preference by taking both the long-term
and recent interests into consideration, as follows:

zt
h = W5[zt

l ; zt
r], (11)

where zt
h ∈ Rd is the final generated user preference at the t-th timestamp, and W5 ∈ Rd×2d

is the trainable parameters.
After that, we can make predictions by computing a probability distribution of the

candidate items to be clicked at the next timestamp through the multiplication operation
between the user preference and the embeddings of each item in V:

ŷt
i = ||zt

h||
T||vi||, (12)

where ŷt = {ŷt
1, ŷt

2, . . . , ŷt
|V|} are the prediction scores on all items at the t-timestamp, and

|| · || denotes the L2 normalization operation.

3.3. Corrective Model Optimization

In this section, we first describe our proposed corrective margin softmax (CMS) in
detail in Section 3.3.1, and then provide detailed theoretical analysis to explain why the
CMS can effectively address the overfitting problem in the session-based recommendation
in Section 3.3.2.

3.3.1. Corrective Margin Softmax

After obtaining the prediction scores, the existing methods for SBRS all adopt the
cross-entropy with softmax to train the model, which we argue faces a serious overfitting
problem, limiting the generalization ability of the model. Thus, we propose the corrective
margin softmax (CMS) to correct the gradients of the negative items for simultaneously
preventing overfitting and achieving effective model optimization.

Specifically, we first calculate the difference of the prediction scores between each
negative item and the target item as the correction values, as follows:

∆t
i = σ(ŷt

i − ŷt
+)− δ, ∀i ∈ V\vt

+, (13)

where ŷt
i and ŷt

+ are the prediction scores of the negative item vi and the target item vt
+ at

the t-th timestamp, respectively, and σ denotes the sigmoid function. V\vt
+ indicates the

negative items, that is, all the items except the target item in V, where “\” indicates the set
subtraction operation. δ is a hyper-parameter controlling the boundary of adjusting the
gradients, which we set as 0.5, that is, the value of σ(ŷt

+ − ŷt
+).

Next, we combine the original prediction scores of the negative items with their
corresponding correction values as the final scores of them:

ỹt
i = ŷt

i + α∆t
i , ∀i ∈ V\vt

+, (14)
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where α is a parameter for controlling the correction intensity. Moreover, as for the target
item, we directly take the prediction score as the corrective score, that is, no correction is
conducted on the target item, which can be denoted as ỹt

+ = ŷt
+.

After that, we normalize the scores on all items using the softmax layer with a temper-
ature λ as follows:

ȳt
i = Softmax(λỹt

i), (15)

where λ is utilized for preventing the nonconvergence problem [30].
Finally, we adopt the cross-entropy as the optimization objective:

L =
n

∑
t=1

Lt = −
n

∑
t=1

|V|

∑
i=1

yt
i log(ȳt

i), (16)

where yt denotes the one-hot encoding vector of the ground truth at the t-timestamp,
and ȳt is the corresponding corrective scores generated by Equation (15). In addition,
the back-propagation through time (BPTT) algorithm [31] is utilized to train DGL-SR. In
general, the trainable parameters in our proposed DGL-SR consist of three main parts,
that is, the item embeddings V ∈ R|V|×d, the learnable weights in DGNNs including
W̃q, W̃k, W̃v, Ŵq, Ŵk, Ŵv, W1 ∈ Rd×d, and the learnable weights for user preference genera-
tion, including W2, W3, W4, W5 ∈ Rd×d.

3.3.2. Theoretical Analysis

In this section, we provide a detailed theoretical analysis to explain why the proposed
corrective margin softmax (CMS) can simultaneously solve the overfitting problem and
achieve effective model optimization. Specifically, assuming the correction value we add
on, the original prediction score of the negative item vi is mi. Taking the t-timestamp as
an example, the gradient of the loss at the t-th timestamp, that is, Lt w.r.t, the negative
prediction score ŷt

i can be formulated as:

∂Lt

∂ŷt
i
= 1−

exp(ŷt
+) + ∑vj∈V\vt

+ ,j 6=i exp(ŷt
j + mj)

exp(ŷt
+) + ∑vj∈V\vt

+ ,j 6=i exp(ŷt
j + mj) + exp(ŷt

i + mi)
, (17)

where we can see that comparing to the original softmax, that is, mi is 0, a positive mi can
increase the gradient of negative item vi, thus the score can be decreased faster. On the
contrary, a negative value of mi will slow down the decreasing speed of ŷt

i .
Then we discuss the situations for the negative items with larger and smaller predic-

tion scores than the target item vt
+ separately:

• First, for the negative items with smaller prediction scores than vt
+, from Equation (13)

we can see that the correction value mi is negative, then the decreasing of the prediction
score will slow down to avoid overfitting. This could be explained by the fact that
there are merely positive interactions in SBRS, and we cannot conclude whether the
user likes the left items V\vt

+ or not; thus, pushing the prediction scores of V\vt
+

too small in the training set will make them completely unable to be recommended
in the validation and test sets. By slowing down the decreasing of the scores of
items with low prediction scores, the CMS can avoid the above issue to prevent the
overfitting problem.

• On the other hand, for the negative items with larger prediction scores than the target
item vt

+, the correction value mi is greater than 0; thus, our proposed CMS can provide
a larger gradient than the original softmax to accelerate the decreasing of the negative
item scores to make sure the target item can be ranked at an earlier position.

4. Experiments
4.1. Research Questions

To validate the effectiveness of DGL-SR, we address the following six research questions:
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(RQ1) Can our proposed DGL-SR perform better than the state-of-the-art baselines for
session-based recommendation?

(RQ2) What is the contribution of each component in DGL-SR to the recommendation accuracy?
(RQ3) Can the corrective margin softmax alleviate the overfitting problem and what is

the impact of the parameter α on the performance?
(RQ4) How does DGL-SR perform with different amount of training data available for

model optimization?
(RQ5) How is the performance of DGL-SR on sessions of different lengths comparing to

the baselines?
(RQ6) What is the impact of the hyper-parameters in DGL-SR on the model performance?

4.2. Datasets and Evaluation Metrics

We choose two publicly available datasets, that is, Diginetica and Gowalla, to evaluate
the performance of DGL-SR and the baselines. Diginetica is an e-commerce dataset released
by the CIKM Cup 2016, and here the transaction data of each user are regarded as a session
following [9,21], and the sessions of the last week are separated as the test set. Gowalla is a
check-in dataset of the point-of-interest scenario; here, we keep the 30,000 most popular
places and define the session as the user’s check-in records in 24 h, and the most recent
20% of the sessions is used as the test set, as in [21,32,33]. Moreover, for both Diginetica
and Gowalla, we filter the sessions containing merely an item and the items appearing
less than five times, as in [9,17,21]. In addition, following [9,21], the data augmentation
operation is adopted for both the training and test sets. Finally, 777,029 sessions with 42,596
items constitute the Diginetica dataset, and 830,893 sessions with 29,510 items remain in
the Gowalla dataset. The data statistics of the two datasets after processing are shown
in Table 2.

Following previous studies [7,9], we adopt Recall@K and MRR@Kto evaluate the
recommendation performance, where K is set to 20 in our experiments.

Table 2. Statistics of the datasets used in our experiments.

Statistics Diginetica Gowalla

No. of Clicks 981,620 1,122,788
No. of Sessions 777,029 830,893
No. of Items 42,596 29,510
Average length 4.80 3.85

4.3. Model Summary

To validate the effectiveness of DGL-SR, we compare our proposal with the following
baselines: (1) Two traditional methods, that is, Item-KNN [34] and FPMC [15]; (2) An RNN-
based model NARM [7] and a CNN-based method NextItNet [35]; (3) Five GNN-based
methods, that is, FGNN [10], SR-GNN [9], GC-SAN [29], GCE-GNN [11] and LESSR [21].
• Item-KNN recommends similar candidates to the items contained in the ongoing session.
• FPMC adopts the Markov Chains to model the sequential relation between adjacent

items; here, each item is regarded as a basket following [9,21].
• NextItNet is a generative CNN-based recommender which captures both the short- and

long-range item dependencies, and enables deep networks with the residual connections.
• NARM designs a hybrid encoder which simultaneously considers the sequential

signal and the user’s main intent in the current session.
• FGNN computes the information flow using a weighted GAT and generates the

session representation by a Readout function [28].
• SR-GNN adopts the gated graph neural network (GGNN) to learn the item represen-

tations on the graph transformed from the ongoing session.
• GC-SAN exploits the local and long-range dependencies between items using the

GGNNs and self-attention mechanism, respectively.



Mathematics 2021, 9, 1420 10 of 18

• GCE-GNN enhances the representation of items in the ongoing session by the global-
level item transitions.

• LESSR solves the information loss problems in GNNs of SBRS by preserving the edge
order and adding shortcut connections.

4.4. Experimental Setup

We separate the last 20% subset of the training set as the validation set for tuning the
hyper-parameters. Specifically, we search the GNN layer in {1, 2, 3, 4} and tune the param-
eter α in {0, 0.5, 1.0, . . . , 5.0}, respectively. The batch size and the embedding dimension
are both set to 128, and the scale coefficient λ is 9 on both datasets. Moreover, the Adam is
utilized as the optimizer with an initial learning rate 0.001 and a decay factor 0.1 for every
three epochs. All parameters are initialized using a Gaussian distribution with a mean of 0
and a standard deviation of 0.1.

5. Results and Discussion
5.1. Overall Performance

The results of DGL-SR as well as the baselines are presented in Table 3. First, we
can observe that the deep-learning-based models generally outperform the traditional
methods, that is, Item-KNN and FPMC. Moreover, the GNN-based methods generally
achieve better performance than the CNN and RNN based methods (i.e., NextItNet and
NARM), indicating the necessity of modeling the pair-wise item transition pattern in the
ongoing session. In addition, NARM beats NextItNet for all cases on two datasets, which
indicates the superiority of RNN than CNN for capturing the sequential signal of items in
the ongoing session.

Table 3. Model performance. The results of the best-performing baseline and the best performer
in each column are underlined and boldfaced, respectively. N denotes a significant improvement
of DGL-SR over the best baseline using a paired t-test (p < 0.01). Moreover, we add the standard
deviations of five runs for the performance of the state-of-the-art baselines, that is, GCE-GNN and
LESSR, as well as our DGL-SR to make the results more convincing.

Method
Diginetica Gowalla

Recall@20 MRR@20 Recall@20 MRR@20

Item-KNN 39.51 11.22 38.60 16.66
FPMC 28.50 7.67 29.91 11.45
NextItNet 45.41 15.19 45.15 21.26
NARM 49.80 16.57 50.07 23.92

FGNN 50.03 17.01 50.06 24.12
SR-GNN 50.81 17.31 50.32 24.25
GC-SAN 50.90 17.63 50.68 24.67
GCE-GNN 51.66 ± 0.22 17.53 ± 0.14 51.53 ± 0.24 23.52 ± 0.16
LESSR 51.71 ± 0.18 18.15 ± 0.13 51.34 ± 0.21 25.49 ± 0.14

DGL-SR 54.36 ± 0.24 N 19.02 ± 0.15 N 53.38 ± 0.23 N 26.04 ± 0.16 N

For the GNN-based methods, first we can see that SR-GNN outperforms FGNN,
which may be due to the Readout function [28] in FGNN which merely models the user’s
long-term interest, failing to take the hybrid preference into consideration. Moreover, by
exploring the long-term item dependencies in the session using the self-attention mecha-
nism, GC-SAN generally shows better performance than SR-GNN. In addition, through
exploiting the global-level transitions between items, GCE-GNN performs well in terms of
Recall@20 on two datasets, especially on Gowalla that achieves the best performance in the
baselines. However, the performance of GCE-GNN in terms of MRR@20 on two datasets
is not satisfactory, which may be due to how the bias is easily introduced from the global
graph. Furthermore, by handling the information loss in the GNNs for SBRS, LESSR can
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generally outperform the other baselines, except losing the competition to GCE-GNN in
terms of Recall@20 on Gowalla. Thus, we take LESSR and GCE-GNN as the baselines for
comparison in the later experiments.

Next, we zoom in on the performance of our proposed DGL-SR. First, we can observe
that DGL-SR can achieve state-of-the-art performance for all cases on two datasets. We
attribute the improvements of DGL-SR against the baselines to two factors: One is that
DGL-SR can take the dynamic evolution of the session graph structures into consideration,
and the other one is that DGL-SR solves the serious overfitting problem using the corrective
margin softmax. In addition, the improvements of DGL-SR above the best baselines
(i.e., LESSR and GCE-GNN) in terms of Recall@20 and MRR@20 are 5.12% and 4.79% on
Diginetica, respectively, and the corresponding improvements are 3.59% and 2.16% on the
Gowalla dataset. We can observe that on both datasets, the improvement rate in terms of
Recall@20 is larger than that on the MRR@20 metric. This indicates that our proposal can
more effectively hit the target item in the recommendation list than ranking them at an
earlier position.

5.2. Ablation Study

For RQ2, to validate the effectiveness of each component in DGL-SR, we conduct
an ablation study by comparing DGL-SR with its variants. The variants include w/o
Structural and w/o Temporal, which remove the structural layer and the temporal layer
in DGNN, respectively. Moreover, we also take the variant which removes the hybrid
preference fusion, that is, w/o Hybrid, into consideration. The results are shown in Table 4.

Table 4. Ablation study.

Method
Diginetica Gowalla

Recall@20 MRR@20 Recall@20 MRR@20

w/o Structural 53.86 ± 0.21 18.24 ± 0.14 53.27 ± 0.22 26.06 ±0 .14
w/o Temporal 54.32 ± 0.23 18.93 ± 0.16 53.19 ± 0.22 25.84 ± 0.15
w/o Hybrid 53.77 ± 0.22 18.66 ± 0.15 51.84 ± 0.24 24.94 ± 0.14

DGL-SR 54.36 ± 0.22 19.02 ± 0.14 53.38 ± 0.23 26.04 ± 0.16

From Table 4, we can observe that removing each component in DGL-SR will gener-
ally decrease the recommendation performance. Moreover, by comparing DGL-SR with
the variants w/o Structural and w/o Temporal, we can observe that both the structural
information and temporal dynamics contribute to the accurate item representation learning.
Moreover, their influence varies in different scenarios. Specifically, on Diginetica, removing
the structural layer will cause a more obvious performance drop than removing the tempo-
ral layer in terms of both Recall@20 and MRR@20. However, differently, as for Gowalla, we
can see that the phenomenon is the opposite, that is, the temporal layer has a larger impact
on the recommendation accuracy than the structural layer on both Recall@20 and MRR@20
metrics. Our analysis is that the difference may be caused by how the influence of the struc-
tural and temporal factors in the e-commerce and check-in scenarios varies. Specifically, in
the e-commerce platforms, the structural information is relatively more important, since
the transition relation between items is much more complicated than the simple sequential
signal [9,10]. However, the temporal dynamics play a more important role than the item
transitions in the check-in scenario. In addition, removing the hybrid preference fusion
layer will obviously decrease the recommendation performance, especially on Gowalla,
indicating the necessity of considering both the user’s long-term and recent interests in the
current session.

5.3. Analysis on Corrective Margin Softmax

To answer RQ3, we evaluate the performance of DGL-SR with various α in the cor-
rective margin softmax (CMS) on both Diginetica and Gowalla. Specifically, we tune the
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parameter α in {0, 0.5, 1.0, . . . , 5.0}, where the results are shown in Figure 2. Note that when
the parameter α is 0, the CMS is the original softmax.
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Figure 2. Model performance with different α in the corrective margin softmax.

First, from Figure 2, we can observe that the peak value in each performance curve on
two datasets can obviously exceed the corresponding performance with the α of 0. This
indicates that our proposed corrective margin softmax can address the overfitting problem
and improve the recommendation accuracy in terms of Recall@20 and MRR@20 on both
datasets. Moreover, when comparing to the performance with the α of 0, we can observe
that the improvements brought by the CMS in terms of Recall@20 and MRR@20 are 1.74%
and 4.00% on Diginetica, respectively, and the corresponding improvement rates are 2.18%
and 10.45% on the Gowalla dataset. We can observe that on both datasets, the improvement
is more obvious in terms of MRR@20 than that on Recall@20, indicating that the CMS
contributes relatively more to ranking the target items at the right positions.

Moreover, on Diginetica, with α increasing, the performance of DGL-SR in terms of
both Recall@20 and MRR@20 first increases and achieves the best performance with the α
of 1.0, then begins to consistently decrease. The phenomenon on Gowalla is similar, except
that the peak performances are achieved at the α of 1.5 in terms of Recall@20 and 2.0 in
terms of MRR@20, respectively. This indicates that the overfitting problem is more serious
on Gowalla than that on Diginetica, and the gradient correction is especially necessary for
the MRR@20 metric.

5.4. Impact of Training Data Scale

For RQ4, in order to investigate the effectiveness of DGL-SR with different scales of
training data available, we compare the performance of DGL-SR with the baselines LESSR
and GCE-GNN by using a different fraction of the training set for model optimization.
Specifically, we range the fraction in terms of {100%, 80%, 60%, 40%, 20%}, and the results
are presented in Figure 3.

As for Diginetica, from Figure 3a,b, we can see that our proposed DGL-SR can consis-
tently outperform the baselines on various fractions. Moreover, with the fraction decreasing,
the performance of all models in terms of both Recall@20 and MRR@20 consistently de-
creases, since the transition relation between items is unable to be effectively captured
from limited training data. In addition, on the MRR@20 metric, we can observe that the
gap between DGL-SR and the best baseline LSEER is relatively more obvious in the large
fractions, indicating the utility of our proposal on datasets of a large scale.
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Figure 3. Model performance on different fractions of training data.

On Gowalla, we can observe that the phenomenon is similar to that on the Diginetica
dataset. Moreover, comparing the baselines LSEER and GCE-GNN, we can find that GCE-
GNN consistently underperforms LESSR in terms of MRR@20 on all fractions; however,
the performance gap decreases when the fraction decreases. This may be due to the fact
that by exploiting the global transition relation between items, GCE-GNN can effectively
slow down the drop in performance when the data fraction decreases. In addition, on the
Recall@20 metric, LESSR slightly outperforms GCE-GNN on the “100%” fraction. However,
the performance of GCE-GNN begins to exceed LESSR with the deceasing fraction, which
means that the static graph constructed from only the ongoing session in LESSR cannot
make accurate recommendations with relatively less data for training. On the contrary,
our DGL-SR can consistently achieve the best performance on various fractions in terms
of both Recall@20 and MRR@20, validating the utility of the dynamic graph learning in
scenarios with different amounts of training data.

5.5. Impact of the Session Length

To answer RQ5, we compare the performance of DGL-SR and the baselines LESSR
and GCE-GNN on two datasets. Specifically, we evaluate the performance of the models
on various session lengths, and the results are shown in Figure 4. First, we can observe that
DGL-SR can generally beat the baselines on different lengths in terms of both Recall@20
and MRR@20 on both datasets. This indicates that our proposed DGL-SR can effectively
detect the user intent from sessions containing various numbers of items.
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Figure 4. Model performance on sessions of different lengths.

For the Diginetica dataset, we can see that the performance of all models in terms of
both Recall@20 and MRR@20 first increase from length 1 to 2, and then show consistent
decreasing trends. This may be due to the fact that long sessions are likely to include the
unrelated items, disturbing the accurate user preference modeling. However, differently on
Gowalla, we can see that the performance of all models keep increasing when the session
length increases. This indicates that in the check-in scenario, relatively more items can help
detect the user intent in the session. Moreover, on the Gowalla dataset, the performance
improvements of DGL-SR above the baselines in terms of Recall@20 and MRR@20 are
similar on short sessions, however it is more obvious in terms of Recall@20 than that on
MRR@20 on long sessions. This indicates that for active users in the check-in scenario, our
proposal is relatively more effective on hitting the target item in the recommendation list.

5.6. Hyper-Parameter Study

To answer RQ6, we conduct experiments to study the sensitivity of DGL-SR on the
GNN layer and the embedding dimension. Specifically, we tune the layer of GNNs in
{1, 2, 3, 4} and search the embedding dimension in {32, 64, 128, 256}, respectively. The
performance of DGL-SR with different hyper-parameters is presented in Figure 5.
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Figure 5. Hyper-parameter study.

First, as shown in Figure 5, we can observe that increasing the embedding dimension
can generally increase the recommendation performance, especially from dimensions 32
to 64. This is because a large embedding dimension has a relatively better representa-
tion ability of item characteristics. However, there is a merely limited promotion of the
performance when the dimension increases from 128 to 256. Moreover, increasing the
embedding dimension will consume more computation resources; thus, the dimension 128
is a proper choice considering both the effectiveness and efficiency of the recommender.
Moreover, increasing the GNN layer will generally decrease the model performance on
various embedding dimensions in most cases on two datasets, except that the performance
slightly increases from layer numbers 1 to 3 on dimensions 32 and 128 in terms of MRR@20
on Diginetica. This could be explained by how the GNNs in session-based recommendation
face a serious overfitting problem, as indicated in multiple works [9,17].

5.7. Temporal Attention Visualization

To provide a deep insight into the temporal dynamics in the graph structures over
various time-steps of the ongoing session, we conducted a case study which randomly
selects a session from Diginetica and Gowalla, respectively. We focus on the eighth item
of the two sessions, and show their respective temporal attention weights obtained by
Equation (6) in Figure 6. Each row of the attention scores indicates the similarity of the
item representation at the current timestamp to that at the historical timestamps, where a
deep color indicates a relatively large similarity.
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Figure 6. Case study.

From Figure 6, we can observe that the attention weights in Diginetica tend to be
assigned to the recent timestamps; however, it is relatively more uniformly distributed
in Gowalla. This may be due to how the impact of the temporal dynamics on the recom-
mendation performance is more obvious on Gowalla than that on Diginetica, which is
consistent with the finding in Section 5.2. Moreover, on Gowalla, from the sixth timestamp,
the attention weights are larger in the former time-steps than the latter ones, which may be
due to how the unrelated items interact after the sixth timestamp, introducing bias into
item representation learning. However, through the temporal layer, our proposed DGNN
can capture the temporal evolution of the graph structures and dynamically assign weights
to the item representations at historical time-steps. Thus, the bias introduced by unrelated
items in the ongoing session can be filtered in the user interest detection, so as to accurately
learn the user preference.

6. Conclusions and Future Work

In this paper, we proposed a novel approach, that is, dynamic graph learning for
session-based recommendation (DGL-SR). DGL-SR applies the dynamic graph neural
network (DGNN) to learn the dynamic item representations by taking both the structural
information and temporal dynamics of the session graphs at different timestamps into
consideration. In addition, we designed a corrective margin softmax (CMS) for the model
optimization, which corrects the gradients of the negative samples to alleviate the serious
overfitting problem in GNNs for SBRS. Extensive experiments on two benchmark datasets
validate the effectiveness of DGL-SR in terms of Recall@20 and MRR@20, especially on
hitting the target item in the recommendation list.

As to future work, we would like to investigate the influence of the dwell time between
different timestamps of the session graphs on the recommendation accuracy. Moreover, we
are also interested in optimizing the model with a limited number of negative samples to
reduce the computational cost and speed up the training.
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