
mathematics

Article

A Kronecker Algebra Formulation for Markov Activity
Networks with Phase-Type Distributions

Alessio Angius 1, András Horváth 2,* and Marcello Urgo 3

����������
�������

Citation: Angius, A.; Horváth, A.;

Urgo, M. A Kronecker Algebra

Formulation for Markov Activity

Networks with Phase-Type

Distributions. Mathematics 2021, 9,

1404. https://doi.org/10.3390/

math9121404

Academic Editors: Chin-Chia Wu and

Win-Chin Lin

Received: 1 June 2021

Accepted: 12 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Enerbrain, 10132 Turin, Italy; alessio.angius.research@gmail.com
2 Computer Science Department, University of Turin, 10149 Turin, Italy
3 Mechanical Engineering Department, Polytechnic University of Milan, 20133 Milan, Italy;

marcello.urgo@polimi.it
* Correspondence: horvath@di.unito.it

Abstract: The application of theoretical scheduling approaches to the real world quite often crashes
into the need to cope with uncertain events and incomplete information. Stochastic scheduling
approaches exploiting Markov models have been proposed for this class of problems with the
limitation to exponential durations. Phase-type approximations provide a tool to overcome this
limitation. This paper proposes a general approach for using phase-type distributions to model the
execution of a network of activities with generally distributed durations through a Markov chain. An
analytical representation of the infinitesimal generator of the Markov chain in terms of Kronecker
algebra is proposed, providing a general formulation for this class of problems and supporting more
efficient computation methods. This entails the capability to address stochastic scheduling in terms of
the estimation of the distribution of common objective functions (i.e., makespan, lateness), enabling
the use of risk measures to address robustness.

Keywords: stochastic makespan; markov activity network; phase-type distribution

1. Introduction

In the application of scheduling to real planning problems, such as industrial pro-
duction, research and development, or software development, uncertainty or incomplete
information are inevitably present. Deviations from what was planned can be due to a
wide range of possible disturbances, both internal and external, affecting the execution of
the scheduled activities. Among the most common source of disturbances are activities
taking more or less than originally estimated, machine breakdowns, worker absenteeism,
delayed supplies of materials and/or components, and so forth. A disrupted schedule quite
often entails a cost due to missed due dates, resource idleness, a higher work-in-process
inventory, or scarce utilization of the available resources.

Scheduling approaches should be able to cope with this uncertainty, such as exploiting
stochastic models [1]. A specific class of approaches aims at providing a robust schedule,
such as a schedule incorporating a protection, at least to a certain extent, against the possible
occurrence of uncertain events. Robust scheduling approaches are based on a stochastic
model for the objective function to optimize, and quite often require the calculation of
the associated stochastic distribution. Nevertheless, this is a difficult problem to solve;
hence, many approaches have been proposed to provide exact estimations, approximations,
bounds or heuristic methods to cope with this problem. In this paper, grounded on the
results in [2], we exploit a Markov chain to model the execution of a stochastic program
evaluation and review technique (PERT) network; moreover, exploiting the approximation
of phase-type (PH) distributions, we extend this model to generally distributed durations of
the activity and general phase-type forms, thus generalizing the preliminary formalization
described in [3] through the Kronecker algebra. This formal approach allows significant
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benefits in comparison with the existing approaches in the literature exploiting phase-
type approximations [3–6]. In fact, it allows the embedding of PH distributions that are
able to reach high/low coefficients of variations and higher-moment-matching with a
number of phases that are smaller, compared to other phase-type subclasses. In addition, it
provides a compact expression of the infinitesimal generator of the resulting continuous
time Markov chain (CTMC), exploiting Kronecker algebra, without the need of explicitly
enumerating all the possible states. Thank to this, it is possible to tackle the problem
avoiding an uncontrollable increase of the dimension of the state space governing the
Markov chain, which is typical when phase-type distributions are used to model multiple
activities executed in parallel. Moreover, this also supports the definition of efficient
and modular calculation strategies to solve the Markov chain and, hence, estimate the
distribution of its time to absorption, that is, the makespan of the PERT network [7–9]. A
test of the proposed approach and calculation method is provided, to assess the possibility
to use phase-type distributions to approximate generally distributed stochastic durations
with a reasonable number of phases.

The paper is organized as follows: Section 2 addresses the related literature, Section 3
describes Markov activity networks, while Sections 4 and 5 address phase-type distribu-
tions and their embedding in Markov activity networks, respectively. Section 6 shows how
to deal with phase-type distributions in Markov activity networks using Kronecker algebra,
and in Section 7 we report on several numerical experiments with the proposed approach.
The paper is concluded in Section 8.

2. State of the Art

The literature related to stochastic scheduling mostly addresses scheduling problems
where the duration of the jobs are modeled as random variables. A first class of approaches
focuses on analytical approaches, with the aim of developing proper scheduling policies.
To this aim, different classes of policies have been investigated together with their per-
formance in the stochastic version of the considered scheduling problem. With the aim
not to constrain the analysis to specific scheduling problems, we will address the project
scheduling approaches as a generalization of any schedule problem. A network of activities
with stochastic durations is often referred to as a stochastic PERT network. In this field, pres-
elective policies have been proposed in [10,11] and further developed in [12]. Based on these
theoretical results, specific dominance rules have been proposed by [12,13] and exploited
by [13] in branch-and-bound algorithms for the optimization of the expected makespan.

Although being a reasonable objective function, the expected value of the makespan,
as well as any other objective function addressed in terms of its expected value, does
not entirely model the stochastic nature of the problem. In fact, minimizing the expected
makespan aims at ensuring an average good performance, but does not protect against the
worst case scenario if their probability is low [14–17]. A balanced compromise between
values and the impact of rare but unfavourable events typically requires knowledge of the
distribution of the objective function under study.

However, this problem has been demonstrated to be hard to solve in general [18];
hence, numerous approaches have been proposed to provide proper bounds to the distri-
bution function [19,20]. For this reason, heuristics approaches for this class of problems
have been proposed by many authors, where some examples are [21,22].

Under the hypothesis that the durations are independent and exponentially dis-
tributed, ref. [2] developed an exact approach for the calculation of the distribution of the
makespan using a continuous-time Markov chain (CTMC) model. This approach has been
a starting point for the work of many authors [23,24] exploiting the exponential distribution
to support the analysis of the execution of the activities in the network in terms of net
present value (NPV).

A different approach is to include in the model phase-type (PH) distributions which
allow to approximate the behavior of general distributions by preserving the Markov
property. Their use to provide an approximation to generic distributed activity durations
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in terms of a mixture of exponential distributions have been addressed by [25] and further
developed in [3], where a preliminary analytical formulation of the problem has been
provided for a generic network of activities. A further step to develop a framework
based on PH distributions was taken in [26], which is the starting point of this article.
Similar concepts have been used in [5,6] including resource constraints. Nevertheless, the
author limits the analysis to phase-type subclasses (i.e., Cox and Erlang). Although these
subclasses are capable of approximating a wide range of distributions, they cannot cope
with high/low coefficients of variations and higher-moment-matching with a limited
number of phases.

The use of PH distributions is interesting, since they allow the fitting of non-Markov
distributions by means of Markov chains. Hence, PH distributions can be used as build-
ing blocks for the construction of Markov processes that embed generally distributed
transitions instead of exponential only. Since PH distributions are fully described by a
Markov chain, they preserve the Markov property, although the model dynamics are not
memoryless anymore. As a consequence, the resulting model is able to match more realistic
cases, but can still be modeled and solved using numerical methods designed for Markov
chains whose performances are good from a computational point of view.

The class of PH distributions is dense in the field of distributions with a positive
domain, that is, any distribution in this class can be approximated by PH distributions with
any given accuracy, provided that a suitable number of phases is used. This fact, however,
does not directly provide a practical method to fit distributions by PH distributions. Several
authors proposed fitting methods, and most of these fall into two categories: maximum
likelihood (ML)-based estimation of the parameters and moment-matching techniques.

One of the first works on ML estimation considered acyclic PH distributions [27],
while an approach for the whole family, based on the expectation-maximization method, is
proposed in [28]. Since these early papers, many new methods and improvements have
been suggested for the whole PH family and for its sub-classes.

For what concerns moment-matching, for low-order (≤3) PH distributions, moment
bounds and moment-matching formulas are either known in an explicit form, or there exist
iterative numerical methods to check if given moments can be captured [29,30]. For higher-
order ones, there exist matching algorithms, but these often result in improper density
functions and the validity check is a non-trivial problem.

In [31], a simple method is provided that constructs a minimal-order acyclic PH
distribution given three moments. Tool support is available for the construction of PH and
ME distributions. Specifically, ML-based fitting is implemented in the software package
PhFit [32], and a set of moment-matching functions is provided in the software package
BuTools [33].

Although promising and useful in modeling general distributions for activity dura-
tions, the approximation through phase-types also has drawbacks. The main one is the
considerable increase in terms of number of phases and, consequently, in terms of the
states of the comprehensive Markov chain and the associated computational time. To cope
with this issue, the use of Kronecker algebra to formalize the Markov model allows the
exploitation of numerical methods able to operate the computation of the models without
the need to explicitly build the whole infinitesimal generator [7–9].

3. Markov Activity Networks

The presented formulation of the scheduling problem grounds on the the formal-
ization proposed in [2] to define a Markov activity network (MAN), that is, a Markov
model describing the execution of a set of different activities whose durations follow an
exponential distribution and are linked by precedence relations. Given that (i) the durations
of the activities are mutually independent and (ii) exponentially distributed, the execution
of the activity network can be represented through a CTMC.

The model is conveniently described by means of an Activity-on-Arc (AoA) network
(V , E) where V is a set of vertices describing the precedences and E is a set of edges
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corresponding to the activities. The number of vertices is denoted with N, whereas K refers
to the number of edges. Since each edge corresponds to an activity, the total number of
activities composing the task is equal to K as well. Given a vertex v, A+

v and A−v indicate
the set of incoming and outgoing edges, respectively.

The graph also contains one root vertex without ingoing arcs (A+
v1

= ∅) and one
termination vertex without outgoing arcs (A−vN

= ∅). These two vertices are connected by
at least one path, while no cycle can exist in the whole network to guarantee the network
to be acyclic. In the following, the root vertex will be referred to as v1 and the termination
vertex as vN . The semantic of the model is such that:

1. A−v1
contains those activities without dependencies that can start as soon as the

execution of the network begins;
2. The set of activities that departs from a vertex corresponds to A−v , and they directly

depend on A+
v ;

3. Activities start as soon as all of the preceding activities are completed; this means that
there is no time span between the end of an activity and the start of its successors;

4. Activities are never preempted and there is no limit to the number of activities that
can be executed in parallel, that is, no resource constraint is enforced;

5. The duration of each activity i is modeled as a continuous distribution Xi.

To provide an example, let us consider the activity network in Figure 1 with four
vertices and five arcs, that is, modelling the processing of five activities. The execution of
the network starts with the parallel processing of activities 1 and 2, since they belong toA−v1

.
As activity 1 is completed, activities 3 and 4 can start since vertexA+

v2
only contains activity

1. Activity 5 can start only if both 2 and 3 have been completed, because A+
v3

contains 2
and 3. Finally, when activities 4 and 5 are completed, the entire network is also completed
because vertex v4 does not have any outgoing arc.

v1

v3

v2

v4

1

2

3

4

5

Figure 1. An activity network.

Because of the assumptions described above, the dynamics of an activity network
can be described by a discrete-state stochastic process whose state corresponds to a vector
s = |s1, . . . , sK| where each entry si, 1 ≤ i ≤ K refers to an activity and can assume the
values Pending (P), Running (R), and Terminated (T). Entry si is equal to P if activity i is
waiting for its predecessors to complete and be allowed to start; it is equal to R if activity i
is being executed; finally, it is equal to T if activity i has been completed.

The execution of the activities in the network can be modeled through a sequence of
states whose transitions are triggered by the completion of a single activity and the number
of transitions that departs from a state s is always equal to the number of activities that are
running in s. Let f (s, s′, i) be an indicator function that is equal to one when a transition
between a state s and a state s′ is possible by means of the termination of the ith activity.
Then, we have:

f (s, s′, i) =

{
1 (si = R ∧ s′i = T)

∧
j 6=i

[
(sj = s′j) ∨ (sj = P ∧ s′j = R ∧ d(s, j) = {i})

]
0 otherwise;

(1)

where d(s, j) is a function that returns the set of activities that have to be completed to
start activity j but are not yet finished in state s. The condition in Equation (1) consists
of two terms. The first term, (si = R ∧ s′i = T), refers to the activity that causes the
transition, therefore activity i must be running in s and it must be finished in state s′.



Mathematics 2021, 9, 1404 5 of 22

The second term refers to all the other activities defining two possible compatible scenarios.
The first one, (sj = s′j), refers to activities not changing their status moving from s to
s′, that is, running activities keep running while completed activities remain completed.
Nevertheless, the start of some activities could be triggered by the completion of activity
i, hence, (sj = P ∧ s′j = R) ∧ d(s, j) = {i} states that there could be an activity j moving
from state P to R, but this is possible only if activity i was the only one blocking the start of
activity j.

The state transition graph of the stochastic process can be generated based on the
conditions in (1). Specifically, starting from an initial state where all the activities are
pending but those in A+

v1
, all the possible states can be generated enumerating the comple-

tion of each of the running activities, one at time. As all the states have been generated,
the procedure necessarily reaches the ending state where all activities are terminated
and stop.

Figure 2 provides an example of the state transition graph for the network in Figure 1.
Within each node, the status of the system is defined, for example, the node on the right
is the starting node where activities 1 and 2 are running, while the others are pending,
that is, |R, R, P, P, P|. The labels on the arcs indicate the activity, hence, the arc labeled
with 1 connects the state with the one representing the state of the system when activity
1 has been completed; that is, activity 4 and 5 can start and the new state is labeled as
|T, R, R, R, P|. The last state on the right is the absorbing one, where all the activities are
completed, |T, T, T, T, T|.

The state transition graph in Figure 2 has some properties: (i) it contains all the possible
paths between the initial state and an absorbing one where all the activities are completed;
(ii) the length of these paths is constant and equal to K because each of these paths represent
a different ordering for the completion of the activities in the network; (iii) the graph does
not contain cycles and all its states are transient, except for the absorbing one |T, T, . . . , T|.

R,R, P, P, P

R, T, P, P, P T, T,R,R, P T, T,R, T, P T, T, T,R, T

T,R,R, T, P T, T, T,R,R T, T, T, T, T

T,R,R,R, P T,R, T,R, P T,R, T, T, P T, T, T, T,R

1

1

2

2

4

3

2

4

3 4 2

4
3

5

4

3

2

5

Figure 2. State transition graph of the stochastic process for the network of activities in Figure 1.

As claimed at the beginning of the paragraph, under the assumption that the durations
of the activities are modelled with exponential distributions, that is, Xi ∼ exp(λi), 1 ≤
i ≤ K, where 1/λi is the average time of the activity and the activity network is a MAN.
The state transition graph in Figure 2 is the support for the definition of a CTMC whose
dynamics are described by a set of ordinary differential equations with cardinality equal to
the number of states composing the process.

Assuming π(s, t) to be the probability to find the process in state s at time t, each
equation has the following structure:

dπ(s, t)
dt

= − ∑
∀i: si=R

π(s, t)λi + ∑
∀s′ ,i: f (s,s′ ,i)=1

π(s′, t)λi. (2)

Assuming that all the state probabilities π(s, t) are collected in a vector π(t) and all
the transitions are grouped in an infinitesimal generator matrix Q, the solution of the
ODE system described in Equation (2) is given by π(t) = π(0) exp(tQ) and the entry of
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π(t) that corresponds to π(|T, T, . . . , T|, t) contains the cumulative distribution of the time
to absorption of the CTMC, that is, the distribution of the makespan of the network of
activities. The term π(0) is the initial probability vector whose entries are all equal to zero,
but the one referring to the initial state whose probability is 1.0. The function exp(•) is the
matrix exponential, whose computation is a common problem whose solution can take
advantage of a wide range of efficient and numerically safe methods (e.g., [34]).

As an example, Table 1 reports the infinitesimal generator for the model in Figure 1.
The infinitesimal generator is a matrix describing the state transition graph in Figure 2.
For each possible transition from a state to another, the infinitesimal generator contains
the rate of the activity causing the transition. The values on the diagonal, on the contrary,
correspond to the sum of all the rates going out from the state called intensity. The initial
activities are 1 and 2, thus, the initial state is |R, R, P, P, P|, with π(|R, R, P, P, P|, 0) = 1,
since it is the only nonzero entry of π(0).

Table 1. Infinitesimal generator of the CTMC describing the execution of the activity network in Figure 1. Due to space
constraints, row labels have not been included (the order of the rows is the same as that of the columns). For the same
reason, commas have not been used to separate the entries of each state.

RRPPP TRRRP TRRTP TRTTP RTPPP TRTRP TTRRP TTRTP TTTTR TTTRR TTTRT TTTTT

−(λ1 +
λ2)

λ1 0 0 λ2 0 0 0 0 0 0 0

0
−(λ2 +

λ3 +
λ4)

λ4 0 0 λ3 λ2 0 0 0 0 0

0 0 −(λ2 +
λ3)

λ3 0 0 0 λ2 0 0 0 0

0 0 0 −λ2 0 0 0 0 λ3 0 0 0
0 0 0 0 −λ1 0 λ1 0 0 0 0 0

0 0 0 λ4 0 −(λ2 +
λ4)

0 0 0 λ2 0 0

0 0 0 0 0 0 −(λ3 +
λ4)

λ4 0 λ3 0 0

0 0 0 0 0 0 0 −λ3 λ3 0 0 0
0 0 0 0 0 0 0 0 −λ5 0 0 λ5

0 0 0 0 0 0 0 0 t4⊗ I5
−(λ4 +

λ5)
λ5 0

0 0 0 0 0 0 0 0 0 0 −λ4 λ4
0 0 0 0 0 0 0 0 0 0 0 0

Although it provides a considerable advantage in terms of computation, the restriction
to exponentially distributed activity durations represents a limiting hypothesis, specifically
in the application to real industrial processes and, hence, to scheduling.

In the following, we present an extension of a classical MAN taking advantage of
methods available for CTMCs by using a class of distributions able to approximate general
distributions with arbitrary accuracy.

4. Phase-Type Distributions

In the field of Markov models, phase-type (PH) distributions are widely used to pro-
vide an approximation of a general distribution. Basically, a set of inter-related exponential
delays are put together to approximate a general distribution. Formally, a continuous-time
PH distribution is the distribution of the time to absorption of a CTMC, and its order is
given by the number of the contained transient states. Consequently, the PH distribution is
defined through a vector β, providing the initial probabilities of the transient states and a
matrix T containing the intensities of the transitions among the transient states.
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The cumulative distribution function is given by

F(x) = P{X ≤ x} = 1− βeTx1I (3)

whereas the probability density function corresponds to

f (x) = βeTx(−T)1I. (4)

The i-th moment of a PH distribution is equal to

mi = i!β(−T)−i1I, (5)

where 1I denotes a column vector of ones of the same dimension of the T.
PH distributions provide a way to fit a general distribution with a certain degree of

accuracy. It must be noted that a MAN can be seen as a PH distribution; in fact, the time
to absorption in a MAN, usually not exponentially distributed, is represented through a
structure of exponential delays (the execution of each activity) with mutual interactions
(precedence relations among the activities).

As an example, let us consider the CTMC in Figure 3 with four states, three transient
and one absorbing, whose initial probabilities and infinitesimal generator are:

α = |0.5 0.2 0.3 0|, Q =

∣∣∣∣∣∣∣∣
−0.7 0.2 0.5 0
1.2 −2.95 1.5 0.25
2 1 −3.5 0.5
0 0 0 0

∣∣∣∣∣∣∣∣
The entries of α must sum up to one, while the sum of the elements in a row of Q

must be equal to zero. Thus, the representation (α, Q) for this PH distribution is redundant.
A non-redundant representation can be obtained by considering the transient states only,
resulting in:

β = |0.5 0.2 0.3|, T =

∣∣∣∣∣∣
−0.7 0.2 0.5
1.2 −2.95 1.5
2 1 −3.5

∣∣∣∣∣∣ (6)

The structure of the generator T determines the class of the PH distribution and its
capability to catch the moments of the distribution to approximate [35,36]. An exhaustive
description of the possible classes of PH distributions is beyond the scope of this paper.
Nevertheless, it is important to point out that the method presented in the next section
supports the use of any class PH distribution without limitations.

transient states

absorbing state      0.5 0.2

0.3

0.2

1.2

1.5

0.25

0.5

2.0

0.5 1.0

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

Figure 3. Graphical representation of an order of three PH distributions (left) and its probability
density function (right).

5. Markov Activity Networks Enhanced with PH Distributions

In this section, we extend the formalism of MAN to embed the use of PH distributions
and cope with non-exponential durations of the activities, while keeping the advantages
provided by a CTMC model. We assume that the processing time of an activity i is dis-
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tributed according to a PH distribution with representation (βi, Ti), 1 ≤ i ≤ K. Additionally,
in this case we assume that durations of the activities are mutually independent.

Due to this hypothesis, the structure of the CTMC modeling the execution of the
activities is more complicated, because every state of the original model has to be expanded
to consider the sub-states related to the PH model, that is, the aging of the activities in
process. Thus, the execution of the activities progresses according to two levels: a macro
level characterized by the completion of the activities, triggering the start of the execution
of new ones; and the progress among the phases of the PH distribution of each activity
during its execution.

The dynamics of the process modeling the execution of the MAN is still governed by
an ODE system, but the probability of a single state evolves over time, according to the
following differential equation:

π(s, t)
dt

= π(s, t)D(s) + ∑
∀s′ ,i: f (s,s′ ,i)=1

π(s′, t)O(s′, s, i). (7)

where D(•) and O(•, •, •) are matrices describing the transitions within a single state and
between two states, respectively. In particular, D(s) describes the aging of the PH distribu-
tions within state s, that is, the parallel execution of activities that are being processed in s.
In more detail:

D(s) =
⊕
∀i:si=R

Ti

where
⊕

is the Kronecker sum operator. On the contrary, matrix O(s′, s, i) describes the
dynamics triggered by the completion of an activity i and the consequent transition from
state s′ to state s. Thus, the matrix embeds the dynamics related to:

1. The completion of the activity that caused the transition from s′ to s;
2. The memory of the states within the PH for the activities that were running in state s′

and will continue to run in s;
3. The start of activities triggered by the completion of activity i defined by prece-

dence relations.

In formulas, this corresponds to:

O(s′, s, i) =
⊗
∀j∈V

Rj with Rj =


tj if j = i
β j if j 6= i ∧ s′j = P ∧ sj = R
Ij if j 6= i ∧ s′j = R ∧ sj = R
1 otherwise

(8)

In Equation (8),
⊗

denotes the Kronecker product operator iterated over all the
activities in V , and Ij is an identity matrix whose size is equal to the order of the PH
distribution associated with activity j, and tj = −Tj1I.

The value of Rj in Equation (8) is different according to the status of the considered
activity j in s′ and s. If j = i, then activity j is the one that has been completed, and Rj = tj
is a vector that contains the “finishing” intensities of the PH distribution associated to
activity j.

If activity j is starting later due to the completion of activity i, then Rj coincides with
the initial vector of the PH distribution (β j).

If activity j is running in both s′ and s, Rj is equal to the identity matrix Ij.
Finally, if activity j is not active in both s′ and s, Rj is equal to 1 and has no impact in

the Kronecker product.
The initial probability vector of the ODE system requires some reformulations. In fact,

it is now composed of multiple blocks corresponding to phases of the PH distributions,
and it must take into consideration the fact that each of them has its own initial vector.



Mathematics 2021, 9, 1404 9 of 22

Let us assume that s∗ is the initial state; then π(s∗, 0) is equal to
⊗

j:s∗j =R β j and

coincides with the nonzero entries of the initial vector π(0).
The infinitesimal generator for the network in Figure 1, where PH distributions are

used for all the activities, is reported in Table 2. The structure of the matrix is the same as
the exponential case (Table 1). However, the matrix contains sub-matrices instead of scalar
values. Matrices D are placed on the diagonal, since they describe the dynamics within a
given state, where one or more activities are in progress. Matrices O are placed out of the
diagonal, describing the dynamics of the transitions between states.

If we consider state |R, R, P, P, P|, D(|R, R, P, P, P|) = T1⊕T2, modeling the superposi-
tion of the PH distributions active in that state, that is, the ones associated to activities 1 and
2. Additionally, if we consider the transition between state |R, R, P, P, P| and |T, R, R, R, P|,
this is caused by the completion of activity 1, but it must also keep the memory of the PH
distribution of activity 2 (the associated sub-states remain the same during the transition).
Moreover, the completion of activity i also triggers the start of activities 3 and 4. Thus,
O(|R, R, P, P, P|, |T, R, R, R, P|, 1) = t1 ⊗ I2⊗β3⊗β4, with t1 containing the rates character-
izing the completion of activity 1, I2 keeps the memory of activity 2; β3 and β4 initialize
the PH distributions of activities 3 and 4. The initial activities for the whole network are
1 and 2, thus, π(|R, R, P, P, P|, 0) = β1 ⊗ β2. Finally, it is important to point out that the
Kronecker sum and the Kronecker product do not have the commutative property, hence,
the order of the operations must be preserved.

Table 2. Infinitesimal generator of the CTMC enhanced with PH distributions describing the model in Figure 1.

RRPPP TRRRP TRRTP TRTTP RTPPP TRTRP TTRRP TTRTP TTTTR TTTRR TTTRT TTTTT

T1⊕T2
t1⊗ I2⊗
β3⊗β4

0 0 I1⊗t2 0 0 0 0 0 0 0

0 T2⊕
T3⊕T4

I2⊗ I3⊗
t4

0 0 I2⊗t3⊗
I4

t2⊗ I3⊗
I4

0 0 0 0 0

0 0 T2⊕T3 I2⊗t3 0 0 0 t2⊗ I3 0 0 0 0
0 0 0 T2 0 0 0 0 t2⊗β5 0 0 0

0 0 0 0 T1 0 t1⊗
β3⊗β4

0 0 0 0 0

0 0 0 I2⊗t4 0 T2⊕T4 0 0 0 t2⊗ I4⊗
β5

0 0

0 0 0 0 0 0 T3⊕T4 I3⊗t4 0 t3⊗ I4⊗
β5

0 0

0 0 0 0 0 0 0 T3 t3⊗β5 0 0 0
0 0 0 0 0 0 0 0 T5 0 0 t5
0 0 0 0 0 0 0 0 t4⊗ I5 T4⊕T5 I4⊗t5 0
0 0 0 0 0 0 0 0 0 0 T4 t4
0 0 0 0 0 0 0 0 0 0 0 0

6. A Kroncker Algebra Approach for a Markov Activity Network with
PH Distributions

There are several reasons supporting the use of a structured approach based on
Kronecker algebra for the formal description of a Markov activity network enhanced
through PH distributions. The first one, as stated in [37] with respect to matrix-geometric
solutions for stochastic models, is to ensure that the models are in the best and most
natural form for numerical computation. For this reason, although unstructured ap-
proaches have been proposed to expand the state space of a CTMC with additional states
to mimic the behaviour of PH distributions [4,5], these are practicable only for a subset
of PH distributions having a simple structure, such as the Coxian, the Erlang, or the
Hyper-Exponential.

These approaches also quickly become unfeasible for certain classes of acyclic phase-
types as, for instance, the Hyper-Erlang, which corresponds to a mixture of Erlang distri-
butions having a different number of phases. Due to their structure, the Hyper-Erlang is
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extremely sparse and the tracking of each chain of states is not straightforward, already
with a small number of phases. Despite this, their use is fundamental for the fitting of em-
pirical data which are often characterized by irregular shapes and multi-modalities. These
situations are often troublesome for the approaches based on moment-matching, because:
(i) the moments might not satisfy the bounds of the PH class; (ii) a proper characterization
of the shape of the distribution might be preferable to an exact estimation of the first N
moments (see [38] for a detailed description of these cases).

Although such cases may seem pure theoretical speculations, their relevance in the
modeling of real industrial cases is rather common. An example is manually executed
activities, whose duration, as long as the execution goes smoothly, can be easily modeled
through simple distributions. On the contrary, the occurrence of possible problems in
their execution causes the duration to increase, and the probability distribution fitting the
processing times is likely to be multi-modal. In such cases, simply fitting the first two (or
three) moments does not provide a reasonable approximation, and different classes of PH
distributions could be needed.

Figure 4 provides a graphical example of a case where moment-based approaches
exploiting an acyclic PH are outperformed by a different fitting approach, namely a Hyper-
Erlang distribution obtained through Hyper-* [39], a tool that couples clustering approaches
with methods for the fitting of phase-type distributions. Figure 4 shows how the moment-
based approaches fail in representing the bi-modality of the distribution, whereas the
Hyper-Erlang is able to approximate the original distribution with good accuracy. Moment-
based methods perform slightly better on the tail of the distribution where they are able
to outperform the Hyper-Erlang between 10 and 12. The matching of three moments
generates much smaller phase-types than the one provided by Hyper-* (in the case pre-
sented, 2 against 29 phases), but does not provide an adequate approximation. Specifically,
the phases of the Hyper-Erlang are organized in three Erlang distributions: the first is
made up of three phases, with λ = 2.301 and a probability to be chosen equal to ≈45%; the
second with a single phase, λ = 1.44 and probability ≈0.44%; and the last one composed
of 25 phases, with λ = 0.10 and probability ≈10%. Since with this class of fitting methods
(e.g., [39]) the structure of the Hyper-Erlang (in terms of number of branches and length
of each path) cannot be foreseen, it is not straightforward to enhance the Markov activity
network with these classes of PH distributions by simply expanding the state space of the
CTMC through unstructured approaches.
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Figure 4. Comparison between an empirical distribution fitted by using both moment-based ap-
proaches and cluster-based fitting: cdf (left) and tail of the cdf (right).

In addition, unstructured approaches become even more impractical when coping with
cyclic distributions, that is, creating loops within the states of the CTMC. The use of cyclic
PH distributions in practical scheduling problems is justified by concrete requirements.
The first one is that, although the class of acyclic phase types is able to represent any cyclic
phase-type, there is no guarantee on the finiteness of the number of phases. Hence, a cyclic
phase-type might be able to approximate a distribution in a more compact way. This
applies for specific classes of distributions, for example, mixtures of monocyclic phase-
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types (see [40]). Algorithms for the fitting of cyclic phase-types exist and are currently
being used; for example, the Butools library provides a method for the transformation of a
matrix exponential distribution in a monocyclic phase-type [33].

Another notable reason is that cyclic phase-types are massively used in the context of
fault tolerance systems, where mechanisms for restarting, rejuvenation, and check pointing
are implemented to model the execution of specific classes of processes often restarted by a
controller, when their duration exceeds a certain threshold, or when a risk of stalling [41]
arises. These models also allow the use of Kronecker algebra to combine two or more
simple dynamics to represent a more complex phenomenon, for example, the failure modes
of a machine tool in isolation together with the degradation of a machine tool during the
execution of a machining process [42].

Finally, the last argument supporting a structured approach based on Kronecker
algebra is that it decouples the exploration of the state space from the PH distribution of
each activity. Therefore, the selection of a proper PH approximation for certain activities
does not require the redefinition of the whole state space, but only involves those states
where the modifications have an impact.

In conclusion, the use of a structured approach to embed PH distributions into activity
networks is preferable to unstructured approaches imposing limitations on the class of
approximating distributions, as well as failing to provide support for efficient calculation.

7. Testing

This section provides a set of experiments to test the model described in Section 3, as
well as an assessment of the degree of approximation entailed by the use of PH distributions
with a limited number of phases. The goal is to demonstrate the accuracy achievable in
the estimation of the distribution of the makespan with generally distributed durations of
the activities modeled with PH distributions. In addition, results related to the required
computation time are reported.

The testing phase is organized in three parts. The first one focuses on the evaluation of
the impact of a single PH distribution in the activity network in Figure 1, by assessing the
accuracy of the fitting for a small activity network. The second one takes into consideration
a more general case, where all the activities are non-exponential and, thus, approximated
through PH distributions. The aim is to show how the errors associated to each activity
have an impact on the estimation of the makespan. Finally, the third part reports the results
obtained by using the proposed approach on a set of 150 networks, randomly selected
from the PSPLIB set of instances [43]. This part also reports a more detailed analysis of
the performance of the approach in terms of computational effort, with respect to the
number of states composing the underlying Markov chain. All the experiments have
been carried out using a JAVA code implementing both the numerical methods for the
analysis of the activity networks using PH approximations and a Monte Carlo simulator to
provide an exact estimation of the makespan distribution. The fitting of PH distributions
has been operated using the software packages Butools 2.0 [33] and Mathematica 11.0 (other
commercial tools like Matlab, and free software like Octave or Python could also be easily
used to develop the approach).

7.1. Activity Network with a Single PH Distributed Activity Duration

To analyze the impact of a single PH distribution in a network, we consider the one in
Figure 1. Three experiments have been carried out with different classes of distributions.
Each experiment is organized in two steps:

1. A PH distribution is fitted to approximate the general distribution;
2. The resulting PH distribution is plugged into the activity network.

The first step takes advantage of two fitting methods, although any fitting method able
to generate a PH distribution can be used. The first one, described in [36], is based on MLE
and takes as input a set of data-points and the desired number of phases. The data-points
are fitted into a PH distribution corresponding to a hyper-Erlang distribution having the
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specified number of phases. The second method, described in ([31]), is based on moment-
matching. It considers up to three moments and returns a PH distribution with an arbitrary
number of phases matching the moments. Both the methods are available in the Butools
library. Alternative tools for the fitting of PH distributions are implemented in the software
packages PH-fit [32] and G-Fit [36].

The second step addresses the activity network in Figure 1, assuming that all the
activities but 3 are distributed according to the Erlang-5 distribution. Since this distribution
belongs to the family of PH distributions, its PH representation is exact. On the contrary,
the duration of activity 3 is assumed to be generally distributed and approximated through
the fitting of a PH distribution according to what is described for the first step. Hence,
the durations of activity 1, 2, 4 and 5 are modeled exactly, while an approximation can exist
for activity 3. This approximation is the only source of error.

The decision to perform the testing on activity 3 is aimed at stressing the accuracy of
the model. In fact, activity 3 connects the two paths 1–4 and 2–5 (1). To make the impact of
the activities on the makespan uniform, their mean duration was set to 5.

The experiments have been carried out considering three different classes of distribu-
tions for activity 3:

Normal: It represents the ideal scenario for PH approximation because it is continuous
and light-tailed on both sides;

Log-Normal: It is a more challenging scenario because of heavy tails;

Uniform: It represents the more difficult case, because PH distributions cannot model a
distribution with finite support. Hence, a higher number of phases will be needed to
reach a reasonable approximation.

Figure 5 provides a graphical representation of the differences between the distribu-
tions used in the three scenarios with each plot showing 1000 data-points. It is possible
to notice that points related to a normal distribution are centered around 5 and their fre-
quency decades with the distance from the average. On the contrary, points drawn from
the log-normal are sparser and can be found at high values, whereas those drawn from the
uniform distribution are equally distributed all along the interval.
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Figure 5. Scatter plots of the data-points used for the fitting of the Normal distribution (left), Log-Normal distribution
(center), and Uniform distribution (right).

For this set of experiments, both the Monte Carlo simulations and the CTMC calcula-
tions required less than a second to be performed. Confidence intervals are not provided
because more than 100,000 runs have been computed for the Monte Carlo approach; hence,
the intervals are tight enough not to be visualized.

7.1.1. PH Approximation for a Normally Distributed Activity

The first set of experiments addresses the use of PH to fit a normal distribution, with a
mean equal to 5 and a coefficient of variation equal to 0.2. A very small coefficient of
variation has been used to mimic an industrial scenario where activities have a high level
of formalization and, thus, are usually characterized by a small variation. This choice also
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guarantees the absence of negative values, impossible for a time span, during the fitting
phase. Five different fitting approaches have been performed: the first three using the
MLE method with a number of phases equal to 5, 10, and 15, respectively; the fourth and
the fifth using the moment-based approach by matching the first two and the first three
moments. The PHs generated through the moment-based approach had orders equal to 25
and 28, respectively.

Figure 6 reports the comparison between the original normal distribution and the
fitted PH ones. It is possible to notice that only the distributions fitted using the moment-
matching method have a Gaussian-like shape, whereas the other PH distributions under-
estimate the peak and are far from being symmetric. This is a consequence of the small
coefficient of variation used, requiring a high number of phases to be fitted. Despite this,
observing the right tail of the distribution, it is possible to notice that the absolute error
for the 95th and 99th percentile, obtained using the PH approximation with 15 phases, is
rather small, that is, about 1 time unit.
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Figure 6. Comparison between the normal distribution with mean 5 and coefficient of variation equal to 0.2 and its fitting
by means of PH distributions: pdf (left), cdf (center), and tail of the cdf (right).

Figure 7 reports the exact and PH-approximated distributions of the makespan for the
network of activities in Figure 1. It can be observed that all the approximated makespans
are able to provide a reasonable approximation. This is particularly evident by observing
the right tail of the distribution, where the absolute error remains below 3% in all the cases.
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Figure 7. Makespan of the example activity network with the duration of activity 3 following a normal distribution with
mean 5 and coefficient of variation equal to 0.2; full (left), only the tail (center), and the tail approximation error (right).

7.1.2. PH Approximation for a Log-Normal-Distributed Activity

The second set of experiments considers a log-normal distribution with parameters
a = −0.804 and b = 1.268. This corresponds to a mean equal to 5 and coefficient of
variation of 2. The same fitting approaches of the previous case have been used and, in this
case, the moment-based approach was able to match the first three moments by using only
two phases.

Figure 8 reports the result of the fitting. It is possible to notice that the worst approx-
imation is provided by the PH distribution that matches three moments. This result is
counter-intuitive because, at least in principle, the distribution matching the first three
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moments should provide a better approximation than the distribution that matches only
the first two.

However, this phenomenon might occur when using a fitting method that only con-
siders moment-matching, because it does not guarantee any accuracy with respect to the
shape of the distribution. Therefore, for heavy-tailed distributions, matching additional
moments is not likely to improve the accuracy of the fitting, particularly for small quantiles.
In fact, the fitting matching three moments in this case provides an accurate approximation
for extremely high values of the quantiles only.
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Figure 9 reports the exact and PH-approximated distributions of the makespan for
the network of activities in Figure 1. The plots confirm the errors highlighted in Figure 8
for the fitting. Specifically, referring to the tail of the distribution of the makespan, this
was partly expected. The Erlang-5, the PH distributions obtained using five phases, has a
low coefficient of variation in comparison with the log-normal, therefore, the propagation
of the error significantly affects the accuracy in the estimation of the distribution of the
makespan. Despite this, the absolute error for all the approximated distributions of the
makespans stays below 2.5%, with respect to the tail of the distribution (Figure 8, right).
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Figure 9. Makespan of the example activity network with the duration of activity 3 following a log-normal distribution
with parameters a = −0.804 and b = 1.268; full (left), only the tail (center), and the tail approximation error (right).

7.1.3. PH Approximation for a Uniform Distribution

The third set of experiments considers a uniform distribution in the interval [2, 8].
In this case, there is no chance for a finite number of phases to be able to represent the
finite support of the uniform distribution. The moment-based approach requires nine
phases to match the first two moments and 12 to match the first three. The impact of this
limitation for PH distributions is clear by observing Figure 10 reporting the result of the
fitting. It is possible to notice that the pdf of the approximating PH distributions tends to be
bell-shaped and trespasses the limited domain of the uniform distribution both in the right
and left tails. Additionally, the shape of the tail is overestimated by all the approximating
PH distributions (Figure 10, right).
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Figure 10. Comparison between the uniform distribution in the interval [2, 8] and its fitting by means of PH distributions:
pdf (left), cdf (center), and tail of the cdf (right).

Figure 11 shows the comparison between the exact and approximated distribution of
the makespan of the activity network in Figure 1 showing that the overall error reduces in
comparison with the one related to activity 3 only. In particular, while the PH distribution
of order 5 demonstrates an error greater than 4% in the tail of the distribution, the other
approximating distributions have an error that stays below 2% and becomes almost zero
near the 99th percentile.
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Figure 11. Makespan of the example activity network with the duration of activity 3 following a uniform distribution in the
interval [2, 8]; full (left), only the tail (center), and the tail approximation error (right).

7.2. PH Approximation for All the Activities in the Network

In this section, we hypothesize a general distribution for all the activities in the
network, with the aim to show that the accuracy in the estimation of the makespan is
reasonable even with a large number of approximated distributions. For this test, we
used a 30-job instance from the PSPLIB set of instances [43]. Since the repository only
contains activity networks with deterministic durations, a distribution and a coefficient of
variation have been randomly sampled for each activity, whereas the mean value has been
set equal to the original deterministic duration. Two classes of distributions have been
considered: log-normal and half-normal, with each activity having the same probability
to be distributed as one or the other. The coefficients of variation have been assigned in a
similar way, by sampling among three possible values: 0.5, 1, and 1.5.

The 32 activities in the network, together with their distributions, have been fitted by
matching the first two moments. All the fittings required, at most, four phases to match the
moments. Then, three sub-models have been considered in order to analyze the approxima-
tion error as the number of approximated distributions increases. Specifically, within the
same network, subsets containing the first 5, 10, and 20 activities have been considered.

The structure of the network and its distributions are reported in Table 3. Horizontal
lines delimit the considered subsets.
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Table 3. Activities in the network with the associated distributions. Horizontal lines indicate the
subsets that have been incrementally taken into consideration.

Activity Distribution Average CV Dependencies

1 L 1 0.5 -
2 H 8 1 1
3 H 9 1.5 1
4 H 1 1.5 1
5 L 4 0.5 3

6 H 4 1 2
7 L 8 1 3
8 L 3 0.5 7
9 H 3 1.5 6

10 L 9 0.5 8

11 H 6 1 9
12 H 3 1 5
13 H 5 1.5 9
14 H 4 1 12
15 H 9 1 8
16 H 5 1.5 7, 11, 13
17 H 9 1.5 6
18 H 9 1.5 4
19 H 7 1.5 12, 17
20 L 7 0.5 10, 14

21 L 8 1 16, 17, 20
22 H 6 1.5 10
23 H 10 1 13, 22
24 H 2 1.5 15, 21
25 H 1 1.5 13
26 L 9 0.5 19, 20, 23
27 H 3 1.5 14, 18
28 H 7 1.5 16
29 L 10 0.5 18
30 H 7 1.5 18, 24, 26
31 L 9 1 25, 27, 28
32 L 1 0.5 29, 30, 31

The four networks with an increasing number of activities have also been analyzed
using a Monte Carlo simulation, to provide a reference distribution to be considered as the
real one. Table 4 summarizes the experiments, showing that the state space of the CTMC
grows very fast and the number of transitions increases even faster. Despite this, for a
network consisting of up to 20 activities, the numerical solution requires less time than
performing 100,000 samples for the Monte Carlo simulation.

Table 4. Summary of the experiments.

# Activities # States #Transitions Time Numerical Time Monte Carlo

5 13 77 0 s 15 s
10 73 1559 0 s 20 s
20 1351 60,710 6 s 22 s
32 6836 579,341 124 s 25 s

Figures 12–15 report the results of the calculation of the makespan for the four models
considered. All the comparisons show good accuracy and an error on the percentiles that
rarely exceeds 1%. Specifically, it is relevant to notice that the error does not increase with
the number of activities. Although there is no guarantee for these results to represent a gen-
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eral behavior, it is important to point out that all the fittings have been done automatically,
without any specific selection or tuning of the fitting method.
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error on the tail (right).
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Figure 14. Makespan of the 20-activity subset within the network; full makespan (left), tail (center), and approximation
error on the tail (right).
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7.3. Test on a Set of Activity Networks

The described approach has been tested on multiple networks of activities obtained
by randomly selecting a set of 150 from the instances in the PSPLIB [43]. The structure
of the networks has been considered as given, while the randomness in the duration of
the activities has been introduced using the same approach described in Table 3. Hence,
a PH distribution has been fitted for each activity in the network by matching the first two
moments. The fitting of the activity distributions has been done in negligible time. In fact
each activity required 0.017 s, on average, to find the approximating PH type.

Figure 16 provides a quick glimpse of the heterogeneity of the networks considered
in the experiment, by showing a clear direct correlation between the overall number of
transitions and the number of states for each network.

Figure 16. Scatter plot of the number of states against the number of transitions composing the
CTMC of the networks.

However, the higher the number of states composing the CTMC, the more variable the
number of transitions in the model. This is due to the fact that the number of transitions
heavily depends on the level of concurrency in the network, that is, the number of activities
that are in execution in each state. A network having many activities and, consequently,
many states, has a higher probability of having multiple activities in execution at the same
time. If this number is high, the number of transitions is high as well. As a consequence,
the number of PH distributions enabled at the same time in the states, and the consequent
number of transitions, is less variable among the different instances. A summary of the
networks used for the experiments is reported in Table 5, providing information in terms of
the number of states composing the CTMC and the number of transitions. It is possible to
observe that the average number of states is equal to 2763.73, with a minimum of 779 states
and a maximum of 11,858. On the contrary, the average number of transitions is equal to
207,343.59, with a maximum of 935,440 and a minimum of 17,298.

Table 5. Summary of the networks under investigation.

Average St. Dev. Conf. Interval Min Max

States 2763.73 2037.00 (2335.28, 3192.16) 779 11,858
Transitions 207,343.59 237,726.36 (157,342.71, 257,344.45) 17,298 935,440

Entropy 0.0359 0.001 (0.03575, 0.0362) 0.0321 0.037

In order to quantify the error introduced by the approximation using PH distributions,
we consider the average Kullback–Leibler divergence (KL) of the network, also called
average entropy, defined as

KL =
∑K

i=1
∫ ∞

0 pi(x)log
(

pi(x)
qi(x)

)
dx

K
, (9)

where pi(x) is the probability density function (pdf) of the exact distribution for activity i,
qi(x) is the pdf of the approximated PH distribution, and K is the total number of activities
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in the network and the integral is operated on the duration of each activity. If the durations
of the activities in the network are well-approximated by the PH distributions, KL is close
to zero.

Table 5 also reports the value of the average entropy corresponding to 0.0359. Being
the value rather close to zero, we can conclude that the PH distributions approximate the
general distributions with good accuracy, despite the fact that only the first two moments
are matched.

Table 6 compares the time required to compute the 99% quantile of the distribution
of the time to absorption of the CTMC with PH distributions, that is, the distribution
of the makespan for the network of activities. This performance is compared with the
one obtained executing a Monte Carlo simulation with one million samples from the
original distributions.

Table 6. Computation time for the 99% quantile of the distribution of the makespan for the experiments.

Approach # Average St. Dev. Conf. Interval Min Max

PH distributions 85.10 138.035 (56.07, 114.135) 2 610
Monte Carlo 20.81 4.0 (27.2, 28.9) 20 30

It is possible to observe that the Monte Carlo simulation is, on average, faster than the
numerical solution. The good performance of Monte Carlo simulation is due to:

• Large networks requiring a considerable amount of data to be stored in the RAM
and slowing down the computation due to the swapping between primary and
secondary memory;

• The calculation of the desired percentiles (performed with the bisection method) that
increases the computational effort.

To provide a clearer picture of the overall performance of the approach, Figure 17
shows the computation times for all the experiments in relation to the number of states of
the CTMC and the number of transitions. It is clear that the computation time increases
exponentially with the size of the problem. Indeed, the Monte Carlo simulation does not
suffer from this problem, since the overall complexity is bounded by (K× R), where R is
the number of simulation runs. Nevertheless, it is important to point out that:

• The CTMC can be solved using more advanced techniques able to reduce the compu-
tation time;

• The CTMC defines a model for the execution of the network of activities that can sup-
port decomposition approaches, for example, calculating subnets and incorporating
the obtained solution or estimation in the comprehensive network.

Figure 17. Time required to solve the networks with PH distributions as a function of the number of
states (left) and the number of transitions (right).

Finally, Table 7 reports the error in the estimation of the distribution of the makespan
using PH distributions for different percentiles. It is possible to notice that the error
increases with the considered percentile. At the 90th percentile, the error is, on average
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1%, and the confidence interval is (1.47, 1.96), with a minimum of 0.017% and a maximum
of 3.46%, whereas at the 99th percentile, the error is, on average, 2.72% with a confidence
interval equal to (2.28, 3.15), a minimum of 0.04% and a maximum of 9.6%.

Table 7. Accuracy of the estimation of the makespan distribution for different percentiles.

Percentile # Average St. Dev. Conf. Interval Min Max

90 1.16 0.80 (0.99,1.33) 0.017 3.46

95 1.72 1.16 (1.47,1.96) 0.006 4.55

97 2.49 1.49 (2.17,2.79) 0.08 5.66

99 2.72 2.09 (2.28,3.15) 0.04 9.60

8. Conclusions

In this paper, a general approach has been proposed to exploit Markov chains and
phase-type distributions to model the execution of a stochastic PERT network with general
distributed processing times. A general and concise formulation has been proposed, based
on Kronecker algebra, to support the application without any constraint on the class of
phase-type distributions allowed.

The motivation for the approach stems from the need to fit real data and use this
information in the planning and scheduling of manufacturing operations, overcoming the
limitation of a large portion of the literature related to stochastic scheduling, requiring
strong hypotheses on the underlying distributions. Coping with real data, characterized
by asymmetry, multi-modality, and so forth, PH distributions are a very effective approxi-
mation approach also entailing the capability of using Markov activity networks and the
associated corpus of approaches.

The proposed formulation also allows to easily change and/or refine the fitting
according to the accuracy requirements to keep the computation time in line with the
specific needs and without the need of recomputing the whole model from zero.

An analytical description has been provided, as well as experiments on a wide range
of test instances. The testing demonstrated good performance both in terms of computa-
tion time and accuracy of the approximation, although the computational effort rapidly
increases with the dimension of the network and the number of phases used.

Moreover, the algebraic formulation also allows the use of more advanced numerical
methods able to evaluate the Markov activity network without the need to explicitly build the
whole infinitesimal generator, thus paving the way to more efficient calculation approaches.

Hence, modeling the execution of an activity network through a Markov process and
phase-type distributions provides a promising path towards embedding the proposed
estimation approach in scheduling algorithms to optimize a function of the makespan
distribution, such as an associated risk measure.

Further developments will address advanced calculation methods to speed up the com-
putation time, as well as the exploitation of this method to support stochastic
scheduling approaches.
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