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Abstract: In this paper, we present a multiscale model reduction technique for unsaturated filtration
problem in fractured porous media using an Online Generalized Multiscale finite element method.
The flow problem in unsaturated soils is described by the Richards equation. To approximate fractures
we use the Discrete Fracture Model (DFM). Complex geometric features of the computational domain
requires the construction of a fine grid that explicitly resolves the heterogeneities such as fractures.
This approach leads to systems with a large number of unknowns, which require large computational
costs. In order to develop a more efficient numerical scheme, we propose a model reduction procedure
based on the Generalized Multiscale Finite element method (GMsFEM). The GMsFEM allows solving
such problems on a very coarse grid using basis functions that can capture heterogeneities. In the
GMsFEM, there are offline and online stages. In the offline stage, we construct snapshot spaces
and solve local spectral problems to obtain multiscale basis functions. These spectral problems are
defined in the snapshot space in each local domain. To improve the accuracy of the method, we add
online basis functions in the online stage. The construction of the online basis functions is based
on the local residuals. The use of online bases will allow us to get a significant improvement in the
accuracy of the method. We present results with different number of offline and online multisacle
basis functions. We compare all results with reference solution. Our results show that the proposed
method is able to achieve high accuracy with a small computational cost.

Keywords: fractured media; unsaturated filtration; Richards equation; multiscale finite element
method; online generalized multiscale finite element method; multiscale model reduction

1. Introduction

In this paper, we consider an unsaturated filtration problem in fractured heterogeneous
media. For unsaturated filtration, we formulate a mathematical model that is based on
the Richards’ equation [1–5]. Due to the high permeability of the fractures, these fractures
have a significant effect on the flow processes and require a special approach in the
construction of a mathematical model and computational algorithms. Such problems in
fractured and heterogeneous media require very fine grids. Standard approaches use the
finite element method to accurately model these processes [6–8]. Such approaches lead
to large systems with large numbers of unknowns, and solving them is computationally
expensive. Multiscale methods are designed to reduce the size of the system. A multiscale
model reduction technique is based on the construction of multiscale basis functions to
extract information in the micro-level. These basis functions are then used to obtain coarse
scale equations.

Multiscale methods are widely used for simulation of problems in heterogeneous
media, for example, multiscale finite element method (MsFEM) [9–11], multiscale finite
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volume method (MsFVM) [12–14], heterogeneous multiscale methods (HMM) [15,16], gen-
eralized multiscale finite element method (GMsFEM) [17–19], constraint energy minimizing
generalized multiscale finite element method (CEM-GMsFEM) [20–22], mixed multiscale fi-
nite element method (Mixed MsFEM)[23–25]. For unsaturated filtration problem, the coarse
grid approximation based on the MsFEM are constructed in [26–28], the authors present ex-
amples in heterogeneous media with high contrast. The upscaling method for the Richards
equation are presented in [29]. In [30–34], the authors present a multiscale methods for
filtration problem in fractured porous media. The effective algorithm of generalized multi-
scale finite element method (GMsFEM) for filtration problems in fractured heterogeneous
porous media are developed in [30,35,36]. Recently in [37–39], the authors present a special
type of multiscale basis functions based on constrained energy minimization problems
and nonlocal multicontinuum (NLMC) method that uses this functions for problems in
fractured porous media. Generalized multiscale finite element method (GMsFEM) for
unsaturated filtration problems if fractured heterogeneous porous media are presented in
our previous work [40]. An online generalized multiscale finite element method (Online
GMsFEM) for filtration problem are presented in [41], and for Allen-Cahn problem are
presented in [42].

In previous works the multiscale model reduction of Richards equation are presented,
using offline multiscale basis functions [26–28,40]. In this paper we use an online general-
ized multiscale finite element method. This method consists of offline and online stages.
In the offline stage, we obtain multiscale basis functions by solving spectral problems in
local domains. In particular, we will solve spectral problems on the snapshot space. The
snapshot space helps us to take into account some complex properties of computational
domain. Using snapshot space is justified for high-contrast heterogeneous domains, and for
complex domains that contains fractures and channel. Using multiscale basis function we
obtain an offline space on which we will solve our problem. In the online stage we solve our
problem on the coarse grid using the offline space. For complex heterogenous problems,
there is a need to enrich the approximation space using online basis functions. These
online basis functions are computed adaptively in the online stage using local residuals.
The aim is to reduce the error significantly by using a small number of these online basis
functions. The motivation of the construction of online basis functions is the optimize the
error reduction locally, and mathematical theories show that the online basis functions give
fast convergence [41].

We will present numerical results for some two-dimensional examples. We consider
two cases of fractured media. In the first case we take domains with simple network of
fractures, and in the second case we test our method in domain with complex fracture
network. We expect that, online basis functions will allow to us modeling unsaturated
filtration process in all types of fracture geometry.

We organize the paper as follows. In Section 2, we present a mathematical model
for unsaturated filtration problem in heterogeneous fractured media. In Section 3, we
consider fine-scale approximation using a Discrete Fracture Model. Next in Section 4, we
describe the construction of the coarse grid approximation and describe construction of the
multiscale basis functions. In this Section, we present an offline multiscale basis functions
and an online multiscale basis functions. We present numerical results in Section 5 for
two-dimensional model problem. Finally, we present the Conclusion.

2. Problem Formulation

We use Richard’s equations to describe an unsaturated filtration process in fractured
porous media. Let Ω is the domain of the porous matrix. We consider lower dimensional
fractures due to small thickness of the fractures compared to the domain sizes. We solve
the following problem of the unsaturated filtration in fractured porous media
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∂Θm

∂t
−∇ · (km(x, pm)∇(pm + z)) + σm f (pm − p f ) = fm, x ∈ Ω,

∂Θ f

∂t
−∇ · (k f (x, p f )∇(p f + z))− σf m(pm − p f ) = f f , x ∈ γ,

(1)

with following initial condition
pm = p f = p0, (2)

and boundary conditions

pm = p f = g, x ∈ ΓD,

∂pm

∂n
=

∂p f

∂n
= 0, x ∈ ΓN ,

(3)

where ∂Ω = ΓD ∪ ΓN , ΓD is the top boundary of the computational domain and ΓN denotes
left, right, and bottom boundaries of the Ω. Here pm and p f are the pressure in matrix
and fractures; km and k f are the unsaturated hydraulic conductivity tensors for matrix and
fractures; z is the influence of the gravity to the flow processes; Θm and Θ f are the water
content for matrix and fracture; and fm and f f denotes source and sink terms; σm f and σf m
are transfer terms between matrix-fracture and fracture-matrix.

To define the physical properties of the domain Ω we use Havercamp model [3]. Then,
the non-linear coefficient kq(x, pq) and the water content Θq are determined as follows

Θq(pq) =
αq(Θq,s −Θq,r)

αq + |pq|βq
+ Θq,r, kq(x, pq) = kq,s(x)

Aq

Aq + |pq|γq
, (4)

where kq,s(x) is the saturated hydraulic conductivity, αq βq, γq, Aα, Θα,r, Θα,s are the
Haverkamp model coefficients and q = m, f .

3. Fine Grid Approximation

To perform numerical experiments, we solve a reference solution on a fine grid. We
construct unstructured triangular fine grid that explicitly resolve fractures in the level of
mesh. We construct an approximation on the fine grid by the finite element method and
Discrete Fracture Model (DFM) for fracture networks. We have the weak formulation∫

Ω

∂Θm

∂t
vm dx +

∫
Ω
(km∇pm,∇vm)dx−

∫
Ω

∂km

∂z
vmdx+∫

Ω
σm f (pm − p f ) vmdx =

∫
Ω

fm vmdx, vm ∈ V̂m∫
γ

∂Θ f

∂t
v f dx +

∫
γ

(
k f∇p f ,∇v f

)
dx−

∫
γ

∂k f

∂z
v f dx−∫

γ
σf m(pm − p f ) v f dx =

∫
γ

f f v f dx, v f ∈ V̂f

(5)

where p = (pm, p f ) ∈ Vm ×Vf and

Vm = {vm ∈ H1(Ω) : v = g, x ∈ ΓD}, Vf = {v f ∈ H1(γ) : v = g, x ∈ ΓD},

V̂m = {vm ∈ H1(Ω) : v = 0, x ∈ ΓD}, V̂f = {v f ∈ H1(γ) : v = 0, x ∈ ΓD}.
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For the approximation of the time derivative, we use the backward Euler method.
To resolve non-linearity we use simplified approximation from the previous time step and
obtain the following approximation on the fine grid

∫
Ω

Cn
m

pn+1
m − pn

m
τ

vm dx +
∫

Ω

(
kn

m∇pn+1
m ,∇vm

)
dx−

∫
Ω

∂kn
m

∂z
vm dx+∫

Ω
σm f (pn+1

m − pn+1
f ) vmdx =

∫
Ω

fm vmdx,

∫
γ

Cn
f

pn+1
f − pn

f

τ
v f dx +

∫
γ

(
kn

f∇pn+1
f ,∇v f

)
dx−

∫
γ

∂kn
f

∂z
v f dx−∫

γ
σf m(pn+1

m − pn+1
f ) v f dx =

∫
γ

f f v f dx.

(6)

where ∂Θ(pm)/∂t = C(pm)∂pm/∂t, ∂Θ(p f )/∂t = C(p f )∂p f /∂t, Cm = dΘm/dpm,
C f = dΘ f /dp f , Cn

m = C(pn
m), Cn

f = C(pn
f ), kn

m = k(x, pn
m), kn

f = k(x, pn
f ) and

Cq(pq) = −
αqβq(Θq,s −Θq,r)|pq|βq−2 pq

(αq + |pq|βq)2
.

We can write approximation, in the matrix form as

1
τ

(
Sn

m 0
0 Sn

f

)(
pn+1

m − pn
m

pn+1
f − pn

f

)
+

(
An

m + Qn −Qn

−Qn An
f + Qn

)(
pn+1

m
pn+1

f

)
=

(
Fn

m
Fn

f

)
(7)

To approximate lower dimensional fractures we use DFM approach. We assume that
pm = p f and using superposition principle [35,43] we eliminate p f from Equation (7) and
obtain following system

Sn pn+1 − pn

τ
+ An pn+1 = Fn (8)

where Sn = Sn
m + Sn

f , An = An
m + An

f and Fn = Fn
m + Fn

f .

4. Coarse Grid Approximation

We construct a coarse grid approximation using an online generalized multiscale finite
element method. Let TH is the coarse grid and ωi is the local domains, where i = 1, . . . , Nc
and Nc is the number of coarse grid nodes. A local domain ωi is obtained by the combining
all the coarse cells around one vertex of the coarse grid.

The Online GMsFEM procedure consist of two parts (see Figure 1)

• Offline stage. In the offline stage we define an offline space by constructing an offline
multiscale basis function;

• Online stage. In the online stage we construct the system on the offline space and
enrich offline space by online multiscale basis functions.

4.1. Offline Stage

We start from the constructing a snapshot space Vωi
snap. The snapshot space are obtained

by solving next local problems∫
ωi

(km,s(x)∇φi
m,j,∇wi

m)dx +
∫

γ
(k f ,s(x)∇φi

f ,j,∇wi
f )dx = 0, (9)

with boundary condition φi
m,j = δj, φi

f ,j = δj, where δj is the discrete delta function which

takes the value 1 at the j-th fine grid node x = xj and zero elsewhere (j = 1, . . . , Ji, Ji is
number of fine grid nodes on boundary ∂ωi ).
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Figure 1. Illustration of the GMsFEM algorithm.

The main concept of constructing the snapshot space is that the snapshot vectors
preserve some essential properties of the solution and provide a good approximation space.
Snapshot space helps to better take into account heterogeneities with high contrast, as well
as complex heterogeneities, such as channels and fractures. For the construction of the
accurate approximation on the coarse grid for problems in fractured media, the number
of dominant modes in spectral problem that corresponds to the very small eigenvalues
should belong to the long fractures that cross the local domain boundaries. For the small
separated fractures that do not cross the boundaries only one basis is sufficient for the
approximation. When we skip construction of a snapshot space, a separate basis will be
built for each small separate fracture. This approach will require more multiscale basis
functions in each local domain ωi.

The snapshot space and the projection matrix on the snapshot space are defined as follows

Vsnap,i = span{φi
1, . . . , φi

Ji
}, and Rsnap,i = (φi

1, . . . , φi
Ji
)T .

On the snapshot space we solve the next local spectral problem in each ωi to obtain an
offline multiscale basis functions

ÃΨ̃i
snap,j = λS̃Ψ̃i

snap,j, (10)

with
Ã = Rsnap,i Aωi RT

snap,i, S̃ = Rsnap,iSωi RT
snap,i,

where

Aωi = {aln}, aln =
∫

ωi

(km,s(x)∇ψm,l ,∇ψm,n)dx +
∫

γ
(k f ,s(x)∇ψ f ,l ,∇ψ f ,n)dx,

Sωi = {sln}, sln =
∫

ωi

km,s(x)ψm,l ψm,n dx +
∫

γ
k f ,s(x)ψ f ,l ψ f ,n dx.

(11)

We use solution of the spectral problem Ψi
j = Rsnap,iΨ̃i

snap,j in offline basis construction.
We take only linear part ks(x) of coefficient k(x, p) from (4). For basis construction we
choose the smallest Mi eigenvalues. We obtain an offline multiscale basis functions by
multiplication on the linear partition of unity function ψi

j = χiΨi
j, where χi is the linear

coarse grid nodal basis function that is equal to zero on the boundary of local domain ωi
and one at the coarse grid node i. An example of first 4 solution of spectral problem and
first 4 offline multiscale basis functions are presented in Figure 2.



Mathematics 2021, 9, 1382 6 of 14

Now, we can define the offline space

Vms = span(ψ1
1, . . . , ψ1

M1
, . . . , ψNc

1 , . . . , ψNc
MNc

).

and projection matrix

RT = (ψ1
1, . . . , ψ1

M1
, . . . , ψNc

1 , . . . , ψNc
MNc

).

Figure 2. First 4 solution of spectral problem (10) in ωi (a) and first 4 offline multiscale basis functions
in ωi (b).

4.2. Online Stage

Since our problem is non-linear, we need to take into account the change in the
coefficients over time. It is possible to consider ways of updating offline basis functions
at certain time steps, but this approach has large computational costs. It would be much
more profitable to add one basis to each local area, which minimizes the residual. This way
is based on the online basis enrichment for GMsFEM based on the residual [41]. Presented
procedure will allow us to significantly reduce the number of used offline multiscale basis
functions and add local online multiscale basis functions to fast error reduction based on
the local residual information. With fewer basis functions, we will be able to get better
accuracy, since our bases will take into account the coefficient k changes over time.

In online GMsFEM, we update projection matrix Rn by adding online residual based
multiscale basis functions at n-th time step. Therefore, we solve next system on the coarse grid

Sn
c

pn+1
c − pn

c
τ

+ An
c pn+1

c = Fn
c , (12)

where coarse scale matrices and vectors are constructed using current projection matrix Rn

Sn
c = RnSn(Rn)T , An

c = Rn An(Rn)T , Fn
c = RnFn, pn+1

ms = (Rn)T pn+1
c .

Note that, when we use pre-constructed offline multiscale basis functions for given
heterogeneity and fracture distribution in coarse scale system construction, we can use
predefined projection matrix without updating it at n-th time step

(Rn)T = RT = (ψ1
1, . . . , ψ1

M1
, . . . , ψNc

1 , . . . , ψNc
MNc

).

In online GMsFEM, we set Rn = R at first time step (n = 0), then we construct and
solve coarse scale system (12). Next, at time step n = 1, 2, . . ., we enrich multiscale space
by residual based online multiscale basis functions. In order to enrich space, we solve
system (12) with Rn = Rn−1, then we calculate online multiscale basis functions ϑi

1 locally
in ωi using current residuals and update the projection matrix

(R1,n)T = (ψ1
1, . . . , ψ1

M1
, . . . , ψNc

1 , . . . , ψNc
MNc

, ϑ1
1, . . . , ϑNc

1 ).
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We can reiterate the process with residual calculation and add more online basis
functions on the n-th time step

(Rn)T = (RL,n)T = (ψ1
1, . . . , ψ1

M1
, . . . , ψNc

1 , . . . , ψNc
MNc

, ϑ1
1, . . . , ϑNc

! . . . , ϑ1
L, . . . , ϑNc

L ),

where L is the number of online iterations. We can enrich multiscale space not for every
time steps, for example, every 5-th or 10-th. Then, when we keep Rn for the time steps
where we do not want to update online basis functions. Next, we present construction of
the online multiscale basis functions in local domain ωi in details.

Construction of the local residual based online multiscale basis functions is based on
the solution of the following local problem in ωi:

aωi (Φ
i
l , v) = rl

ωi
(v), l = 1, . . . , L, (13)

where

aωi (Φ
i
l , v) =

∫
ωi

Cn
m

Φi
l

τ
v dx +

∫
ωi

(
kn

m∇Φi
l ,∇v

)
dx+

∫
γi

Cn
f

Φ f ,i
l
τ

v f dx +
∫

γi

(
kn

f∇Φ f ,i
l ,∇v f

)
dx,

rl
ωi
(v) =

∫
ωi

∂kn
m

∂z
v dx +

∫
ωi

fm v dx−
∫

ωi

Cn
m

pl,n+1
m,ms − pl,n

m,ms

τ
v dx−

∫
ωi

(
kn

m∇pl,n+1
m,ms ,∇v

)
dx +

∫
γi

∂kn
f

∂z
v f dx +

∫
γi

f f v f dx−

∫
γi

Cn
f

pl,n+1
f ,ms − pl,n

f ,ms

τ
v f dx−

∫
γi

(
kn

f∇pl,n+1
f ,ms ,∇v f

)
dx,

(14)

with zero Dirichlet boundary condition Φi
l = 0, Φ f ,i

l = 0 on the ∂ωi. Finally, we obtain an
online multiscale basis functions by multiplication on the linear partition of unity function
ϑi

l = χiΦi
l . We present solution of (13) and (14) for three different local domains in Figure 3

(l = 1).

Figure 3. Illustration of the online multiscale basis functions for three local domains. (a): local
domains ωi. (b): solution of (13) and (14).

Using constructed online multiscale basis functions, we enrich the multiscale space by
adding online basis functions ϑi

l :

Vms = span(ψi
1, . . . , ψi

Mi
, ϑ1

l , . . . , ϑNc
l , i = 1, . . . , Nc, l = 1, . . . , L).
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Here, we can add several online multiscale basis functions in local domain ωi based
on the current solution pl,n

ms

Sl,n
c

pl,n+1
c − pn

c
τ

+ Al,n
c pl,n+1

c = Fl,n
c , (15)

where coarse scale matrices and vectors are constructed using current projection matrix Rl,n

Sl,n
c = Rl,nSn(Rl,n)T , Al,n

c = Rl,n An(Rl,n)T , Fl,n
c = Rl,nFn, pl,n+1

ms = (Rl,n+!)T pl,n+1
c .

with projection matrix

Rl,n = (ψ1
1, . . . , ψ1

M1
, . . . , ψNc

1 , . . . , ψNc
MNc

, ϑ1
1, . . . , ϑNc

1 . . . , ϑ1
l , . . . , ϑNc

l )T ,

where l = 1, . . . , L, Rn = RL,n and L is the number of the online iterations.

5. Numerical Results

We present numerical results for two-dimensional problem with in fractured heteroge-
neous media. We consider problems in two-dimensional domains with different fractures
locations. In this work, we consider the following model problems:

• Test 1. Computational domain with 14 fractures , Tmax = 3× 10−3, km,s = 10 and
k f ,s = 109 (homogeneous porous matrix);

• Test 2. Computational domain with 14 fractures , Tmax = 67× 10−7, km,s = km,s(x)
and k f ,s = 109 (heterogeneous porous matrix);

• Test 3. Computational domain with 50 fractures , Tmax = 12× 10−7, km,s = km,s(x)
and k f ,s = 109 (heterogeneous porous matrix).

On the top boundary ΓD we set Dirichlet boundary condition p1 = −20.7, as initial
condition we take p0 = −61.5. The computational domains Ω = [0, 1]2 and the domain
properties km,s(x) for Test 2 and Test 3 are presented in Figure 4. For domain with 14 frac-
tures (Test 1,2), fine grid consist of 31, 628 vertices and 67, 085 cells. For the domain with
50 fractures (Test 3), fine grid consist of 34, 552 vertices and 74, 253 cells. For coarse grid
solution we construct a structured square 10× 10 coarse grid with 121 vertices and 100 cells.
In numerical simulations we use 200 time steps.

Figure 4. (a): computational domain for Test 1 and Test 2. (b): computational domain for Test 3.
Coarse grid (blue color), fine grid (green color) and fracture geometry (red color). (c): Heterogeneous
coefficient km,s for Test 2 and Test 3.

For Haverkamp model, we use the following values of the coefficients : α = 1.511× 106,
β = 3.96, Θs = 0.287, Θr = 0.075, A = 1.175× 106 and γ = 4.74.
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To compare the results with reference solution, we use the relative L2 error (%) and
relative energy error (%) (16).

eL2 =
||p− pms||L2

||p||L2

, ||v||2L2
=
∫

Ω
(vm, vm) dx +

∫
γ
(v f , v f ) dx

ea =
||p− pms||a
||p||a

, ||v||2a =
∫

Ω
(km,s(x)∇vm, ∇vm) dx +

∫
γ
(k f ,s(x)∇v f , ∇v f ) dx

(16)

where pms and p are the multiscale and reference (fine-scale) solutions.
In Test 1 we consider domain with 14 fractures with homogeneous porous matrix.

In Figure 5 we present fine grid solution, multiscale solution using 3 offline basis functions
and multiscale solution using 3 offline and 1 online basis functions at final time. We
perform an enrichment procedure in each fifth time layer. In Table 1, we present relative
L2 and energy errors for multiscale solution using 0, 1, and 2 online basis functions for
different number of offline basis functions. In this table DOFc denotes the vector size on
the coarse grid and M denotes the number of offline basis function in each local domain ωi.
By this tables we can see that, when we use 3 offline and 1 online basis functions we can
obtain a solution better then using 8 offline basis function. Using online basis functions,
we can obtain a solution using system with smaller number of unknowns. We can see the
advantage of the online approach over offline in the Figure 6. In this Figure, we depict a
relative L2 and energy error over time. The Figure 6 clearly shows the fall in error every
fifth time layer, when we update the online bases. In this Figure, we observe a jump in
error when we use 2 online basis functions. From the results we can see, that the method
give solution with high accuracy. It is most profitable to use 1 online multiscale basis
function in each local domain ωi. When using the 2-nd online basis, the fall in error is not
so significant, and its addition is not worth the spent computing resources. As we can
see, we get a significant reduction in the size of the original system with very little loss
of accuracy.

Figure 5. Numerical results for Test 1. (a): fine grid solution. (b): multiscale solution using 3 offline
basis functions. (c): multiscale solution using 3 offline basis functions and 1 online basis functions.

Table 1. Numerical results for Test 1. Relative L2 and energy errors (%) for different number of offline
multiscale basis functions using 1 and 2 online basis functions on the last time layer.

Offline Basis 1 Online Basis 2 Online Basis

M DOFc eL2 ea DOFc eL2
m ea

m DOFc eL2 ea

2 242 97.393 155.472 363 97.049 152.071 484 96.716 151.544
3 363 2.502 38.883 484 0.307 7.203 605 0.201 2.341
4 484 1.746 32.202 605 0.423 6.547 726 0.283 2.099
6 726 0.453 19.705 847 0.334 2.009 968 0.342 1.554
8 968 0.289 15.176 1089 0.351 1.512 1210 0.347 1.218
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Figure 6. Numerical results for Test 1. Error comparison between offline approach using 3 offline
basis and online approach using 1 and 2 online basis. (a): L2 error. (b): energy error.

Next, we consider Test 2 with heterogeneous matrix. In Figure 7 we present fine grid
solution, multiscale solution using 3 offline basis functions and multiscale solution using
3 offline and 1 online basis functions at final time. In Table 2, we present relative L2 and
energy errors for multiscale solution using 0, 1, and 2 online basis functions for different
number of offline basis functions. In this case, we also enough to use 3 offline and 1 online
multiscale basis functions. We also show the advantage of the online approach over offline
in the Figure 8. Here we do not observe any jumps in errors. Adding a heterogeneous
matrix did’t affect on the accuracy of the method. The behavior of the method is similar
to the previous task (Test 1). Therefore, we can draw a similar conclusion that method
provides a good solution.

Figure 7. Numerical results for Test 2. (a): fine grid solution. (b): multiscale solution using 3 offline
basis functions. (c): multiscale solution using 3 offline basis functions and 1 online basis functions.

Table 2. Numerical results for Test 2. Relative L2 and energy errors (%) for different number of offline
multiscale basis functions using 1 and 2 online basis functions on the last time layer.

Offline Basis 1 Online Basis 2 Online Basis

M DOFc eL2 ea DOFc eL2 ea DOFc eL2 ea

2 242 34.272 95.948 363 24.261 89.973 484 23.513 88.621
3 363 2.908 33.599 484 0.326 8.874 605 0.128 3.758
4 484 2.091 28.741 605 0.264 6.335 726 0.107 2.646
6 726 0.665 16.121 847 0.092 2.333 968 0.055 1.451
8 968 0.422 12.309 1089 0.048 1.339 1210 0.064 0.591
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Figure 8. Numerical results for Test 2. Error comparison between offline approach using 3 offline
basis and online approach using 1 and 2 online basis. (a): L2 error. (b): energy error.

Next, we consider Test 3, the case with 50 fractures. In Figure 9, we present fine grid
solution, multiscale solution using 12 offline basis functions and multiscale solution using
12 offline and 1 online basis functions at final time. In this case, the enrichment procedure
are performed also on each fifth time layer. In Table 3 we present relative L2 and energy
errors for multiscale solution using 0, 1, and 2 online basis functions for different number of
offline basis functions and adaptive approach. From results, we can see that we need to use
at least 12 offline and 1 online basis functions to obtain solution with good accuracy. Using
the 2-nd online basis function improves accuracy of the method but not good enough to
use it. The behavior of the obtained results is the same as in the Test 1 and Test 2, but in this
case we need to use a larger number of offline bases. In Figure 10, we present a relative
L2 and energy error over time. In this Figure, we can see the error raising when we use
2 online basis functions. These results once again confirm that it is better to use 1 online
multiscale basis function.

Figure 9. Numerical results for Test 3. (a): fine grid solution. (b): multiscale solution using 12 offline
basis functions. (c): multiscale solution using 12 offline basis functions and 1 online basis functions.
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Table 3. Numerical results for Test 3. Relative L2 and energy errors (%) for different number of offline
multiscale basis functions using 1 and 2 online basis functions on the last time layer.

Offline Basis 1 Online Basis 2 Online Basis

M DOFc eL2 ea DOFc eL2 ea DOFc eL2 ea

2 242 58.043 100.00 363 57.908 99.937 484 57.854 99.862
4 484 33.674 90.899 605 20.851 85.816 726 20.901 77.872
6 726 25.274 72.768 847 15.923 49.371 968 16.146 59.431
8 968 17.415 58.506 1089 10.107 38.239 1210 8.447 32.415

12 1452 6.775 33.893 1573 1.715 8.929 1693 1.134 5.565
16 1936 0.653 22.980 2057 0.062 2.282 2178 0.038 0.793
20 2420 0.566 21.614 2541 0.041 1.981 2662 0.017 0.645

Figure 10. Numerical results for Test 3. Error comparison between offline approach using 12 offline
basis and online approach using 1 and 2 online basis. (a): L2 error. (b): energy error.

6. Conclusions

We presented an online generalized multiscale finite element method for unsaturated
filtration problem in fractured media. We performed a multiscale modeling for domains
with 14 and 50 fractures for homogeneous or heterogeneous matrix. We considered a
multiscale method with different numbers of offline and online basis functions. Our
experiments showed that adding 1 or 2 online multiscale basis function significantly
reduces the error of the method, especially in energy norm. Moreover, we considered an
adaptive online approach, namely, online basis functions are added at some selected regions
with larger errors. This approach performed well in all experiments. This method allows
us to obtain a solution with high accuracy with a significant decrease in the dimension of
the original system. We conclude that for solving the unsaturated filtration problems in
fractured media by the online generalized multiscale finite element method, it is sufficient
to use one online multiscale basis function in each local domain.
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