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Abstract: In this paper, a method for detecting synergistic effects of the interaction of elements
in multi-element stochastic systems of separate redundancy, multi-server queuing, and statistical
estimates of nonlinear recurrent relations parameters has been developed. The detected effects
are quite strong and manifest themselves even with rough estimates. This allows studying them
with mathematical methods of relatively low complexity and thereby expand the set of possible
applications. These methods are based on special techniques of the structural analysis of multi-
element stochastic models in combination with majorant asymptotic estimates of their performance
indicators. They allow moving to more accurate and rather economical numerical calculations, as
they indicate in which direction it is most convenient to perform these calculations.
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1. Introduction

Questions of composition and decomposition in multi-element stochastic systems
are relevant for solving a number of problems. These include paralleling of algorithms
and programs, modeling of supercomputers, the Internet, computer networks, mobile
telephone communication systems, development of software packages for modeling catas-
trophic events in complex systems, design and improvement of technological and economic
processes, and so on.

The term “synergy” (the result of the interaction of many elements of the system)
originated in statistical physics, but recently it has been used by specialists from other
fields: economics, biology, engineering, etc. Furthermore, research in these areas no longer
leads to microscopic, but to phenomenological considerations. Here are some examples,
taken from science history and devoting the detection of synergistic effects in complex
systems, which have been obtained by famous researchers in their objective areas, using
observation and mathematical intuition.

The economist A. Smith investigated the transition from shop production to manufac-
turing on the example of the production of safety pins. In the workshop method, the pin
was made entirely by one master, performing all the operations sequentially. In manufac-
turing, each operation was performed by a separate master, which significantly increased
labor productivity.

The physiologist I.P. Pavlov discovered the conditioned reflex by detecting feedback
in the nervous system of the body. Stochastic feedback theory was developed by N. Wiener.
A detailed study of the conditioned reflex led to the creation by P.K. Anokhin of the
concept of a functional system that is urgently formed in the body when it is necessary to
achieve the desired result and quickly disintegrates after it is achieved. N. Wiener and P.K.
Anokhin collaborated in the development of this scientific direction, actively discussing
the possibilities of mathematical methods in this area.

The physicist E. Rutherford discovered the atomic nucleus and proposed to P.L.
Kapitsa to create an installation for the effect of a strong magnetic field on the atomic
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nucleus. Long-running installations were melted under the influence of a strong magnetic
field. P.L. Kapitsa constructed an installation that creates a strong magnetic field for a short
time, which turned out to be long enough for the processes occurring in the atomic nucleus.

Synergistic effects are a source of explicit dependencies between the characteristics of
the system against the background of sufficiently large random perturbations. To study
them, it was necessary to develop special techniques based on the structural analysis of
multi-element stochastic models in combination with majorant asymptotic estimates of
their performance indicators. This, in turn, required new techniques for working with
statistical data, as well as skills in using the limit theorems of probability theory and the
accompanying asymptotic expansions and estimates.

According to the author, many works on the analysis of complex multi-element
systems require at the initial stage the construction of simpler models that allow you to
determine the main performance indicators and the main parameters with which you
can influence these indicators. For this purpose, it is very convenient to build procedures
for comparing systems with different (alternative) structures to study their effectiveness
with a large number of elements, with a large load, etc. For this purpose, schemes and/or
modes of complex systems, computational algorithms, etc. can be used as objects of
comparison. At the same time, at the initial stage of the study, a reasonable proportion
should be observed between the accuracy of the calculations, which may be relatively small;
the complexity of the calculations, which also should not be large; and the significance
of the obtained results, which should be sufficiently large. Comparing systems with an
alternative structures allows us to take these requirements into account, as with an increase
in the number of elements, the differences between systems with an alternative structures
are quite large.

The first author’s works, devoted to the study of synergistic effects, are analytical
generalizations of the results of numerical and field experiments conducted by his col-
leagues in the modeling of telecommunications systems, container terminals, etc. In this
connection, it should be remembered that in hydrodynamics, nonlinear soliton waves were
also first discovered in the course of numerical experiments, and then their analytical theory
was constructed. The use of computational experiments allows to obtain more accurate
estimates of the synergistic effects. This can be used when working with models used in
the programs “digital economy”, “smart city”, when modeling remote modes of operation
that have become popular, on-line conferences, when using smart phones, etc. Currently,
new information technologies are rapidly entering our life and their research helps us to
adapt to them and to adapt these technologies themselves to the needs of potential users
(for example, the use of smart phones by aged users). Nevertheless, analytical research
helps to determine the direction of such research and to carry them out. In a sense, this
avoids very complex structural optimization problems, a significant part of which are NP
problems. Along with this, it becomes possible to use observations of complex systems,
which also contributes to the study of synergistic effects in them.

In this paper, the synergistic effect is understood as a significant change in the per-
formance indicators of a complex system when its structure changes, i.e., the connections
between its elements. The complexity issues play an important role in modern systems
analysis [1,2]. To reduce complexity, various techniques are used, among which the struc-
tural transformation of the system plays an important role [3,4]. This methodological
technique is closely linked to the issues of the stability of a complex system [5].

Such a statement of the problem can be the comparing the reliability of separate
and block reserving elements of a two-pole with unreliable edges [6]. This result is a
classic in the mathematical theory of reliability and its refinement or amplification can
be significant in itself. Note that the study of the reliability of two poles is widely used
in various theoretical and applied studies (see, for example, in [7–10], etc. However,
such a comparative analysis made in the monograph [6] of Barlow and Proshan did not
develop in subsequent works, while the synergistic effects identified in this paper were
very significant.
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The peculiarity of this task is the use of probabilistic models, which, at first glance,
complicate the task. This transition requires the selection of a new performance indicator—
the required amount of reserve, which reflects the content of the reservation procedure and
the novelty of the proposed approach. On the other hand, it is also necessary to construct
sufficiently weak (logarithmic) dependencies of the so-introduced indicator on a number
of the scheme elements. When selecting a new reserve efficiency indicator, its analogy with
probabilistic metrics [11] is used. Therefore, the results obtained in this section are new,
original, and significant.

Another problem considered in this paper and connected with synergistic effects
appeared at the ITMM 2018 and ITMM 2020 conferences, when discussing the multi-
server model of the RQ queuing system [12–14]. The Conference ITMM 2018 was held in
conjunction with 12th International Workshop on Retrial Queues (RQ) and Related Topics
with a wide representation of queuing theory researchers from Russia, India, Bulgaria,
the Netherlands, and other countries. A good source of recent works on this topic is a
collection of articles on RQ systems [15].

The RQ queuing system is a system in which a customer received in the presence of
busy servers is not rejected, but is sent to the so-called orbit, from where it is extracted in
accordance with some protocol for queuing, when one of the servers is released. A.N. Dudin
remarked that it is most often assumed Poisson input flow to such a system. However, this
requirement is not met because there is a dependence and even a long range dependence
between the random variables, characterizing numbers of arrived customers in disjoint time
intervals. Moreover, despite the large number of analytical results in which the distributions
in RQ systems are calculated in formula form, their use for numerical calculations is difficult
due to the high complexity of such calculations, especially for multi-server RQ systems.

The novelty of the proposed approach is that instead of a stationary distribution of
the process describing a multi-server RQ system, the probability of customers appearing
in the orbit of this system for a fixed period of time is investigated and the convergence
of this indicator to zero is established when the number of channels proportional to the
intensity of the input flow tends to infinity. Secondly, with an increase in the number of
servers, even in a system with a Poisson input flow and exponentially distributed service
times, the computational complexity of the problem of calculating the limit distribution in
an RQ system increases quite strongly.

Thus, a new problem arises for calculating the RQ queuing system with a large num-
ber of servers and a non-Poisson input flow. Using asymptotic theorems for multichannel
queuing systems, it is possible, on the contrary, to simplify the problem of analyzing RQ
systems. For this purpose, it is convenient to use limit theorems based on topological con-
cepts of convergence in the space of random processes defined on a finite time interval [16].
The significance of this approach lies in the broad scope of its application and in the ability
to circumvent the computational complexity of the problem by reducing it to the limit
theorems of probability theory.

A continuation of the study of multi-server queuing systems in this paper is the analy-
sis of a system with failures. This system arises when modeling modern data transmission
networks (of fifth generation), formulated by leading Russian specialists in the mathe-
matical theory of communication [17]. This task is quite important and leading Russian
specialists in modeling of transmission networks Samouylov K.E. and Gaidamaka Yu.V.
even organized a seminar with the author’s participation to find alternative approaches to
this problem solution with publishing of obtained results [18]. The solution to this prob-
lem is based on the recently installed a synergistic effect in multi-server queuing system
with failures, when the stationary probability of failure tends to zero as the number of
servers and proportionally the input flow intensity tend to infinity. Moreover, the obtained
asymptotic results were quite accurate.

This study is based on the classical Erlangian model of loss multi-server system (see,
for example, in [19,20]). Asymptotic behaviors of the blocking probability and parameters
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of the Equivalent Random Theory method was analyzed in [21] for the case when both the
number of servers and the input flow intensity tend to infinity.

However, the inclusion in this model of the assumption that load factor equals one,
the intensity of the input flow is proportional to the number of servers n, and the tendency
of n to infinity allowed us to establish that the probability of failure tends to zero also.
The exact asymptotic rate of this convergence is established. Moreover, when the load
factor is less than one, it is possible to construct an upper estimate of the rate of convergence
to zero in the form of a geometric progression. Therefore, the synergistic effect found in
this paper is very strong and so can be used in the design of data transmission systems of
the fifth generation.

The features of probabilistic models of complex systems discovered in this way can
also be used in the estimation of their parameters. In particular, in the deterministic model
of logistic growth [22] (which is very important and classical in mathematical biology),
the problem of estimating the growth parameter from inaccurate observations arises and
attracts specialists again and again. The solution of this problem by the method of least
squares leads to quite large errors. In this paper, the unknown growth parameter is
expressed in terms of the trajectory averages of the deterministic sequence of the model.
In turn, the trajectory averages are estimated from observations over a sufficiently long
period of time, which leads to the leveling of observation errors. These estimates are based
on the use of probabilistic metrics developed in [11] and are new.

Thus, the solution of the above problems of system analysis required a combination
of probabilistic and deterministic methods of system analysis, among which the methods
of studying the synergistic effects arising from the structural restructuring of a complex
system play a decisive role. The benefit of received results is to establish sufficiently strong
dependencies of performance indicators on changes in the system structure. This approach
opens up new opportunities in solving problems of structural optimization of stochastic
systems: queuing, reliability, etc.

2. Separate Redundancy in a Two-Pole System

Consider m sequentially connected and independently operating elements with a
failure-free probability of p, 0 < p < 1. The probability of failure-free operation of such
a chain is pm. Let us focus on two alternative ways to reserve this network. In the first
method, n independently functioning duplicates are connected in parallel (see Figure 1).

Figure 1. n-multiple block redundancy (top), split redundancy (bottom) of a chain of length m.

Reliability of the network obtained in this way is Hn(m) = 1− (1− pm)n. In the
second method, each element of the original chain is n-multiple reserved separately (see
Figure 1). Reliability of the newly formed network Hn(m) = (1− qn)m, q = 1− p.
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From the results of the monograph [6], it follows that Hn(m) ≥ Hn(m) (this inequality
is valid for any bipolar). However, this inequality gives only a qualitative idea of the
possibilities of separate reservation. To give a quantitative assessment, it is convenient to
move from the reliability function to the required amount of reserve.

For δ > 0, denote n∗(m, δ) = min(n : Hn(m) ≥ 1− δ), n∗(m, δ) = min(n : Hn(m) ≥
1− δ) the required volume of reserve, in which the reliability exceeds 1− δ. To calculate
the reliability of general type two-pole, it is necessary to solve an NP-complex problem.
However, to compare the different ways of reserving a chain of the length m, it is necessary
only to solve a few simple inequalities. Moreover, the results of this comparison are very
contrasting and the most interesting consideration of a separate reserve may be applied to
general type two-pole also. Let us denote [a] the integer part of the real number a.

Proposition 1. The following inequalities are met:

n∗(m, δ) ≥
[

1− δ

pm

]
+ 1, n∗(m, δ) ≤

[
ln(δ/m)

ln q

]
+ 1. (1)

Proof. Indeed, for all a, 0 < a < 1, the inequality holds

(1− a)m ≥ 1−ma, m = 1, 2, . . . , ⇒ Hn(m) = 1− (1− pm)n ≤ npm, ⇒

n∗(m, δ) ≥ min(n : npm ≥ 1− δ) = min
(

n : n ≥ 1− δ

pm

)
≥
[

1− δ

pm

]
+ 1,

so the first relation in Formula (1) takes place. In turn,

Hn(m, δ) ≥ (1− qn)m ≥ 1−mqn, ⇒ n∗(m, δ) ≤ min(n : mqn ≤ δ) ⇒

n∗(m, δ) ≤ min(n : ln m + n ln q ≤ ln δ) ≤
[

ln(δ/m)

ln q

]
+ 1.

Therefore, the second relation in Formula (1) is valid.
Table 1 demonstrates how much n∗(m, δ) is greater than n∗(m, δ).

Table 1. Meanings of n∗(m, δ), n∗(m, δ) for p = 0, 7, δ = 0, 1.

m 1 2 3 4 53 6 7 8 9 10 11 12 13 14 15

n∗(m, δ) 2 4 6 9 13 19 27 39 56 81 116 166 237 339 484

n∗(m, δ) 2 3 3 4 4 4 4 4 4 4 4 4 5 5 5

A comparison of these relations shows that for a large chain length of m, the split-
reservation scheme provides special advantages, as the lower bound, which grows as a
geometric progression, is replaced by the upper logarithmic bound. Note that the upper
estimate of the required reserve in the scheme of separate reservation of a sequential chain
is logarithmic in m and can be easily extended to the general case.

Indeed, consider a two-pole consisting of m independently operating edges with
probabilities of operation p1, . . . , pm ≥ 1− q, 0 < q < 1. Let us construct a two-pole in
which each edge of the original two-pole is a reserve of n identical elements and denote
Hn(p1, . . . , pm) the probability of the existence of a working path from the initial to the
final vertex in this two-pole.

Proposition 2. For the value n∗(p1, . . . , pm, δ), the relation is valid

n∗(p1, . . . , pm, δ) ≤
[

ln(δ/m)

ln q

]
+ 1.
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Proof. The proof of this statement is based on the inequality Hn(p1, . . . , pn) ≥ (1− (1−
p1)

n) · . . . · (1− (1− pm)n) ≥ (1− qn)m ≥ 1−mqn. This inequality follows from the fact
that the reliability of an arbitrary two-pole with m independently functioning elements
is not less than the reliability of a chain of m elements connected in series. Therefore, the
second inequality in the formula (1) is true also.

For an arbitrary two-pole, a logarithmic by m upper estimate of the value of the
required reserve in the separate reservation scheme is performed. Note that this result
is obtained using trivial inequalities and does not require calculating the reliability of
Hn(p1, . . . , pm), which in general is an NP-problem.

Indeed, if α1, . . . , αm are independent boolean random variables which describe states
of two-pole elements and boolean function A(α1, . . . , αm) describes a workability of two-
pole dependently on states of its elements then its reliability

HA(p1, . . . , pm) =
1

∑
α1,...,αm=0

A(α1, . . . , αm)
m

∏
j=1

p
αj
j , with p1

j = pj, p0
j = 1− pj, j = 1, . . . , m.

Calculation of the reliability H(p1, . . . , pm) formally requires performing of 2m arith-
metical operations.

Thus, a convenient choice of the reserve efficiency indicator in the form of the required
reserve volume solves two problems. It allows us to obtain a strong (logarithmic) depen-
dence of the chosen efficiency indicator on the number of edges of the two-pole m and
makes it possible to abandon the solution of the NP-problem of calculating the reliability
of the two-pole.

3. RQ-Queuing Systems with a Large Number of Servers

Consider an RQ-system, i.e., a queuing system, in which, if there is a free server,
the customer that has come to the system immediately begins to be served on it. If there are
no free servers, then the customer is sent to the orbit, from where it can return to the newly
released server in accordance with some protocol [12–14]. A good source for RQ systems
in recent years has been Conference ITMM 2018 in Tomsk, which was held in conjunction
with 12th International Workshop on Retrial Queues and Related Topics (WRQ 2018).

To solve this problem, we propose to use the theorem on the asymptotic behaviour of
an n-server queuing system for n→ ∞. In this theorem, we prove that at T > 0 for n→ ∞,
the probability Pn(T) that on the segment [0, T] in the system there will be customers going
into orbit tends to zero. Already in this result, the transition from the limit distribution to
the above probability is made. Moreover, this characteristic becomes a new indicator of
efficiency, which is convenient to use when analyzing a multichannel RQ queuing system.

Consider the series scheme in which the characteristics of n-server queuing systems
are defined by the parameter n → ∞, which characterizes an intensity of input flow
tending to infinity. Denote en(t) a number of input flow customers arriving before the
moment t, en(0) = 0. Assume that qn(t) is a number of busy servers in this system at the
moment t, qn(0) = 0, τj is the service time of j input flow customer and τj, j ≥ 1, is a
sequence of independent and identically distributed random variables (s.i.i.d.r.v.’s) with
the distribution function (d.f.) F(t) (F = 1− F), which has continuous and bounded by
f̄ > 0 density f (t). All results of this section are based on ([16], Chapter II, § 1, Theorem 1):

Theorem 1. Assume that the following conditions are true.

(1) For some a > 0 the equality Een(t) = nat, t ≥ 0, takes place.
(2) There is the function B(n) such that for A(n) = max(n1/2, B(n)) the limit relations take

place for n→ ∞

B(n)
A(n)

→ B ≥ 0,
√

n
A(n)

→ K ≥ 0,
n

A(n)
→ ∞.
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so that max(B, K) = 1).

(3) The sequence of random processes xn(t) =
en(t)− Een(t)

B(n)
for n → ∞ C-converges to the

centred Gaussian process z(t).

(4) Random process ζ(t) =
∫ t

0
F(t− u)dz(u) + KΘ(t), 0 ≤ t ≤ T, where Θ(t) is centred

Gaussian process independent with z(t), which has the covariance function R(t, t + u) =∫ t

0
F(v + u)F(v)adv and satisfies the relation P( sup

0≤t≤T
ζ(t) > L)→ 0, L→ ∞.

(5) If the inequality ρ = aEτj < 1 is true then for any T > 0 we have the relation

P

(
sup

0≤t≤T
qn(t) ≥ n

)
→ 0, n→ ∞.

Here, the concept of C-convergence used in Theorem 1 is defined as follows. Denote
by F1 the space of deterministic functions on the segment [0, T] with uniform metric ρ.
Designate by F the set of bounded functionals f defined on F1 and continuous in the
metric ρ : if z = z(t), z1 = z1(t), z2 = z2(t), . . . ∈ F1 and ρ(z, zn) → 0, n → ∞, then
f (zn) → f (z), n → ∞. Say that the sequence of random processes zn = zn(t), n ≥ 1,
C-converges to the random process z = z(t) if for any functional f ∈ F we have that
E f (zn)→ E f (z), n→ ∞.

Deterministic input flow of customer groups. Let at times 1, 2, . . . in n-server RQ-
queuing system come groups of customers of the size of η1 ≥ 0, η2 ≥ 0, . . . , where η1, η2, . . .
– i.i.d.r.v.‘s with integer values, Eη1 = a, Var η1 < ∞. Define the input flow by the equality

en(t) =
[nt+ψ]

∑
k=1

ηk, t ≥ 0, where ψ – independent of ηk, k ≥ 1, τj, j ≥ 1, a random variable

with a uniform distribution on the segment [0, 1] ([d] is the integer part of the real number
d). Here and in two next models random variable ψ has uniform distribution to ensure the
proportionality t of the mathematical expectation Een(t).

Theorem 2. Suppose that, for some D > 0, almost certainly η1 < D and the inequality aEτ1 < 1
is true. Then for any T > 0 the relation Pn(T)→ 0, n→ ∞, is valid.

Proof. In [23] it is proved that under the conditions of this theorem,

P

(
sup

0≤t≤T
qn(t) ≥ n

)
→ 0, n→ ∞. (2)

Connecting this relation with the inequality Pn(T) ≤ P

(
sup

0≤t≤T
qn(t) ≥ n

)
, n ≥ 1, one

obtains the proof of the theorem.

Alternating input flow. Consider a n-server RQ-queuing system, assuming n =
n(N) → ∞, N → ∞. Let us define the input flow to this system using the following
construction. Following the works in [24,25], we define a continuous random flow defined
by ON and OFF periods. Let a sequence of i.i.d.r.v’s X0 ≥ 0, X1 ≥ 0, X2 ≥ 0, . . . consists
of lengths of ON-periods, the sequence of i.i.d.r.v.‘s Y0 ≥ 0, Y1 ≥ 0, Y2 ≥ 0, . . . consists
of the lengths of OFF-periods and these random sequences are independent. Denote
F1(t) = P(X1 < t), F2(t) = P(Y1 < t), t ≥ 0, and suppose that

F1(t) = t−α1 L1(t), F2(t) = t−α2 L2(t), 1 < α1 < α2 < 2,

where the function L1(t)→ l1 > 0, t→ ∞, and L2(t) is a slowly varying function. Let b(t)
is the inverse of the function 1/F1(t) : b(1/F1(t)) = t.
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We introduce independent r.v.‘s B, X, Y, which are independent of Xn, Yn, n ≥ 1,
and Y0 with distributions

P(B=1) =
µ1

µ
, P(B=0) =

µ2

µ
, µ=µ1 + µ2, µ1 = EX1, µ2 = EY1,

P(X≤x) =
1

µ1

∫ x

0
F1(s)ds, P(Y≤x) =

1
µ2

∫ x

0
F2(s)ds.

Then, a random sequence

T0 = B(X + Y0) + (1− B)Y, Tn = T0 +
n

∑
i=1

(Xi + Yi), n ≥ 1,

generates an ON–OFF process

W(t) = BI[0,X)(t) +
∞

∑
n=0

I[Tn ,Tn+Xn+1)
(t), t ≥ 0

(here IA(t) is the indicator function of a random event t ∈ A). The random process W(t)
is binary: W(t) = 1, if t is contained in an ON-period, W(t) = 0, if t is contained in the
OFF-period and stationary, and EW(t) = µ1/µ = α.

Denote A(t) =
∫ t

0
W(s)ds, then EA(t) = αt, t ≥ 0. Let n = n(N) = NM(N),

M = M(N) = [Nγ], γ > 0, and random functions Am(t), m = 1, ..., M, are independent

copies of a random function A(t). We introduce the function en(t) =

[
M

∑
m=1

Am(Nt) + ψ

]
,

specifying the alternating input flow.

Theorem 3. If γ > α1 − 1 and αEτj < 1, then for any T > 0 the relation Pn(T)→ 0, n→ ∞,
is true.

The proof of Theorem 3 repeats the proof of Theorem 2 verbatim.

Erlangian input flow. Let En(t) a Poisson flow of customers with intensity nα. Define
the input flow to the n-server system described above by the equality

en(t) =
[

En(t)
r

+ ψ

]
, t ≥ 0,

where ψ is a random variable independent of ηk, k ≥ 1, τj, j ≥ 1, with a uniform
distribution on the segment [0, 1], and the fixed r takes natural values. It is obvious that
for any fixed ψ, 0 ≤ ψ ≤ 1, the moments of single jumps of the process en(t) form an
Erlangian flow. Here, the Erlangian flow is obtained from En(t) by allocation of moments
with numbers that are multiples of r.

Theorem 4. If αEτj < 1, then for any T > 0 the relation Pn(T)→ 0, n→ ∞, holds.

Proof. In [26] it is proved that Formula (2) is valid under the conditions of the theorem.

Connecting it with inequality Pn(T) ≤ P

(
sup

0≤t≤T
qn(t) ≥ n

)
, one obtains the proof of the

theorem.

The choice of the probability Pn(T) as an efficiency indicator allows us to apply
the known theorems to the analysis of a multi server RQ-system with a fairly general
protocol for the transfer of customers from orbit to the vacated server almost without
additional consideration.
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4. Multiserver Loss Systems

Consider n-server queuing system M|M|n|0 with a Poisson input flow of intensity nλ
and exponentially distributed service times having intensity µ on all n servers, ρ = λ/µ.
This system can be considered as combining n single-server systems with input flow
intensities λ (see Figure 2).

Figure 2. n isolated M|M|1|0 systems (left), aggregated M|M|n|0 system (right). b̂n.

The number of customers in the system M|M|n|0 describes the process of death
and birth with the intensities of birth and death λn(k) = nλ, 0 ≤ k < n, µn(k) =
kµ, 0 < k ≤ n.

Let us denote Pn(ρ) the stationary probability of failure in the system An for a given ρ.
It is not difficult to establish that P1(1) = 1/2. However, the combined system An satisfies
new relation, which characterizes the synergistic effect of such a combination.

Theorem 5. The following limit ratio is true: Pn(1) ∼
√

2
πn

, n→ ∞.

Proof. Let δ > 0, consider the function f (x) = 1− x− exp(−(1 + δ)x). The f (x) function
satisfying the condition: f (0) = 0, f (1) < 0, and such that the inequalities

f ′(x) > 0, 0 < x <
ln(1 + δ)

1 + δ
, f ′(x) < 0,

ln(1 + δ)

1 + δ
< x ≤ 1

hold. Therefore, on the half interval [0, 1) there exists a single x(δ), satisfying the condition
f (x(δ)) = 0 and such that the inequalities 1− x ≥ exp(−(1+ δ)x), 0 ≤ x ≤ x(δ) < 1 hold.
Let pn(k) = lim

t→∞
P(xn(t) = k), 0 ≤ k ≤ n, then in force [16] [Chapter 2, § 1]

pn(n− 1) = pn(n)
µ

λ

n
n

, pn(n− 2) = pn(n)
(µ

λ

)2 n(n− 1)
n2 , . . .

Therefore, the stationary blocking probability in virtue of the integral theorems of
recovery and the law of large numbers for the recovery process [1] [Chapter 9, § 4, 5]
satisfies the equality

Pn(ρ) = pn(n) =

(
n

∑
k=0

ρ−k
k−1

∏
j=0

(
1− j

n

))−1

, (3)

where ∏−1
j=0 equals 1. From Formula (3), we obtain the inequality

P−1
n (1) ≥ ∑

0≤k≤nx(δ)

k−1

∏
j=0

(
1− j

n

)
≥ ∑

0≤k≤nx(δ)

k−1

∏
j=0

exp(−(1 + δ)j/n) ≥

≥ ∑
1≤k≤nx(δ)

exp(−(1 + δ)k2/2n).
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This implies that

P−1
n (1) ≥

∫ nx(δ)

1
e−(1+δ)x2/2ndx =

√
n

1 + δ

∫ x(δ)
√

n(1+δ)√
1+δ

n

e−y2/2dy,

consequently

Pn(1)
√

n ≤ (1 + δ)

(∫ x(δ)
√

n(1+δ)√
1+δ

n

e−y2/2dy

)−1

→ (1 + δ)

√
2
π

, n→ ∞.

and so lim sup
n→∞

Pn(1)
√

πn
2
≤ 1 + δ.

Using Formula (3) and the inequality 1− x ≤ exp(−x), 0 ≤ x ≤ 1, we obtain

P−1
n (1) ≤ ∑

1≤k≤n
e−k(k−1)/2n ≤ ∑

1≤k≤n
e−(k−1)2/2n ≤

∫ ∞

0
e−x2/2ndx,

thus it follows that 1 ≤ lim inf
n→∞

Pn(1)
√

πn
2

. Obtained above inequalities for upper and

lower limits lead to the statement of Theorem 5.

Remark 1. In aggregated M|M|n|0 system at ρ < 1 following relations are valid [18]:

e−n ln2 ρ/2

√
2

πn

√
ρ

8
� Pn(ρ) � (e−n ln2 ρ/2)(ρ−1)/ ln ρ

√
2

πn

√
ln ρ

ρ− 1
. (4)

And if ρ = ρ(n) = 1− n−γ, γ > 0, then Theorem 5 gives

1
2

√
1

πn
� Pn(ρ) �

√
2

πn
, γ ≥ 1

2
,

1
2

√
1

πn
� Pn(ρ) exp

(
n1−2γ

2

)
�
√

2
πn

, γ <
1
2

.

Similar results were obtained for Erlang‘s loss function in [27,28] but in a more com-
plex way.

Remark 2. In aggregated M|M|n|∞ system following relations are valid [29] for An—stationary
mean waiting time and Bn—stationary mean queue length:

(1) If ρ < 1, then for some c < ∞, q < 1 the relation holds An ≤ c qn, n ≥ 1.
(2) If ρ = 1− n−α, 0 < α < ∞, then for n→ ∞

An →


0, α < 1,
1/µ, α = 1,
∞, α > 1.

Bn →
{

0, α < 1/2,
∞, α ≥ 1/2.

Suppose that we have m independently functioning nk-server queuing systems with
Poisson input flows of intensity λk, k = 1, . . . , m. In the k-th system, the customer of the
input flow is served exponentially distributed time simultaneously on ck channels with
intensity µk. Let lk = nk/ck be a natural number and the equality ρk = λk/(lkµk) = 1 holds.

We combine n copies of each of the nk-server systems under consideration, denoting
Pk

n stationary probability of failure in each of the combined systems, k = 1, . . . , m. Using
Theorem 5, it is not difficult to obtain the following limit relations
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P1
n ∼

√
2

πnl1
, . . . , Pm

n ∼
√

2
πnlm

, n→ ∞.

This solution allows us to distribute the total number of n(n1 + . . . + nm) servers
between flows so that the failure probabilities of customers of different flows tend to
zero with the growth of a large parameter n. To solve this problem, one could use the
exact multiplicative formula obtained in [17], but this would lead to significantly more
complex calculations.

5. Parameter Estimation in the Logistics Growth Model

The recurrent model of logistic growth

x0 = a, xn+1 = bxn(1− xn), n = 0, 1, ..., (5)

where the parameters a, b satisfy the conditions 0 < a < 1, 1 < b < 4, attracts increased
attention from biologists and physicists. For this model, both practically and theoretically,
it is important to evaluate the parameter b based on inaccurate observations. Due to
the nonlinearity of the recurrence relation (5), the least squares method applied to the
estimation of the parameter b seems somewhat unnatural, which is confirmed by numerous
computational experiments that give quite large errors. It seems more natural to apply
such qualitative properties of the sequence, as the existence of its limit cycle or limit
distribution [30] depending on the value of b in combination with the method of probability
metrics [11].

Consider an additive model for introducing errors in observations yn = xn + εn, n =
1, . . . Here, εn, n = 1, . . . , is a sequence of i.i.d.r.v.’s having a distribution with mean zero
and variance σ2. We introduce the following notation

Xn =
n−1

∑
i=0

xi
n

, Yn =
n−1

∑
i=0

yi
n

, X′n =
n−1

∑
i=0

x2
i

n
, Y′n =

n−1

∑
i=0

y2
i

n
.

Using the results of [30], it is possible to establish that for the deterministic sequence
xn, n = 1, . . . , with a given b there are limits

lim
n→∞

Xn = x lim
n→∞

X′n = x2. (6)

Indeed, say that the sequence xn, n = 1, ..., has a limit cycle x(1), ..., x(q) of length

q ≥ 1, if lim
k→∞

xqk+j = x(j), j = 1, ..., q. Denote x =
1
q

q

∑
j=1

x(j), x2 =
1
q

q

∑
j=1

[x(j)]2, then we

have

XNq =
1

Nq

Nq

∑
i=1

xi → x, X′Nq =
1

Nq

Nq

∑
i=1

x2
i → x2, N → ∞,

so Formula (6) is true in the case, when the sequence xn, n = 1, . . . , has limit cycle.
Let p(dx) be a probability measure on the σ-algebra of Lebesgue-measurable subsets of

the segment [0, 1]. Let us say that p(dx) is the limiting distribution of the sequence xn, n =

1, ..., if for any Lebesgue-measurable set C ⊆ [0, 1] the equality holds lim
n→∞

k(C, n)
n

=∫
C

p(dx) = p(C), where k(C, n) is the number of xi satisfying the inclusion xi ∈ C, i =

1, ..., n. Then, we define x =
∫ 1

0
xp(dx), x2 =

∫ 1

0
x2 p(dx) and prove Formula (6) as follows.
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Let us take an arbitrary δ > 0 and put m =

[
2
δ

]
+ 1, γ = δ

(
2 +

[
2
δ

])−1
. Divide the

half interval [0, 1) into disjoint segments

C1 =

[
0,

1
m

)
, C2 =

[
1
m

,
2
m

)
, . . . , Cm =

[
m− 1

m
, 1
)

.

Choose N(δ) so that for any n > N(δ) we have
[ k(Cj, n)

n

]
≤ γ, j = 1, . . . , m. It is

sufficiently simple to prove for n ≥ N(δ) the following inequalities

1
n
· ∑

xi∈Cj , i=1,...,n
xi ≤

j
m
·

k(Cj, n)
n

≤ j
m
(p(Cj) + γ) ≤

≤ γj
m

+
∫

Cj

(
x +

1
m

)
p(dx) =

γj
m

+
p(Cj)

m
+
∫

Cj

xp(dx).

Summing these inequalities by j = 1, ..., m, and using the equality for m we get for
n ≥ N(δ) the inequality

Xn ≤
γ(m + 1)

2
+

1
m

+ x = x + δ.

Analogously it is possible to obtain

1
n
· ∑

xi∈Cj , i=1,...,n
xi ≥

j− 1
m
·

k(Cj, n)
n

≥ j− 1
m

(p(Cj)− γ) ≥

≥
∫

Cj

(
x− 1

m

)
p(dx)− γ(j− 1)

m
=
∫

Cj

xp(dx)− 1
m
− γ(m− 1)

2
≥ x− δ,

consequently Xn → x, n → ∞. Similarly we have the relation X′n → x2, n → ∞, so
Formula (6) is true in the case, when the sequence xn, n = 1, . . . , has limit distribution also.

Note that formally the limits x, x2 may depend on the initial state x0. However, in the
logistics growth model there is no such dependence.

We will evaluate the parameter b in two stages. First, we express b in terms of the path
averages: b = x/(x− x2). Using the ratio

EYn =
1
n

n−1

∑
i=0

E(xi + εi) = Xn → x,

EY′n =
1
n

n−1

∑
i=0

E(xi + εi)
2 =

1
n

n−1

∑
i=0

(x2
i + σ2) = X′n + σ2 → x2 + σ2, n→ ∞,

let us estimate the parameter b by the formula

bn =
EYn

EYn − (EY′n − σ2)
→ b, n→ ∞.

As a result, the parameter b is evaluated by the formula b̂n =
Yn

Yn − (Y′n − σ2)
. The

convergence in probability b̂n → b, n→ ∞, follows from the relations

VarYn =
1
n2

n−1

∑
i=0

Var(xi + εi) =
1
n2

n−1

∑
i=0

Varεi =
σ2

n
→ 0;
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VarY′n =
1
n2

n−1

∑
i=0

Var(xi + εi)
2 =

1
n2

n−1

∑
i=0

Var(2xiεi + ε2
i ) ≤

4
n
(4σ2 + σ4)→ 0, n→ ∞.

The following is an illustrative example of estimating parameter b for a logistic growth
model. Calculations of b̂n were performed for the case x0 = 0.75; a = 0.5; b = 3 at
n = 1000 (see Figure 3). An additive model of introducing errors was considered under the
assumption that εi, i = 0, .., n− 1, have a uniform distribution on the segment [−1/4, 1/4].

Figure 3. Frequency histogram for b̂n.

This method can be applied to the estimation of the parameters of the Rikker model
(see, for example, in [22]). Here, the Rikker model is described by recurrent relation

x0 = 1, xn+1 = axn exp(−bxn), a, b > 0,

and observations are following: yn = xn exp(εn), where εn has normal distribution with
zero mean and known variation, n ≥ 0. Another application of described method is
the finite-difference approximation of the system of Lorentz differential equations (see,
for example, in [31]), etc.

6. Discussion

All the problems of system analysis considered in this paper are based on the choice
of changes in the structure of the system, the efficiency indicator, and the computational
algorithm with an assessment of its complexity. In some cases, it is possible to replace the
NP-problem with a fairly simple computational procedure, abandoning the high accuracy
of the resulting solution in favor of a significant change in the performance indicator.
Apparently, such problems require a certain proportion between the accuracy and efficiency
of the resulting solution.

The proposed approach to the study of synergistic effects in complex systems can
be applied to the construction of queuing systems with a large load and a small queue,
to backup systems with recovery, to insurance models and other stochastic systems. It
allows you to explore and find the main parameters in such popular technologies in applica-
tions as powder metallurgy, 3-D printing, fast mixing of fuel in engines, etc. The emphasis
on economical, but not highly accurate calculations, makes it possible at the initial stage
to correctly select the main parameters of the analyzed systems before performing more
detailed and accurate calculations. This property of the proposed approach to the analysis
of complex systems can be used in programs of digital economy, smart city, etc., when
at the initial stage of the study it is important to determine the main indicators of the
effectiveness of a complex system.
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