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Abstract: Location detection is studied for many scenarios, such as pointing out the flaws in
multiprocessors, invaders in buildings and facilities, and utilizing wireless sensor networks for
monitoring environmental processes. The system or structure can be illustrated as a graph in each
of these applications. Sensors strategically placed at a subset of vertices can determine and identify
irregularities within the network. The open locating-dominating set S of a graph G = (V, E) is the
set of vertices that dominates G, and for any i, j ∈V(G) N(i) ∩ S 6= N(j) ∩ S is satisfied. The set S is
called the OLD-set of G. The cardinality of the set S is called open locating-dominating number and
denoted by γold(G). In this paper, we computed exact values of the prism and prism-related graphs,
and also the exact values of convex polytopes of Rn and Hn. The upper bound is determined for
other classes of convex polytopes. The graphs considered here are well-known from the literature.

Keywords: open locating-domination number; cycle graphs; prism graphs; convex polytopes; exact
values; upper bounds

MSC: 05C69; 05C90

1. Introduction and Preliminaries

For an undirected graph G = (VG, EG), and for any vertex u ∈ VG, the open and
closed neighborhoods are written as N(u) and N[u]. The open locating-dominating set S
of G is the set of vertices that dominates G, and for any vertices, say w, x ∈ VG such that
N(w) ∩ S 6= N(x) ∩ S is satisfied. The set S will be denoted as an OLD-set and the least
number of elements in such a set will be denoted as γold(G).

Location detection problems have been considered for several applications, including
detecting faults in multiprocessors, contaminants in standard utilities, invaders in build-
ings and amenities, and environmental monitoring employing wireless sensor networks.
The system or framework can be modeled as a graph in each of these applications. Sensors
strategically placed at a subset of vertices can determine and identify irregularities in the
network. Such sensors can be expensive, and therefore, it is vital to reduce the size of the
OLD-set. If the detector can distinguish an invader at N(u), without the ability of detecting
at u, then we consider an open locating-dominating set, as studied in [1–5]. If a detection
device can resolve an intruder in the closed neighborhood of N[u] but cannot locate the
location, then we are interested in the identifying code, as studied in [6]. The identifying
code I is a vertex subset of VG which dominates G, and for any u, v ∈ VG, the relation
N[u] ∪ S 6= N[v] ∪ S holds.

The following result obtained by [7,8] presents the lower bound for the open locating-
dominating number.

Theorem 1 ([7,8]). Let G be a graph of order n and maximum degree ∆(G). If G has an OLD-set,
then γold(G) obeys

γold(G) ≥ 2n
∆ + 1

.
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This paper continues the study of domination parameters in different rotationally-
symmetric graphs. The binary locating-dominating number denoted as γt

l−d(G), which
is also known as the locating-dominating number, was studied in [9,10] among different
classes of convex polytopes. The open locating-dominating number γold(G) was studied
in [11]. In this paper, motivated by these results, we study the OLD-set with minimum
cardinality and γold(G) values. The graphs considered in this paper are already known
from the literature, and they are rotationally-symmetric. The paper is organized as follows.
In Section 2, we give an improved result for the OLD-set with minimum cardinality and
γold(G) values for cycle graphs. The result is later employed to determine the upper
bounds. In Section 3, the exact values are calculated for the prism graph Dn and the prism-
related graph D∗n. Moreover, in Section 4, the exact values are presented for the graphs
of convex polytopes Rn, and Hn. Section 5 comprises the upper bounds for the classes
of convex polytopes Sn, R′n, An, Qn, Un, and the web graph Wn, respectively. Section 6
provides the conclusions.

2. Main Results
Cycle Graphs

The graphs considered in this paper are generated from cycle graphs. So, we provide
an improved result for the open locating-dominating number of cycle graphs. The cycle
graphs are 2-regular graphs. Mathematically, the vertex set is

V(Cn) = {ep | p = 0, . . . , n− 1}.

The edge set is

E(Cn) = {(ep, ep+1) | p = 0, . . . , n− 2}
⋃
{en−1, e0}.

Lemma 1. For n ≥ 6, we have

γold(Cn ≤
{ ⌈ 2n

3
⌉
, n ≡ 0, 2( mod 3);⌈ 2n

3
⌉
+ 1 n ≡ 1( mod 3).

Proof. To show the upper bound, we define the set S.
The following three cases are presented.

Case 1: When n = 3q, and q ≥ 2; let S = {e3p+1, e3p+2 | p = 0, . . . , q− 1}.
Case 2: When n = 3q + 1, and q ≥ 2; let S = {e3p, e3p+1 | p = 0, . . . , q− 1} ∪ {e3q−1, e3q}.
Case 3: When n = 3q + 2, and q ≥ 2; let S = {e3p, e3p+1 | p = 0, . . . , q− 1} ∪ {e3q, e3q+1}.

Table 1 shows that for any vertex v ∈ VG the corresponding S ∩ N(v) are non-empty
and mutually distinct. Thus, we have

|S| =
{ ⌈ 2n

3
⌉
, n ≡ 0, 2( mod 3);⌈ 2n

3
⌉
+ 1 n ≡ 1( mod 3).

We obtain that

γold(Cn) ≤
{ ⌈ 2n

3
⌉
, n ≡ 0, 2( mod 3);⌈ 2n

3
⌉
+ 1 n ≡ 1( mod 3).

The authors of [12] have shown the OLD-set for the cycle graph Cn and the OLD-
values, γold(Cn) =

⌈ 2n
3
⌉
. For n ≡ 1(mod3), they proved that the set S = {3i − 2, 3i −

1 : 1 ≤ i ≤ k} ∪ {n − 1}. Now, let us consider the cycle graph C13. Let the set S =
{e1, e2, e4, e5, e7, e8, e10, e11, e12}. Table 2 clearly shows that S ∩ N(10) = S ∩ N(12) = {e11}.
In general, it can be written as S ∩ N(e3k−2) = S ∩ N(e3k) = {e3k−1}, thus proving that the
cardinality of open locating-dominating values for n ≡ 1(mod3) 6= d 2n

3 e.
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Table 1. Open locating-dominating vertices in Cn.

n v S ∩ N(v) v S ∩ N(v)
3q e3p+1 {e3p+2} e3p+2 {e3p+1}

e3p+3(p = 0, . . . , q− 2) {e3p+2, e3p+4}(p = 0, . . . , q− 2) e0 {e1, e3q−1}
3q + 1 e3p+1(p = 0, . . . , q− 2) {e3p}(p = 0, . . . , q− 2) e3p+2 {e3p+1, e3p+3}

e3p+3 {e3p+4} e3q−2 {e3q−3, e3q−1}
e3q {e3q−1, e0} e0 {e1, e3q}

3q + 2 e3p+1 {e3p} e3p+2 {e3p+1, e3p+3}
e3p+3(p = 0, . . . , q− 2) {e3p+4}(p = 0, . . . , q− 2) e0 {e1, e3q+1}

e3q+1 {e3q, e0}

Table 2. Open locating-dominating vertices in C13.

n v ∈ V S ∩ N(v) v ∈ V S ∩ N(v)
C13 e1 {e2} e2 {e1}

e3 {e2, e4} e4 {e5}
e5 {e4} e6 {e5, e7}
e7 {e8} e8 {e7}
e9 {e8, e10} e10 {e11}
e11 {e10, e12} e12 {e11}
e13 {e12, e1}

The following conjecture is presented.

Conjecture 1.

γold(Cn) =

{ ⌈ 2n
3
⌉
, n ≡ 0, 2( mod 3);⌈ 2n

3
⌉
+ 1 n ≡ 1( mod 3).

3. Exact Values
3.1. The Graph of Prism DN

The prism Dn is a 3-regular graph, as seen in Figure 1. It was studied in [13], and re-
cently, this graph has been studied for the mixed metric dimension in [14]. The prism graph
is generated by the Cartesian product of a cycle graph Cn and a path graph P2. The outer
cycle comprises f0, f1, . . . , fn−1 vertices and an inner cycle e0, e1, . . . , en−1.

The vertex set of Dn is

V(Dn) = {ep, fp | p = 0, . . . , n− 1}.

The edge set of Dn is

E(Dn) = {(ep, ep+1), (ep, ep−1), , (ep, fp), ( fp, fp+1), ( fp, fp−1) | p = 0, . . . , n− 1}.

e0

e1 en-2

en-1

f1 f
n-2

f0 fn-1

Figure 1. The graph of Dn.
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Theorem 2. For n ≥ 6, the γold(Dn) is

γold(Dn) = n

Proof. The prism graph Dn is a 3-regular graph. So, by Theorem 1, we have

γold(Dn) ≥
⌈

2(2n)
4

⌉
= n.

Let S = { fp|p = 0, 1, . . . , n− 1}. It can be seen that all the intersections S ∩ N(ep) =
{ fp}; S ∩ N( fp) = { fp−1, fp+1} are non-empty and distinct. Since the set S is an open
locating-dominating set of the prism graph Dn, we have S = |n|. Therefore, it can be
deduced that γold(Dn) ≤ n. Keeping in mind the fact that we have γold(Dn) ≥ n, it is
proven that γold(Dn) = n.

3.2. The Prism Related Graph D∗N

The plane graph D∗n, as seen in Figure 2, has been recently studied in [15]. It is an
extension of the prism graph Dn. The D∗n is constructed. It is obtained by inserting a
new vertex gp in the central vertices fp−1 and fp of the external cycle with the vertex gp by
joining the two vertices fp−1 and fp for 0 ≤ p ≤ n− 1. For the sake of simplicity, f0 = fn−1.
The set of vertices ep, fp and gp, are called internal, central and external vertices. The vertex
set of D∗n is

V(D∗n) = {ep, fp, gp | p = 0, . . . , n− 1}

and the edge set of D∗n is

E(D∗n) = {(ep, ep+1), (ep, ep−1), (ep, fp), ( fp, fp+1), ( fp, fp−1), ( fp, gp), ( fp, gp+1), | p = 0, . . . , n− 1}.

0e
1e

2e
n-1e

n-2e

0
g

0f
1f

2f

n-1f

n-2f

1
g

2
g

3
g

n-1
g

n-2
g

Figure 2. The graph of D∗n.

Theorem 3. For n ≥ 4, the γold(D∗n) is given as

γold(D∗n) = n

Proof. The plane graph D∗n is the graph with the maximum degree five. Then, by
Theorem 1, we have

γold(D∗n) ≥
⌈

2(3n)
6

⌉
= n.

Let S = { fp|p = 0, 1, . . . , n − 1}. It can be clearly seen that S ∩ N(ep) = { fp},
S ∩ N( fp) = { fp−1, fp+1}, S ∩ N(gp) = { fp−1, fp} are non-empty and distinct. Since the
set S is an open locating-dominating set of the prism-related graph D∗n, we have S = |n|.
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Therefore, it can be deduced that γold(D∗n) ≤ n. Keeping in mind the fact that we have
γold(D∗n) ≥ n, it is proven that γold(D∗n) = n.

4. Exact Values of Convex Polytopes
4.1. The Graph of Convex PolytopesRn

The labeling problem of Bn (n ≥ 3), the graph associated with a family of convex
polytopes, was studied by Bača [16] (n ≥ 3). It is shown in Figure 3.

Figure 3. The graph of convex polytope Bn.

Miller et al. [17] studied different variations of Bn by describing its dual, and the dual
G represented as du(G), for a given planar graph. The construction of G is performed by
adding a vertex in the internal face of G. If their corresponding faces share an edge, then it
should be joined. This new polytope is represented as Rn. The family of graphs Rn can
be generated from the graph of Dn when a layer of hexagons is added between the two
pentagonal layers. The graph of Dn can be viewed in Figure 4.

Figure 4. The graph of convex polytope Dn.

The graph of a convex polytopeRn, as shown in Figure 5, consists of 2n 5-sided faces,
n 6-sided faces, and n-sided faces, as studied in Miller et al. [17]. The vertex set ofRn is

V(Rn) = {ep, fp, gp, hp, ip, jp | p = 0, . . . , n− 1}.
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The edge set ofRn is

E(Rn) = {epep−1, epep+1, ep fp, fpgp−1, fpgp, gphp, hpip,

hpip+1, ipgp, jp jp−1, jp jp+1 | p = 0, . . . , n− 1}.

e0e1

e2

en-1

en-2

f0
f1

f2

fn-1

fn-2

j
0

g
0

g
1

g
n-1

g
n-2

h0

h1

hn-1

hn-2

i1

i2

in-1

in-2

i0

j
1

j
2

j
n-1

j
n-2

Figure 5. The graph of convex polytopeRn.

Theorem 4. For n ≥ 6, we have
γold(Rn) = 3n

Proof. The graph of the convex polytope Rn is a 3-regular graph of degree 3. Then, by
Theorem 1, we have γold(Rn) ≥

⌈ 2(6n)
4
⌉
= 3n.

Let S = {ep, hp, ip|p = 0, 1, . . . , n− 1}.

The Table 3 clearly shows that the intersections are non-empty and distinct.

Table 3. Open locating-dominating vertices inRn.

v S ∩ N(v)
ep {ep−1, ep+1}
fp {ep}
gp {hp}
hp {ip, ip+1}
ip {hp−1, hp}
jp {ip}

So, the set S is an OLD-set ofRn. So, |S| = 3n, and therefore, γold(Rn) ≤ 3n. On the
other hand, γold(Rn) ≥ 3n. So, from all the above facts, it follows that γold(Rn) = 3n.

The extension of the graph Dn yields more families of regular graphs of convex
polytopes by preserving the symmetric relation as shown in the Figure 6.

Figure 6. Extension of the graph Dn.
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4.2. The Graph of Convex PolytopeHn

Now, we study further variations of Dn and the open locating-domination number for
this family of graphs. In a similar fashion to Miller et al. [17],Hn is obtained by adding an
extra layer of hexagons in between the lower hexagonal layer and the outer pentagonal
layer, as seen in Figure 7. The graph ofHn consists of 2n pentagonal and hexagonal faces
and also a pair of n-gonal faces.

The vertex set is

V(Hn) = {ep, fp, gp, hp, ip, jp, kp, lp | p = 0, . . . , n− 1}.

The edge set is

E(Hn) = {epep−1, epep+1, ep fp, fpgp, fpgp−1,

gphp, hpip, hpip+1, ip jp, jpkp−1,

jpkp, kplp, lplp−1, lpip+1 | p = 0, 1, . . . , n− 1.}

Now, we will validate the vertex and the edge set of the graph Hn by fixing n = 6,
and draw the graphH6.

The vertex set ofH6 is

V(H6) = {e0, . . . , e5, f0, . . . , f5, g0, . . . , g5, h0, . . . , h5, i0, . . . , i5, j0, . . . , j5, k0, . . . , k5, l0, . . . , l5}.

The edge set ofH6 is

E(H6) = {e0e1, e1e2, e2e3, e3e4, e4e5, e5e0, e0 f0, e1 f1, e2 f2, e3 f3, e4 f4, e5 f5, f0g0, f1g1, f2g2, f3g3, f4g4, f5g5,

f0g5, f1g0, f2g1, f3g2, f4g3, f5g4, g0h0, g1h1, g2h2, g3h3, g4h4, g5h5, i0h0, i1h1, i2h2, i3h3,

i4h4, i5h5, i0h5, i1h0, i2h1, i3h2, i4h3, i5h4, i0 j0, i1 j1, i2 j2, i3 j3, i4 j4, i5 j5, j0k0,

j1k1, j2k2, j3k3, j4k4, j5k5, j0k5, j1k0, j2k1, j3k2, j4k3, j5k4, k0l0, k1l1, k2l2, k3l3,

k4l4, k5l5, l0l1, l1l2, l2l3, l3l4, l4l5, l5l0}.

The graph of the convex polytopeH6 is constructed by using the vertex and edge sets
as shown in Figure 8.

Figure 7. The graph of convex polytopeHn.

Theorem 5. For n ≥ 8, we have
γold(Hn) = 4n

Proof. The graph of the convex polytope Hn is a 3-regular graph of degree 3. Then, by

Theorem 1, we have γold(Hn) ≥
⌈

2(8n)
4

⌉
= 4n.

Let S = {ep, hp, ip, lp|p = 0, 1, . . . , n− 1}.
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e0e1
e2 e3

e4

e5

f0
f1

f2

f3

f4

f5
g
0

g
1

g
2

g
3

g
4

g
5

h0

h1

h2 h3

h4

h5

i0

i1

i2

i3

i4

i5

j0

j
1

j2

j3

j4

j5

k0

k1

k2 k3

k4

k5

l0

l1

l2 l3

l4

l5

Figure 8. The graph of convex polytopeH6.

The Table 4 clearly shows that the intersections are non-empty and distinct.

Table 4. Open locating-dominating vertices inHn.

v S ∩ N(v)
ep {ep−1, ep+1}
fp {ep}
gp {hp}
hp {ip, ip+1}
ip {hp−1, hp}
jp {ip}
kp {lp}
lp {lp+1, lp−1}

So, the set S is an open locating-dominating set of Hn. So, |S| = 4n, and therefore,
γold(Hn) ≤ 4n. On the other hand, γold(Hn) ≥ 4n. From all these above facts, it follows
that γold(Hn) = 4n.

Remark. Further extension of the graph Dn, as seen in Figure 6, yields more classes of regular
convex polytopes, and we claim that all these families of convex polytopes have exact values for the
open locating-dominating number.

5. Upper Bounds
5.1. The Graph of Convex Polytope Sn

The graph of the convex polytope Sn is composed of 2n trigonal, 2n 4-gonal and a pair
of n-sided faces. A recent study for this class of convex polytopes has been carried out
in [18], see Figure 9. Now, the vertex set of Sn is

V(Sn) = {ep, fp, gp, hp | p = 0, . . . , n− 1}.

The edge set of Sn is

E(Sn) = {epep+1, epep−1, ep fp, ep, fp−1, fp, fp+1 | p = 0, . . . , n− 1} ∪
{ fp fp−1, fpgp, gpgp+1, gpgp−1, gphp, hphp+1, hphp−1 | p = 0, . . . , n− 1}.

An upper bound is presented for Sn.
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Theorem 6. For n ≥ 6, for the graph of the convex polytope Sn, we have

γold(Sn) ≤
{ ⌈ 5n

3
⌉
, n ≡ 0, 2( mod 3);⌈ 5n

3
⌉
+ 1, n ≡ 1( mod 3).

Proof. We consider three cases.
Case 1: When n = 3q, and q ≥ 2. Let S = { fp | p = 0, . . . , n− 1} ∪ {h3p+1, h3p+2 | p = 0,
. . . , q− 1}.
Case 2: When n = 3q + 1, and q ≥ 2. Let S = { fp | p = 0, . . . , n− 1} ∪ {h3p, h3p+1 | p = 0,
. . . , q− 1} ∪ {h3q−1, h3q}.
Case 3: When n = 3q + 2, and q ≥ 2. Let S = { fp | p = 0, . . . , n− 1} ∪ {h3p, h3p+1 | p = 0,
. . . , q− 1} ∪ {h3q, h3q+1}.

0h

0e
1e

2e
n-1e

n-2e

0f

1f

n-1f

n-2f

n-3f

0
g

1
g

n-1
g

n-2g

n-3
g

1h

n-1h

n-2h

n-3h

Figure 9. The graph of convex polytope Sn.

The Table 5 clearly shows that in all these cases the intersections are non-empty
and distinct.

Table 5. Open locating-dominating vertices in Sn.

n v S ∩ N(v)

3q ep { fp−1, fp}(p = 0, . . . , n− 1)
fp { fp−1, fp+1}(p = 0, . . . , n− 1)

g3p { f3p}
g3p+1 { f3p+1, h3p+1}
g3p+2 { f3p+2, h3p+2}
h3p+1 {h3p+2}
h3p+2 {h3p+1}

h3p+3(p = 0, . . . , q− 2) {h3p+2, h3p+4}(p = 0, . . . , q− 2)
h0 {h1, h3q−1}

3q + 1 ep { fp−1, fp}(p = 0, . . . , n− 1)
fp { fp−1, fp+1}(p = 0, . . . , n− 1)

g3p(p = 0, . . . , q) { f3p, h3p}(p = 0, . . . , q)
g3p+1 { f3p+1, h3p+1}

g3p+2(p = 0, . . . , q− 2) { f3p+2}(p = 0, . . . , q− 2)
h3p+1(p = 0, . . . , q− 2) {h3p}(p = 0, . . . , q− 2)

h3p+2 {h3p+1, h3p+3}
h3p+3 {h3p+4}
g3q−1 { f3q−1, h3q−1}
h3q−2 {h3q−3, h3q−1}

h3q {h3q−1, h0}
h0 {h1, h3q}
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Table 5. Cont.

n v S ∩ N(v)

3q + 2 ep { fp−1, fp}(p = 0, . . . , n− 1)
fp { fp−1, fp+1}(p = 0, . . . , n− 1)

g3p(p = 0, . . . , q) { f3p, h3p}(p = 0, . . . , q)
g3p+1(p = 0, . . . , q) { f3p+1, h3p+1}(p = 0, . . . , q)

g3p+2 { f3p+2}
h3p+1 {h3p}
h3p+2 {h3p+1, h3p+3}
h3p+3 {h3p+4}

h0 {h3q+1, h1}
h3q+1 {h3q, h0}

5.2. The Graph of Convex PolytopeR′n
The graph of the convex polytopeR′n consists of 2n 3-sided faces, n 4-sided faces, n

6-sided faces, trigonal faces, and a pair of n-sided faces, as studied [19].The notation for
this class of convex polytopes is Rn and, to avoid ambiguity, we use R′n, see Figure 10.
Mathematically, the vertex set ofR′n is

V(R′n) = {ep, fp, gp, hp, ip | p = 0, . . . , n− 1}.

The edge setR′n is

E(R′n) = {epep+1, epep−1, ep fp, ep, fp−1, fp, gp} ∪
{gphp, gphp+1, hphp−1, hphp+1, hpip, ipip+1, ipip−1 | p = 0, . . . , n− 1}.

Theorem 7. For n ≥ 6, the graph of the convex polytopeR′n,

γold(R′n) ≤ 2n.

e0e1

e2

en-1

en-2

i0

f0

f1

fn-1

fn-2

fn-3

g
0

g1

g
n-1

g
n-2

gn-3

h0

h1 hn-1

hn-2

i1 in-1

in-2

Figure 10. The graph of convex polytopeR′n.

Proof. Let S = {ep, hp|p = 0, 1, . . . , n− 1}.
It can be clearly seen from Table 6 that all the intersections of vertices with the set S

are non-empty and distinct. So, S = |2n|, and thus, R′n ≤ 2n. Therefore, we obtain that
γold(R′n) ≤ 2n.

Theorem 8. (i ) For n ≥ 6, the graph of convex polytopes An,

γold(An) ≤ n− 1.
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(ii) For n ≥ 6, the web graph Wn,

γold(Wn) ≤
{ ⌈ 3n

2
⌉
, n ≡ 0, 1, 3( mod 4);⌈ 3n

2
⌉
+ 1 n ≡ 2( mod 4).

(iii) For n ≥ 6, the graph of convex polytopes Qn,

γold(Qn) ≤
{ ⌈ 5n

3
⌉
, n ≡ 0, 2 ( mod 3);⌈ 5n

3
⌉
+ 1 n ≡ 1 ( mod 3).

(iv) For n ≥ 6, the graph of convex polytopes Un,

γold(Un) ≤
{ ⌈ 8n

3
⌉
, n ≡ 0, 2( mod 3);⌈ 8n

3
⌉
+ 1 n ≡ 1( mod 3).

Table 6. Open locating-dominating vertices inR′n.

v S ∩ N(v)
ep {ep−1, ep+1}
fp {ep, ep+1}
gp {hp, hp+1}
hp {hp−1, hp+1}
ip {hp}

Proof. The proofs for the graphs of An, Wn, Qn, and Un are similar. For the structural
properties of these graphs, see Figure 11.

Figure 11. (a) The graph of convex polytope An. (b) The graph of convex polytope Qn. (c) The web
graph Wn. (d) The graph of convex polytope Un.

6. Conclusions

In this paper, we improved the result for the OLD-set and the value of γold(Cn)
cycle graphs when n ≡ 1(mod3). The exact values of γold(G) for the graphs of prism Dn,
and prism-related graphs D∗n are attained. Furthermore, the exact values are also attained
for the graphs of the convex polytopesRn andHn. The upper bounds are computed for
the graphs of the convex polytopes Sn,R′n, An,Qn, and Un and also for the web graph Wn.

Future research can focus on the different invariants of domination-related parameters
for the classes of convex polytopes. The open locating-dominating set can be considered
for more challenging classes of graphs.
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