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Abstract: Bio-inspired computing is an engaging area of artificial intelligence which studies how natural
phenomena provide a rich source of inspiration in the design of smart procedures able to become
powerful algorithms. Many of these procedures have been successfully used in classification, prediction,
and optimization problems. Swarm intelligence methods are a kind of bio-inspired algorithm that have
been shown to be impressive optimization solvers for a long time. However, for these algorithms to
reach their maximum performance, the proper setting of the initial parameters by an expert user is
required. This task is extremely comprehensive and it must be done in a previous phase of the search
process. Different online methods have been developed to support swarm intelligence techniques,
however, this issue remains an open challenge. In this paper, we propose a hybrid approach that allows
adjusting the parameters based on a state deducted by the swarm intelligence algorithm. The state
deduction is determined by the classification of a chain of observations using the hidden Markov model.
The results show that our proposal exhibits good performance compared to the original version.

Keywords: swarm intelligence method; parameter control; adaptive technique; hidden Markov model

1. Introduction

Swarm intelligence methods have attracted the attention of the scientific community in
recent decades due to their impressive ability to adapt their methodology to complex prob-
lems [1]. These procedures are defined as bio-inspired computational processes observed
in nature because they mimic the collective behavior of individuals when interacting in
their environments [2]. Many of these procedures have become popular methods, such as
genetic algorithms, differential evolution, ant colony system, particle swarm optimization,
among several others, and they are still at the top of the main research in the optimization
field [3]. Swarm intelligence methods work as a smart-flow using acquired knowledge
in the iterative way to find near-optimal solutions [4]. The evolutionary strategy of these
techniques mainly depends on the initial parameter configuration which is dramatically
relevant for the efficient exploration of the search space, and therefore to the effective
finding of high-quality solutions [5].

Finding the best value for a parameter is known as offline parameter setting, and it is
done before executing the algorithm. This issue is treated even as an optimization problem
in itself. On the other hand, the “online” parameters control is presented as a smart
variation of the original version of the algorithm where the normal process is modified by
new internal stimulants. Furthermore, according to the No Free Lunch theorem [6], there is
no general optimal algorithm parameter setting. It is not obvious to define a priori which
parameter setting should be used. The optimal values for the parameters mainly depend
on the problem and even the instance to deal with and within the search time that the user
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wants to spend solving the problem. A universally optimal parameter value set for a given
bio-inspired approximate method does not exist [7].

Using external techniques of the autonomous configuration, the swarm intelligence
algorithms are able to adapt their internal processes during the run, based on performance
metrics in order to be more efficient [8]. In this way, the user does not require any expert
knowledge for reaching efficient solving processes. The adaptation process can be handled
under two schemes: offline parameter tuning and online parameter control. In the online
control, the parameters are handled and updated during the run of the algorithm, whereas
in the offline parameter initialization, the values of different parameters are fixed before
the run of the algorithm [6].

In this work, we tackle the online parameter definition problem with an autonomous
search concept. This approach focuses on the algorithm parameters adjustment while the
search process is performed as guided by the information obtained from the relation be-
tween the position of the solutions in the search space. This procedure allows the algorithm
to change its functioning during the run, adapting to the particular conditions of the region
discovered [9]. The main contribution of this work is to provide a bio-optimization solver
with the ability to self-regulate their internal operation, without requiring advanced knowl-
edge to efficiently calibrate the solving process. We propose a hybrid schema applying
hidden Markov models to recompute the parameter values into a super-swarm optimiza-
tion method. Hidden Markov models classify a chain of visible observations corresponding
to the relationship between the distance of solutions given by the bio-inspired optimization
algorithm. Recognizing when solutions are close to each other is a capability which is
not part of all optimization algorithms. An external strategy that satisfies this problem is
always valued for its potential use in complex engineering problems.

As a solver technique, we employ the popular particle swarm optimization (PSO) tech-
nique. The decision to use the PSO was based on two assumptions: (a) many bio-inspired
methods that use the paradigm to generate solutions by updating velocity and position can be
improved under this proposal; and (b) PSO is one of the most popular optimizer algorithms,
so there is extensive literature that reports its excellent efficiency [10].

To evaluate this proposal, we solve a well-known optimization problem: the set
covering problem. We treat a set of the hardest instances taken from the OR-Library [11]
in order to demonstrate that the improved behavior of the particle swarm optimization
exhibits a better yield than its original version and bio-inspired approximate methods of
the state of the art.

The manuscript continues as follows: Section 2 presents a bibliographic search for related
work in the field. The results of this search justify the proposal of this work; Section 3 explains
offline and online parameter adjustment showing their differences; Section 4 describes the
developed solution and the concepts used; Section 5 details the experimental setup, while
Section 6 presents and discusses the main results obtained; finally, conclusions and future
work are outlined in Section 7.

2. Related Work

Recent works show that swarm intelligence methods remain favorites in the optimiza-
tion field [12–16], and their popularity has led them to be used in different application
domains, such as resource planning, telecommunications, financial analysis, scheduling,
space planning, energy distribution, molecular engineering, logistics, signal classification,
and manufacturing, among others [17].

In [18], a recent survey on a new generation of nature-based optimization methods
is detailed. This study presents metaheuristics as efficient solvers able to solve mod-
ern engineering problems in reduced time. Nevertheless, and despite this quality, these
techniques present some complications inherent to the phenomenon that defines them.
Among them, we find the adjustment and control of their input parameters that directly
impact the exploration process of the search space [3,19]. This task is generally done when
an external parameter is overcome by a non-deterministic move operator. The exploration
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phase operates with a set of agents that attempt to escape from local optima [20–22]. In this
context, the autonomous search paradigm [23] describes how to empower metaheuristics
to adjust its parameters during the resolution process, reacting to the information obtained.
This technique accelerates the convergence of the algorithm, reducing the operational cost,
and providing robustness to the process, making it react to the problem that is being solved.

By focusing on online parameter setting in optimization algorithms, we can find [24].
Here, the authors provide a perspective (from 30 years) explaining that an automatic tuning
allows adapting the parameter values depending on the instance and the evolution of the
algorithm. One of the first attempts using a controlled parameter variation in the particle
swarm optimizer was proposed in [25]. A linear decreasing function was used for the
inertia coefficient parameter w, with a start value of ws = 0.9 and a final value of w f = 0.4,
testing this configuration for well-known benchmark functions. In [26], the parameter
adjustment tries to make a transition between exploration and exploitation states, linearly
decreasing and increasing the personal and social coefficients, respectively. In [27], an ideal
velocity for the particles is defined, and the value of ω is updated to adjust the current
average velocity to a value closer to the ideal. In [28,29], hybrid approaches to the PSO
algorithm were developed. The first one includes a two-fold adaptive learning strategy
to guarantee the exploration and exploitation phases of the algorithm. The second one
proposes a learning strategy using a quasi-entropy index when local search works.

Related works that adjust the parameters of the PSO algorithm based on the fitness
obtained along the iterations have been discussed. For example, in [30], two values that
describe the state of the algorithm are defined: the evolutionary speed factor and the
aggregation degree. Both values are used to update the ω values for each particle. In [31],
the inertial and best solution acceleration coefficients are adjusted for each particle based on
the relation between the current particle’s fitness and the global best fitness. In [32], authors
related the value of ω with the convergence factor and the diffusion factor to dynamically
set its value. In [33], the value of ω for each particle in the swarm is computed based on
the ratio of the personal best fitness value with the personal best fitness average, for all
particles. In [34], the value of ω is calculated from the relation to fitness-based ranking
for each particle and the problem dimension number. In [35], the value of ω is updated
to accelerate the PSO convergence. In [36], a success rate for the PSO is defined based on
the proportion of particles that improved their personal best position at iteration t. This
method aims to increase the value of w when the proportion of particles that improved
their personal best is high and decrease it otherwise. In [37], the inertial coefficient w
is increased for the best particle and decreased for all others, based on the idea that the
best particle is more confident on the direction of its movement. The inertial coefficient
decreases linearly for the rest of particles.

Taking into account the fitness, but considering the relationship between the position of
the particles in relation to the best, efforts have been made to adjust the value of the parame-
ters. In [38], acceleration and inertial parameters are adjusted according to state deduction
using a fuzzy classification system. The state classification depends on the calculation of the
evolutionary factor. In [39], inertia weight and acceleration coefficients are adjusted using
the gray relational analysis, proposed by [40], using the relation of the particle compared to
the global best.

In recent years, the hybridization of metaheuristics with supervised and unsupervised
methods has emerged as a promising field in approximation algorithms. In 2017, the term
“Learnheuristic” was introduced in [41] to address the integration between metaheuristics
and machine learning algorithms, and they provide a survey of the closest papers. In this
research, a simple but robust idea is proposed. There are two work-groups: machine
learning algorithms to enhance metaheuristics and metaheuristics to improve machine
learning techniques. For the first group, is it possible to find (i) metaheuristics for improving
clustering methods using the artificial bee colony algorithm [42], local search [43], particle
swarm optimization [44] and ensemble-based metaheuristics [45]; (ii) metaheuristics to
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efficiently address the feature selection topic [46]; and (iii) metaheuristics for improving
classification algorithms [47–49].

Recently, machine learning methods have also been used for the parameter control
issue. An example of auto-tuning in a deep learning technique can be seen in [50]. Here, the
authors provide an improvement to support and store a large number of parameters required
by deep learning algorithms. Now, considering improvements that include machine learning
in optimization algorithms, we can find in [51] that the PSOs parameters are adjusted by
using an agent that chooses actions from a set in a probabilistic way, then measures the
results and sends a reinforcement signal. In [52], a decision tree was used to perform the
tuning of parameters. Hop-field neural networks were used in [53] to initiate solutions of a
genetic algorithm applied to the economic dispatch problem. A mechanism for identifying
and escaping from extreme points is punished in [54]. Here, the whale swarm algorithm
includes new procedures to iteratively discard the attenuation coefficient and it enables
the identification of extreme points during the run. An integration between the Gaussian
mutation and an improved learning strategy were also proposed to boost a population-based
method in [55]. New interactions between machine learning and optimization methods have
recently been published in [56–58]. Moreover, improved machine learning techniques have
been used for action recognition from collaborative learning networks [59], for the automatic
recognition and classification of ECG and EEG signals [60–62], for complex processing on
images [63], for health monitoring systems using IoT-based techniques [64], and several others
works. In [65], a support vector machine is employed as a novel methodology to compute
the genetic algorithm’s fitness. A similar work can be seen in [66]. Clustering techniques
were studied for the exploration of the search space [67] and for dynamic binarization
strategies on combinatorial problems [68]. In [69], case-based reasoning techniques were
investigated to the identify sub-spaces of searches to solve a combinatorial problem. In [70],
an incremental learning technique was applied to constrained optimization problems. Finally,
in [71], an alternative mechanism for the incorporation of negative learning on the ant colony
optimization is proposed.

Finally, a few works explore the integration of hidden Markov models and optimiza-
tion algorithms. In [72,73], a population-based method is proposed to train hidden Markov
models. Another work which uses a bio-solver to optimize a hidden Markov model is
presented in [74]. On the other hand, recent studies have studied how hidden Markov mod-
els improve the optimization algorithms. In [75], authors studied the relation of particle
distances to determine the state of the particle swarm optimizer. The states were inspired
by [38,76]. Parameters are updated according to the determined state. Similar work can be
seen in [75,77,78].

3. Preliminaries

Parameter setting is known as a strategy for providing larger flexibility and robustness
to the bio-inspired techniques, but requires an extremely careful initialization [7,19]. Indeed,
the parameters of these procedures influence the efficiency and effectiveness of the search
process [79]. To define a priori which parameter setting should be used is not an easy-task.
The optimal values for the parameters mainly depend on the problem and even the instance
to deal with and the search time within which the user wants to solve the problem.

This strategy is divided into two key approaches: the offline parameter tuning and
the online parameter control (see Figure 1).

The adaptation process is called online when the performance information is obtained
during solving, while the process is considered offline when a set of training instances is
employed to gather the feedback [80]. The goal of parameter tuning is to obtain parameter
values that could be useful over a wide range of problems. Such results require a large
number of experimental evaluations and are generally based on empirical observations.
Parameter control is divided into three branches according to the degree of autonomy of the
strategies. Control is deterministic when parameters are changed according to a previously
established schedule, adaptive when parameters are modified according to rules that take
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into account the state of the search, and self-adaptive when parameters are encoded into
individuals in order to evolve conjointly with the other variables of the problem.

Parameter
Setting

Parameter
Tuning

Parameter
Control

Deterministic Adaptive Self-Adaptive

During the runBefore the run

Figure 1. Scheme of the parameter adaptation process in bio-inspired methods.

The offline approaches require a high computational cost [19,81]. This cost increases
when we use the offline approach for solving each input instance of a problem. Indeed, the
optimal parameter values depend on the instances of the problem to be addressed. Fur-
thermore, according to the No Free Lunch theorem, there is no generic optimal parameter
setting. A universally optimal parameter value set for a given bio-inspired approximate
method does not exist [6,82].

The great advantage of the online approach against the offline approach is that the
effectiveness of the parameter control may change during the search process. That is, at
different moments of the search, different optimal values are found for a given parameter.
Hence, online approaches that change the parameter values during the search must be
designed. Online approaches may be classified as follows [6]:

• Dynamic update: A random or deterministic updates the parameter value. This opera-
tion is performed without taking into account the search progress.

• Adaptive update: In this approach, parameter values evolve during the search progress.
To change the parameter values, a function that mimics the behavior of the phenomenon
is performed. For that, the memory of the search is mainly used. Hence, the parameters
are associated with the representation and these are subject to updates in function of the
problem’s solution.

Online control is only recent but also interesting and challenging as the feedback is
uniquely gathered during solving time with no prior knowledge from training phases and
no user experts.

4. Developed Solution

Swarm intelligence methods have been developed for almost 30 years. The term
swarm intelligence was coined in 1993 [83] and since its appearance, it has become a
popular optimization method [84]. The distributed structure presents possible advantages
over centralized methods, such as the simplicity of the search agents, the robustness
provided by the redundancy of components, and the ability to escape local optimums [6].
This type of structure is typical in many biological systems, such as insect colonies, flocks
of birds, and schools of fish. The synergy between the swarm members provides each of
them with advantages that they could not achieve on their own, such as protection against
predators and a more reliable supply of food [14,85].

Particle swarm optimization is a most popular population-based bio-inspired algo-
rithm [86,87]. This method intelligently mimics the collaborative behavior of individuals
or “particles” through two essential components: the position and the velocity. A set of
particles (candidate solutions) forms the swarm that evolves during several iterations.
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This procedure describes a powerful optimization method [88]. The technique operates by
altering velocity through the search space and then updates its position according to its
own experience and neighboring particles.

Particle swarm optimization can be identified as an intelligent system with two phases:
(a) when the algorithm reaches large velocities in the initial phase, the current solutions
focus more on diversification; (b) as velocities tend towards zero, the current solution
focuses on intensification. The best reached solutions are memorized as pBest. The standard
particle swarm optimization is governed by the movement of particles through two vectors:
the velocity Vi = 〈v1

i , v2
i , . . . , vD

i 〉 and the position Xi = 〈x1
i , x2

i , . . . , xD
i 〉. First, the particles

are randomly positioned in a D-dimensional heuristic space with random velocity values.
During the evolution process, each particle updates its velocity via Equation (1) and
position through Equation (2):

vd
i = ωvd

i + c1φd
1(pBestd

i − xd
i ) + c2φd

2(gBestd − xd
i ) (1)

xd
i = xd

i + vd
i (2)

where d = {1, 2, . . . , D} represents the size of the problem; the positive constants ω, c1,
and c2 are acceleration coefficients; φ1 and φ2 are two uniformly distributed random
numbers in the range [0, 1]; pBesti is the best position reached by ith particle; and gBest is
the global best position found by all particles during the resolution process.

4.1. Evolutionary Factor f

Diversity measures explain the distribution of a set of particles in the search space [89].
In this sense, ref. [38] proposes a measure derived from the distances between the PSO
particles, known as the evolutionary factor f . This factor is computed in Equation (3):

f =
dp − dw

dg − dw
∈ [0, 1] (3)

where dp represents the pBest fitness (position) reached by a particle until that moment.
The dw and dg values describe the worst and gBest distance of the swarm, respectively.

Figure 2 shows the relationship between the position of the PSO particles and the
state in which they will be classified: sub-figure (a) depicts the exploration state, where the
particles are far away from each other; sub-figure (b) shows an exploitation/convergence
state, where the particles are close to each other and the best particle appears in the center
of the group; sub-figure (c) illustrates the jumping-out state, where the particles are close to
each other, but the best particle has found a better zone and appears far from the others. To
compute the difference among distances, the average of all distances davg is also required.

dg
davgexploration

exploitation
convergence exploration

jump-out

(a)

(b)
(a)

(c)

Figure 2. Example of PSO particle distribution: (a) dg ≈ davg exploration; (b) dg � davg exploitation,
convergence; and (c) dg � davg jump out.
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4.2. Markov Models

This section defines the hidden Markov model used in this paper to identify the state
(or inner-phase) of the PSO. For that, we detail how the states of a PSO can be modeled as
a Markov chain, allowing the state to be inferred from the evolutionary factor calculated
for the particle swarm optimizer.

4.2.1. Markov Chains

The Markov chain is a statistical model that defines the probability of transition
from one state to another within a finite set of states. The Markov chain assumes that
the transition to the next state only depends on the current state, regardless of previous
states [90].

The states within a Markov chain are finite and the transitions between states are
defined according to a probability. This probability must add up to 1, indicating all probable
states that can be reached from the current state. Figure 3 shows a typical Markov chain.

State A State B

State C State D

0.3

0.2 0.5 1.01.0

0.4 0.6

Figure 3. Markov chain. The arcs connecting the nodes/states indicate the transition probability
between states.

For this Markov chain, we observe four states: A, B, C, and D. Arrows indicate
which state can be accessed from a particular state and the number next to it indicates the
probability that the transition occurs. These probabilities can be studied as a square matrix
where the transition probability for all states is represented. The transition matrix M in the
example above is defined as

M =


0 0.3 0.2 0.5
0 0 0 1
1 0 0 0
0 0 0.4 0.6


4.2.2. Hidden Markov Model

The hidden Markov model (HMM) is a framework that allows, through the observa-
tion of some visible state, to deduce elements of the Markov chain that are not directly
visible, i.e., hidden [91,92]. The transition between states is assumed to be in the form of a
Markov chain. The Markov chain can be defined by an initial probability vector π and a
transition matrix A. Observable elements O are emitted according to some distribution in
each hidden state, and they are noted in the emission matrix B.

There are three main tasks that an HMM solves:

1. Decoding.Given the parameters A, π, B, and the observed data O, estimate the
optimal sequence of hidden states Q;

2. Likelihood. Given an HMM λ = (A, B) and a sequence of observations O, determine
the probability that those observations belong to the HMM, P(O|λ);
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3. Learning. Given a sequence of observations O and a set of states in the HMM, we
learn its parameters A and B.

In our work, the decoding task will be used to determine the hidden state given
a group of observations, obtained from a discretization of the evolutionary factor. The
learning task will be used in each iteration to learn the value of the B emission matrix,
specifically.

4.3. HMM-PSO Integration

In [38], four inner-phases (or states) through which PSO moves are defined: explo-
ration, exploitation, convergence, and jumping-out. A previous work describes these states
as a Markov chain [93] (detailed in Figure 4). This chain corresponds to the hidden chain
that will be deduced using decoding and learning tasks.

S-Ph1 S-Ph2

S-Ph3S-Ph4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 4. Evolutionary states defined for the Adaptive PSO algorithm: S-Ph{1,2,3,4} represent Explo-
ration, Exploitation, Convergence, and Jump-out, respectively.

The HMM receives three input parameters: the first one is an initial probability vector
π that computes a deterministic start in the exploration state: π = [1, 0, 0, 0]. The second
parameter corresponds to the transition matrix between states A. As shown in figure, it is
only possible to stay in the current state or to advance to the next state from left to right.
As an initial value, all transitions have a probability of 0.5. The matrix A is defined as

A =


0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

0.5 0 0 0.5


The type of hidden Markov model used in this work obtains its classifications from a

group of observations belonging to a discrete alphabet. Therefore, we apply a discretization
process to the evolutionary factor f of each inner-phase of the PSO. The discretization
process used in this work is defined in [75] and corresponds to identifying the interval
in which the calculated evolutionary factor belongs. The seven defined intervals are:
([0, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 1]).
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The emission matrix B is the third parameter of the model. This matrix corresponds
to the probability with which the elements of the alphabet of observations are emitted for
each state. The emission matrix that we use in this work is defined in [75,94], and it is
detailed as follows:

B =


0 0 0 0.5 0.25 0.25 0
0 0.25 0.25 0.5 0 0 0

2/3 1/3 0 0 0 0 0
0 0 0 0 0 1/3 2/3


The parameters π, A and B completely define the hmm model. Once defined, the

model is capable of deducing hidden states—exploration, exploitation, convergence, jump-
ing out—from the discretization of a chain of observations—evolutionary factor f —using
the Viterbi algorithm. At each iteration, it is possible to adjust the parameters of the hmm
model using task 2 with Baum–Welch’s algorithm. For more details about the operation of
both algorithms, please refer to [95].

5. Experimental Setup

In this section, we detail the proposal of integration of HMM in PSO, for the determi-
nation of the state and control of the parameters. This hybridization was tested on the set
covering problem, which is a classic combinatorial optimization problem. One of the first
works was proposed in [96], and it defines the Equation (4) as the formulation for the set
covering problem:

minimize
n

∑
j=1

cjxj

subject to:
n

∑
j=1

aijxj ≥ 1 ∀ i ∈ M

xj ∈ {0, 1} ∀ j ∈ N

(4)

where cj represents positive constants of the cost vector, and aij details binary values of
the constraint matrix with M-rows and N-columns. If column j covers a row i, then xj = 1.
Otherwise, xj = 0. We take the hardest instances of the set covering problem from the
OR-Library [11].

To have an overview of the components involved in the search process, state identifi-
cation and parameter control, Figures 5 and 6 show the flowchart of the algorithms.

Based on experimental analysis, the parameters are adjusted according to Table 1.
Table 2 shows the initial parameter settings for the original PSO algorithm and our version.
The initial values for the original PSO are the same as those used by the author. The initial
values for the ω and np parameters on the hidden Markov model supporting the PSO
algorithm (HPSO) come from [97].
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Init

Init N level 1 PSO

Yes

No

Any PSO
left in list?

State deduction
Parameter optimization

PSO movement

Take PSO from list

Update best solution

Yes

No

Done iteating
level 1?

1

Generate level 2 PSO with
best particle from each level

1 PSO

1

State deduction
Parameter optimization

PSO movement

Update best solution

Yes

Done iterating
level 2? 2No

2

End

Figure 5. PSO algorithm state deduction integration.

Evolutionary factor
calculation and

storage

Yes

No

Has sufficient data for
training?

State deduction
(HMM task 2)

Training 
(HMM task 3)

Parameter
optimization

Evolutionary factor
calculation and

storage

Has sufficient data for
training?

Evolutionary factor
calculation and

storage

Has sufficient data for
training?

Apply PSO
movement

State deduction
Parameter optimization

PSO movement

Figure 6. State deduction and parameter adjustment for PSO.
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Table 1. Parameters update by identified state.

State Inertial Velocity Number of Particles
(Inner-Phase) w np

Exploration ω = ωmin + (ωmax −ωmin) · Rand(0, 1) np− 1
Exploitation ω = 1

1+ 3
2 exp−2.6 f np + 1

Convergence ω = ωmin np + 1
Jump out ω = ωmax np− 1

Table 2. Initial configuration for input parameter values.

Orginal PSO Parameters Proposed HPSO Parameters

Parameter Value Parameter Value

ω 1− k
L+1

ωmin 0.4
ωmax 0.9

npmin 5 npmax 30
npmax 50 npmax 30

c1 2.05 rand(0, 1) c1 2.05 rand(0, 1)
c2 2.05 rand(0, 1) c2 2.05 rand(0, 1)

iter. num. 50 iter. num. 50
iter. num. 250 iter. num. 250

6. Results and Discussion

In this section, we evaluated the functioning of our proposed HPSO. We compared our
proposal against the original PSO. Then, we present a statistical comparison of the results
obtained, and we illustrate the convergence of the search process and the percentages of
exploration and exploitation.

Before integrating the adaptive approach, we analyzed the temporal complexity of
the original PSO algorithm to evaluate that our proposal does not impact its performance.
If we study each statement and expression, including control flows from the particle swarm
optimization algorithm, we can state that time complexity is given by (T× np× n), where
T represents the maximum number of iterations, np stores is the number of particles (or
solutions), and n is the dimension of each particle. In the worst case, the basic algorithm is
upper bounded by O(kn2).

Then, performing a temporal analysis about our adaptive approach, we state that the
temporal complexity of PSO is not altered. If we consider that: (a) this procedure operates
in a determinate number of iterations (see Table 2); (b) it works with the same solutions;
and (c) it runs in a way that is independent from the main algorithm, we can affirm that
the upper bound is given by (np× n), which again, has an upper bound equal to O(kn2).

6.1. Original PSO Comparison

Table 3 shows the results obtained by our proposal and the original PSO in 11 hard
instances of the set covering problem [68]. Each instance was executed 31 times and each
run iterated 1000 cycles. These runs allow us to analyze the independence of the sam-
ples by determining the Zbest. The comparative includes the relative percentage distance
(RPD). This value quantifies the deviation of the objective value Zbest from Zopt, which is
the minimal best-known value for each instance in our experiment, and it is computed
as follows:

RDP =

(
Zbest − Zopt

Zopt

)
(5)

Results show that the difference between both algorithms increases as the instance
of the problem grows. The best results are highlighted with underline and maroon color.
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For example, in the scp41, the best reached solution by HPSO overcomes than the classical
PSO algorithm. The same strategy is used in all comparisons.

Table 3. Comparison of results between PSO and HPSO.

Instance Optimum Best HPSO Best PSO Avg. HPSO Avg. PSO RPD HPSO RPD PSO

scp41 429 429 430 429.81 432.419 0 0.233
scp51 253 253 255 253.68 260.71 0 0.791
scp61 138 138 140 138.19 140.871 0 1.449
scpa1 253 253 256 254.32 258.097 0.395 1.186
scpb1 69 69 71 69 91.129 0 2.899
scpc1 227 227 234 228.36 238.258 0 3.084
scpd1 60 60 79 60.13 123.323 0 31.667

scpnre1 29 29 85 29 106.871 0 193.103
scpnrf1 14 14 39 14 49.29 0 178.571
scpnrg1 176 176 348 178.17 480.839 0.568 97.727
scpnrh1 63 65 277 65.25 349.452 1.587 339.683

Using the Wilcoxon–Mann–Whitney rank sum statistical test, we compare the results
obtained by our proposal against the original PSO algorithm. It is valid to use this test
because all runs are independent from each other and the results do not follow a normal
distribution, since they are affected by pseudo-random numbers. Thirty-one samples of the
obtained best fitness for 11 different instances of the set covering problem are compared.
The test gives an p-value lower than 0.05 if it is possible to determine that one sample has
statistically lower values than the other, and a value higher than 0.05 if not. Table 4 shows
the comparison between the two algorithms.

Table 4. Statistical comparison.

Instance HPSO < PSO PSO < HPSO

scp41 0.728 0.277
scp51 0.002 0.998
scp61 0.000 1.000
scpa1 0.000 1.000
scpb1 0.000 1.000
scpc1 0.000 1.000
scpd1 0.000 1.000

scpnre1 0.000 1.000
scpnrf1 0.000 1.000
scpnrg1 0.000 1.000
scpnrh1 0.000 1.000

We can see that it was not possible to determine a statistical difference only for
instance scp41, while for the other instances, the hypothesis that our algorithm improved
the resolution process is confirmed.

6.2. Exploration/Exploitation Balance

In swarm intelligence methods, the population diversity is a measurement which
evidences the performance of an algorithm, through the distribution of generated solu-
tions [98,99]. This principle is significantly important to analyze the behavior of each
solution in a swarm as well as the swarm as a whole. A recent work proposes a model
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based on the dimension-wise measurement to study the yield of algorithms [100]. The
formulations that calculate this metric are defined in Equations (6) and (7):

Div(j) =
1

np

np

∑
i=1
|mean(xj)− xj

i | (6)

Div =
1
D

D

∑
d=1

Div(d) (7)

where Div(j) describes the computed dimensional Hussain diversity over a solution xj,
mean(xj) represents the mean over each dimension j, np stores the number of solutions
(population size). Finally, D saves the dimension size. After taking the dimension-wise
distance of each swarm-individual i from the mean of the dimension j, we compute the
average Div(j) for all the individuals. Then, the average diversity of all dimensions is
calculated in Div.

Using this fundamental, in [101], a model is proposed that allows to compute the
evolution of the exploration and the exploitation effects obtained by the two algorithms,
in each instance through all iterations. Resulting values represent percentages of explo-
ration and exploitation on the population at iteration t. To calculate the exploration (XPL)
balance, Equation (8) is applied, and to obtain the exploitation (XPLT) impacts, Equation (9)
is employed:

XPL% =

(
Div

Divmax

)
× 100 (8)

XPLT% =

(
|Div− Divmax|

Divmax

)
× 100 (9)

For both equations, Div and Divmax represent the measures of diversity (distance)
calculated over the population. Div represents the diversity of the full set of search agents
through the aggregation of the diversity of each agent. However, Divmax represents the
maximum value of diversity found. As can be intuited, the measurement of the percentage
of exploration and exploitation varies depending on the measure of diversity used.

Figures 7 and 8 show the behavior of both algorithms. There are peaks, very noticeable
in the original version and softer in our version. These peaks represent the change between
inner-phases (the exploration and the exploitation processes).

6.3. Convergence Curves

We show plots for the convergence of the algorithms, PSO and HPSO, solving the set
covering problem. Both algorithms reach a promising zone in the search space early on its
execution. Convergence for both algorithms is very similar. Figures 9 and 10 shows the
convergence achieved by both algorithms for their best execution on the instances scp41,
scpa1, scpnre1, and scpnrh1.

6.4. Results Discussion

For the evaluation of the autonomous search method proposed, we used different
measures that allowed us to evaluate the performance: a statistical comparison of the
results of our algorithm against the original PSO, the variation of the evolutionary factor
during the execution, the variation of the internal parameters of our algorithm, and the
percentage of exploration and exploitation obtained in the search using the dimensional
Hussain diversity measure.



Mathematics 2021, 9, 1417 14 of 21

0 200 400 600 800

0

20

40

60

80

100

% XPL
% XPLT

Dimensional Hussain % Exploration and Exploitation 41

0 200 400 600 800

0

20

40

60

80

100

% XPL
% XPLT

Dimensional Hussain % Exploration and Exploitation a1

0 200 400 600 800

0

20

40

60

80

100

% XPL
% XPLT

Dimensional Hussain % Exploration and Exploitation e1

0 200 400 600 800

0

20

40

60

80

100

% XPL
% XPLT

Dimensional Hussain % Exploration and Exploitation h1

Figure 7. Exploration and exploitation percentage for original PSO. For small instances (scp41 and scpa1), the algorithm
shows an exploitative behavior, for bigger instances (scpnre1 and scpnrh1), the algorithm shows an exploitative behavior.
We can observe the transition between inner-phases at iterations 50, 300, and 600.
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Figure 8. Exploration and exploitation percentage for HPSO. The algorithm shows a mostly exploitative behavior for small
and big instances.
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The statistical comparison of the results was conducted to determine whether there is
an improvement to the original algorithm. Statistical tests confirm that there is a statistically
distinguishable improvement when comparing the results of HPSO and PSO solving the
combinatorial problem, for all tested instances.

The value of the evolutionary factor f shows a tendency to remain low, interrupted
by sudden rises. Low values of f indicate that the PSO particles are close to each other
and that the algorithm is converging. The higher value indicates that a particle found a
solution with a better fit in an area far away from the group, which indicates that the PSO
was able to avoid a local optimum.

The variation of the internal parameters shows an upward trend for the number of
particles, and as the search progresses, new particles participate in the search. On the
other hand, the inertia coefficient varies abruptly, going from the minimum value to the
maximum value in a few iterations. This behavior did not affect the quality of the solutions;
however, such an abrupt variation does not generate a recognizable pattern and the ω
adjustment method must be reviewed.

The percentage of exploration and exploitation obtained shows that the algorithm
maintains a mostly intensifying behavior, demonstrating that a promising area was found
during the first iterations, maintaining the trend throughout the search. The transition
between exploration and exploitation is more noticeable in smaller instances, which is
explained by a smaller size of the search space. In general, the exploration and exploitation
graphs show an efficient search.
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Figure 9. Convergence of PSO: The algorithm shows a premature convergence, with very few improvements after the first
50 iterations.



Mathematics 2021, 9, 1417 16 of 21

0 200 400 600 800
Iteration

430

440

450

460

470

480

490

500

510

Fit
ne

ss

Convergence for 41

0 200 400 600 800
Iteration

250

275

300

325

350

375

400

425

Fit
ne

ss

Convergence for a1

0 200 400 600 800
Iteration

100

200

300

400

500

Fit
ne

ss

Convergence for e1

0 50 100 150 200 250 300
Iteration

0

500

1000

1500

2000

2500

3000

3500
Fit

ne
ss

Convergence for h1

Figure 10. Convergence of HPSO. The algorithm shows improvements until approximately iteration 150, which represents
50% of the total iterations.

7. Conclusions and Future Work

In this work, we presented an autonomous search method for the PSO algorithm. This
work was performed by hidden Markov models, which allow for the state identification
of a PSO while the search process is running. The identification allows us to adjust PSO
parameters based on a state deducted by the HMM. The deduction was made from the
calculation of the evolutionary factor f metric, which gives information about the disposition
of the particles inside PSO.

Different combinations of parameters to be adjusted for the PSO algorithm were
evaluated, experimenting on a set of instances of the set covering problem and measuring
the results. This experimentation showed that the combination of parameters w and
np generates the best results. Then, the algorithm was compared against the original
version of PSO without parameter control. The comparison of results was made using the
Wilcoxom–Mann–Whitney statistical test, with the aim of testing the hypotheses posed
for this work. The hypothesis was assumed and the parameter control shows a statistical
difference in the quality of the solutions obtained. Moreover, we present figures that show
the exploration and exploitation balance obtained by our proposal. If it is possible observe
that the exploitation percentage increases compared to the original PSO. This behavior
indicates that the HPSO was able to find better regions in the heuristic space, intensifying
the search in those areas.

Future works consider verifying the impact on the classification of states when making
changes to the transfer and binary functions in 0/1 optimization problems [102]. The
discretizations made to the evolutionary factor f can also be adjusted, which will change
the input data for the HMM model and its deductions. Finally, the PSO algorithm can
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be viewed as a framework for population-based metaheuristics, therefore testing with a
different base algorithm is considered.
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