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Abstract: In this study, we suggested the local convergence of three iterative schemes that works for
systems of nonlinear equations. In earlier results, such as from Amiri et al. (see also the works by
Behl et al., Argryos et al., Chicharro et al., Cordero et al., Geum et al., Guitiérrez, Sharma, Weerakoon
and Fernando, Awadeh), authors have used hypotheses on high order derivatives not appearing
on these iterative procedures. Therefore, these methods have a restricted area of applicability. The
main difference of our study to earlier studies is that we adopt only the first order derivative in the
convergence order (which only appears on the proposed iterative procedure). No work has been
proposed on computable error distances and uniqueness in the aforementioned studies given on Rk.
We also address these problems too. Moreover, by using Banach space, the applicability of iterative
procedures is extended even further. We have examined the convergence criteria on several real life
problems along with a counter problem that completes this study.

Keywords: simple root; system of nonlinear equations; Banach space; order of convergence

MSC: 65G99; 65H10

1. Introduction

The most common and difficult problem in the field of computational mathematics is
to obtain the solutions of

F(x) = 0, (1)

where F : Ω ⊂ B1 → B2 a Fréchet-differentiable, B1 and B2 Banach domains, Ω, a non-
empty convex. It is hard to obtain the exact solution in analytic form for such problems or,
in simple words, it is almost fictitious. This is one of main reasons that we must obtain an
approximated and efficient solution up to any specific degree of accuracy by means of an
iterative procedure.

Therefore, researchers have been putting great effort into developing new iterative
methods over the past few decades. In addition, the accuracy of a solution is also dependent
on several facts, some of them are: the choice of iterative method, initial approximation/s
and structure of the considered problem with software such as Maple, Fortran, MATLAB,
Mathematica, and so forth. Further, the people who used these iterative schemes faced
several issues, some of which include: choice of starting point, derivative being zero about
the root (in the case of derivative free multi-point schemes), difficulty near the initial point,
slower convergence, divergence, convergence to an undesired solution, oscillation, failure
of the iterative method, and so forth (for further information, please see [1–5]).

We study the local convergence of the Banach domain valued iterative procedures of
orders eighth, eighth and seventh, defined for each σ = 0, 1, 2, . . . , respectively, by
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yσ = xσ − F′(xσ)
−1F(xσ),

zσ = yσ −
[

5
4

I − 1
2

F′(yσ)
−1F′(xσ) +

1
4

(
F′(yσ)

−1F′(xσ)
)2
]

F′(yσ)
−1F(yσ),

xσ+1 = zσ −
[

3
2

I − F′(yσ)
−1F′(xσ) +

1
2

(
F′(yσ)

−1F′(xσ)
)2
]

F′(yσ)
−1F(zσ),

(2)

yσ = xσ − F′(xσ)
−1F(xσ),

zσ = yσ −
[

1
4

I +
1
2

F′(yσ)
−1F′(xσ) +

1
4

(
F′(yσ)

−1F′(xσ)
)2
]

F′(xσ)
−1F(yσ),

xσ+1 = zσ −
[

1
2

I +
1
2

(
F′(yσ)

−1F′(xσ)
)2
]

F′(xσ)
−1F(zσ),

(3)

and
yσ = xσ − F′(xσ)

−1F(xσ),

zσ = yσ −
1
β

F′(xσ)
−1F(yσ),

wσ = zσ − F(xσ)
−1
[(

2− 1
β
− β

)
F(yσ) + βF(zσ)

]
,

xσ+1 = wσ −Q(tσ)F′(xσ)
−1F(wσ),

(4)

with tσ = I − 1
β F(xσ)−1[yσ, zσ; F], F : Ω ⊂ B1 → B2 a Fréchet-differentiable, B1 and B2

Banach domains, Ω a non-empty, convex and open, x0 ∈ Ω an initial guess, β ∈ R− {0},
and [·, ·; F] : Ω×Ω→ `(B1,B2) a standard divided difference of order one [6]. Notice that

by
(

F′(yσ)−1F′(xσ)
)2

, we mean that
(

F′(yσ)−1F′(xσ)
)(

F′(yσ)−1F′(xσ)
)

, which exists as
a composition between two linear operators. The following concerns arise for Reference [7]
(the same is true for the studies mentioned in the papers [8–20]):

(1) These procedures were studied in [7] for the special case when B1 = B2 = Rj,
j = 1, 2, 3, . . . , by using Taylor series and hypotheses on the derivatives reaching
up to order 9 (not appearing on these iterative procedures). These hypotheses limit
the applicability of the iterative procedures. Let us consider a motivational example.
Therefore, we assume the following function H on T = Y = R, Ω = [− 1

2 , 3
2 ] as:

F(θ) =
{

θ3 ln θ2 + θ5 − θ4, θ 6= 0
0, θ = 0

. (5)

We yield
F′(θ) = 3θ2 ln θ2 + 5θ4 − 4θ3 + 2θ2,

F′′(θ) = 6θ ln θ2 + 20θ3 − 12θ2 + 10θ,

F′′′(θ) = 6 ln θ2 + 60θ2 − 12θ + 22.

So, we identify that F′′′(θ) is not bounded in Ω. Therefore, results requiring the
existence of F′′′(θ) or higher cannot apply for studying the convergence of (2)–(4).

(2) No computable error bounds ‖xσ − x∗‖. Hence, we do not know in advance how
many iterates should be computed to achieve some pre-decided error tolerance.

(3) Uniqueness results are not given in [7]. Here, x∗ is a solution of the equation of (1).

In this paper, we address all (1)–(3) problems using only the first derivative, which ap-
pears in these iterative procedures. Hence, we extend the applicability of these procedures
in the more general setting of a Banach domain. Moreover, because of its generality, our
approach can extend the usage of other methods [8–19,21–25] in the same way.
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2. Local Convergence

We study first of all, iterative procedure (2). Let ψ0 : [0, ∞)→ [0, ∞) be a continuous
and increasing function. Assume:
(i) Equation

ψ0(θ)− 1 = 0, (6)

has a minimal positive solution ρ0.
Set I0 = [0, 2ρ0). Function ψ : I0 → [0, ∞) to be continuous and increasing. Define

function G1 on I0 in the following way:

G1(θ) =

∫ 1
0 ψ
(
(1− µ)θ

)
dµ

1− ψ0(θ)
.

(ii) Equation
G1(θ)− 1 = 0,

has a minimal solution r1 ∈ I0 − {0}.
(iii) Equation

ψ0

(
G1(θ)θ

)
− 1 = 0, (7)

has a minimal positive solution ρ1. Set ρ2 = min{ρ0, ρ1}.
Consider function v : I1 → [0, ∞) to be continuous and increasing, where I1 = [0, ρ2).

Define function G2 on I1 in the following way:

G2(θ) =

[
1 +

1
4

ψ0(θ) + ψ0

(
G1(θ)θ

)
1− ψ0

(
G1(θ)θ

)


2 ∫ 1
0 v
(

µG1(θ)θ
)

dµ

1− ψ0

(
G1(θ)θ

) ]G1(θ),

(iv) Equation
G2(θ)− 1 = 0,

has a minimal solution r2 ∈ I1 − {0}.
(v) We assume that equation

ψ0

(
G2(θ)θ

)
− 1 = 0, (8)

has a minimal positive solution ρ3 and ρ = min{ρ2, ρ3}.
Define another function G3 on I3 = [0, ρ) by :

G3(θ) =

[∫ 1
0 ψ
(
(1− µ)G2(θ)θdµ

)
1− ψ0

(
G2(θ)θ

) +

(
ψ0

(
G2(θ)θ

)
+ ψ0

(
G1(θ)θ

)) ∫ 1
0 v
(

µG2(θ)θ
)

dµ(
1− ψ0

(
G1(θ)θ

))(
1− ψ0

(
G2(θ)θ

))

+
1
2

ψ0(θ) + ψ0

(
G1(θ)θ

)
1− ψ0

(
G1(θ)θ

)


2 ∫ 1
0 v
(

µG2(θ)θ
)

dµ

1− ψ0

(
G1(θ)θ

) ]G2(θ),

(vi) Equation
G3(θ)− 1 = 0,

has a minimal solution r3 ∈ I3 − {0}.
A radius of convergence r shall be shown to be

r = min{ri}, i = 1, 2, 3. (9)

Notice that
0 ≤ ψ0(θ) < 1, (10)
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0 ≤ ψ0

(
G1(θ)θ

)
< 1, (11)

0 ≤ ψ0

(
G2(θ)θ

)
< 1, (12)

and
0 ≤ Gi(θ) < 1, i = 1, 2, 3, (13)

for all θ ∈ [0, r).
Let S̄(a, b) stand for the closure of S(a, b) a with center a ∈ Ω and of radius b > 0.

The conditions (B) are used in the local convergence analysis of iterative procedure (2)
provided the “ψ” functions are as given previously. Assume:

(B1) F : Ω→ B2 is Fréchet- differentiable and there exists x∗ ∈ Ω such that

F(x∗) = 0 and F′(x∗)−1 ∈ `(B2,B1).

(B2) For all x ∈ Ω ∥∥∥F′(x∗)−1
(

F′(x)− F′(x∗)
)∥∥∥ ≤ ψ0(‖x− x∗‖).

Set Ω0 = Ω ∩ S(x∗, ρ0).
(B3) For all x, y ∈ Ω0 ∥∥∥F′(x∗)−1

(
F′(x)− F′(y)

)∥∥∥ ≤ ψ(‖x− y‖).

Set Ω1 = Ω ∩ S(x∗, ρ2).
(B4) For all x ∈ Ω1 ∥∥∥F′(x∗)−1F′(x)

∥∥∥ ≤ v(‖x− x∗‖).

(B5) S̄(x∗, r̃) ⊂ Ω, ρ exists and r̃ is defined later.
(B6) There exists r̄ ≥ r such that ∫ 1

0
ψ0(µr̄)dµ < 1.

Set Ω2 = Ω ∩ S̄(x∗, r̃).

Next, we develop the analysis of iterative procedure (2) by the preceding notation and
conditions (B).

Theorem 1. Under the conditions (B) for r̃ = r, further suppose that x0 ∈ S(x∗, r) − {x∗}.
Then, sequence {xσ} generated by iterative scheme (2) is well defined, remains in S(x∗, r) for all
σ = 0, 1, 2, 3, . . . and converges to x∗. Moreover, the following assertions hold

‖yσ − x∗‖ ≤ G1(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (14)

‖zσ − x∗‖ ≤ G2(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖, (15)

and
‖xσ+1 − x∗‖ ≤ G3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (16)

where the “Gi” functions are given previously and r is defined by (9). Furthermore, x∗ is the only
solution of equation F(x) = 0 given in Ω2 by (B6).

Proof. Sequence {xσ} shall be shown to be well defined, to remain in S(x∗, r) and to
converge to x∗ using mathematical induction. In order to achieve this, we shall also show
estimates (14)–(16). Let us assume that x ∈ S(x∗, r)− {x∗}. Using B2, (8) and (9), we have∥∥∥F′(x∗)−1

(
F′(x)− F′(x∗)

)∥∥∥ ≤ ψ0(‖x− x∗‖) ≤ ψ0(r) < 1. (17)
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The Banach perturbation lemma on inversible operators [6], together with estima-
tion (16), ensure: the existence of F′(x)−1

∥∥∥F′(x)−1F′(x∗)
∥∥∥ ≤ 1

ψ0(‖x− x∗‖)
,

so

‖yσ − x∗‖ =
∥∥∥xσ − x∗ − F′(xσ)

−1F(xσ)
∥∥∥

≤
∥∥F′(xσ)

−1F′(x∗)
∥∥∥∥∥∥∥∫ 1

0
F′(x∗)−1

(
F′
(

x∗ + µ(xσ − x∗)
)
− F′(xσ)

)
dµ(xσ − x∗)

∥∥∥∥
≤

∫ 1
0 ψ
(
(1− µ)‖xσ − x∗‖

)
dµ

1− ψ0(‖xσ − x∗‖)
‖xσ − x∗‖

≤ G1(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r,

‖zσ − x∗‖ =
∥∥∥∥yσ − x∗ −

1
4

(
I − F′(yσ)

−1F′(xσ)
)2

F′(yσ)
−1F′(yσ)

∥∥∥∥
≤
∥∥∥∥yσ − x∗ −

1
4

[
F′(yσ)

−1
(

F′(yσ)− F′(xσ)
)]2

F′(yσ)
−1F′(yσ)

∥∥∥∥
≤
[

1 +
1
4

ψ0(‖xσ − x∗‖) + ψ0

(
G1(‖xσ − x∗‖)‖xσ − x∗‖

)
1− ψ0

(
G1(‖xσ − x∗‖)‖xσ − x∗‖

)


2

×

∫ 1
0 v
(

µG1(‖xσ − x∗‖)‖xσ − x∗‖
)

dµ

1− ψ0

(
G1(‖xσ − x∗‖)‖xσ − x∗‖

) ]‖yσ − x∗‖

≤ G2(‖xσ − x∗‖)‖xσ − x∗‖

and

‖xσ+1 − x∗‖ =
∥∥∥∥∥zσ − x∗ − F′(zσ)

−1F(zσ) + F′(zσ)
−1
(

F′(yσ)− F′(zσ)
)

F′(yσ)
−1F(zσ)

− 1
2

[
I − 2F′(yσ)

−1F′(xσ) +
(

F′(yσ)
−1F′(xσ)

)2
F′(yσ)

−1F(zσ)
]∥∥∥∥∥

=

∥∥∥∥∥(zσ − x∗ − F′(zσ)
−1F′(zσ)

)
+ F′(zσ)

−1
(

F′(yσ)− F′(zσ)
)

F′(yσ)
−1F(zσ)

− 1
2

[
I − F′(yσ)

−1F′(xσ)
]

F′(yσ)
−1F(zσ)

∥∥∥∥∥
≤
[∫ 1

0 ψ
(
(1− µ)‖zσ − x∗‖

)
dµ

1− ψ0

(
‖xσ − x∗‖

)
+

(
ψ0(‖zσ − x∗‖) + ψ0(‖yσ − x∗‖)

) ∫ 1
0 v(µ‖zσ − x∗‖)dµ(

1− ψ0(‖yσ − x∗‖)
)(

1− ψ0(‖zσ − x∗‖)
)

+
1
2

(
ψ0(‖xσ − x∗‖) + ψ0(‖yσ − x∗‖)

1− ψ0(‖yσ − x∗‖)

)2 ∫ 1
0 v(µ‖zσ − x∗‖)dµ

1− ψ0(‖yσ − x∗‖)

]
‖zσ − x∗‖

≤ G3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r.
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The induction for assertions (14)–(16) is terminated by simply substituting xσ, yσ, zσ

and xσ+1 by xσ+1, yσ+1, zσ+1 and xσ+2, respectively in the preceding calculations. It
follows by the estimation

‖xσ+2 − x∗‖ ≤ q‖xσ+1 − x∗‖ < r, (18)

where 0 ≤ q = G3(‖x0 − x∗‖) < 1 that lim
σ→∞

xσ = x∗. Finally, set T =
∫ 1

0 F′
(

u + µ(x∗ −

u)
)

dµ, for u ∈ Ω2 with F(u) = 0. Then, by hypotheses (B2) and (B6), we obtain

∥∥∥F′(x∗)−1
(

T − F′(x∗)
)∥∥∥ ≤ ∫ 1

0
ψ0(µ‖x∗ − u‖)dµ

≤
∫ 1

0
ψ0(µr̄)dµ < 1,

so u = x∗ is implied by the existence of T−1 and the estimate 0 = F(x∗)− F(u) = T(x∗− u).

Secondly, we study iterative procedure (3) in an analogous way. There will be no
change in the function G1. However, we must re-define the functions G2 and G3 in the
following way with Ḡ1 = G1:

Ḡ2(θ) =

[∫ 1
0 ψ
(
(1− µ)Ḡ1(θ)θ

)
dµ

1− ψ0

(
Ḡ1(θ)θ

) +

(
ψ0(θ) + ψ0

(
Ḡ1(θ)θ

)) ∫ 1
0 v
(

µḠ1(θ)θ
)

dµ(
1− ψ0(θ)

)(
1− ψ0

(
Ḡ1(θ)θ

))

+
3
4

ψ0(θ) + ψ0

(
Ḡ1(θ)θ

)
1− ψ0

(
Ḡ1(θ)θ

)


2 ∫ 1
0 v
(

µḠ1(θ)θ
)

dµ

1− ψ0(θ)
+

ψ0(θ) + ψ0

(
Ḡ1(θ)θ

)
1− ψ0

(
Ḡ1(θ)θ

)


×

∫ 1
0 v
(

µḠ1(θ)θ
)

dµ

1− ψ0

(
Ḡ1(θ)θ

) ]Ḡ1(θ)

and

Ḡ3(θ) =

[∫ 1
0 ψ
(
(1− µ)Ḡ2(θ)θ

)
dµ

1− ψ0

(
Ḡ2(θ)θ

) +

(
ψ0(θ) + ψ0

(
Ḡ2(θ)θ

)) ∫ 1
0 v
(

µḠ2(θ)θ
)

dµ(
1− ψ0(θ)

)(
1− ψ0

(
Ḡ2(θ)θ

))

+
1
2

ψ0(θ) + ψ0

(
Ḡ1(θ)θ

)
1− ψ0

(
Ḡ1(θ)θ

)


2 ∫ 1
0 v
(

µḠ2(θ)θ
)

dµ

1− ψ0(θ)
+

ψ0(θ) + ψ0

(
Ḡ1(θ)θ

)
1− ψ0

(
Ḡ1(θ)θ

)


×
∫ 1

0
v
(

µḠ2(θ)θ
)

dµ

]
Ḡ2(θ),

respectively.
Define radius r̄ corresponding to method (3) similarly by

r̄ = min{r̄i}.

Then, we arrive at the following theorem with these changes:
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Theorem 2. Under the conditions (B) for r̃ = r̄, further suppose that x0 ∈ S(x∗, r̄) − {x∗}.
Then, sequence {xσ} generated by iterative scheme (3) is well defined, remains in S(x∗, r̄) for all
σ = 0, 1, 2, 3, . . . and converges to x∗. Moreover, the following assertions hold

‖yσ − x∗‖ ≤ Ḡ1(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (19)

‖zσ − x∗‖ ≤ Ḡ2(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖, (20)

and
‖xσ+1 − x∗‖ ≤ Ḡ3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (21)

where the “Ḡi” functions are given previously. Furthermore, x∗ is the only solution of equation
F(x) = 0 given in Ω2 by (B6).

Proof. By simply repeating the proof of Theorem 1 but using iterative procedure (3) instead
of method (2), we get the estimates

‖zσ − x∗‖ =
∥∥∥∥∥yσ − x∗ − F′(yσ)

−1F(yσ) +
(

F′(yσ)
−1 − F′(xσ)

−1
)

F(yσ)

+

[
I − 1

4

(
I + F′(yσ)

−1F′(xσ)
)2
]

F′(xσ)
−1F(yσ)

∥∥∥∥∥
=

∥∥∥∥∥[yσ − x∗ − F′(yσ)
−1F′(yσ)

]
+ F′(yσ)

−1
(

F′(xσ)
−1 − F′(yσ)

−1
)

F′(xσ)
−1F(yσ)

+
3
4

(
I − F′(yσ)

−1F′(xσ)
)2

F′(xσ)
−1F(yσ) +

(
I − F′(yσ)

−1F′(xσ)
)

F′(yσ)
−1F(yσ)

∥∥∥∥∥
≤
[ ∫ 1

0 ψ
(
(1− µ)‖yσ − x∗‖

)
dµ

1− ψ0

(
‖yσ − x∗‖

) +

[
ψ0(‖xσ − x∗‖) + ψ0

(
‖yσ − x∗‖

)] ∫ 1
0 v
(

µ‖yσ − x∗‖
)

dµ(
1− ψ0(‖xσ − x∗‖)

)(
1− ψ0

(
‖yσ − x∗‖

))

+
3
4

ψ0(‖xσ − x∗‖) + ψ0

(
‖yσ − x∗‖

)
1− ψ0

(
‖yσ − x∗‖

)


2 ∫ 1
0 v
(

µ‖yσ − x∗‖
)

dµ

1− ψ0(‖xσ − x∗‖)

+

(
ψ0(‖xσ − x∗‖) + ψ0(‖yσ − x∗‖)

1− ψ0(‖yσ − x∗‖)

) ∫ 1
0 v
(

µ‖yσ − x∗‖
)

dµ

1− ψ0(‖yσ − x∗‖)

]
‖yσ − x∗‖,

≤ Ḡ2(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖,
and

‖xσ+1 − x∗‖ =
∥∥∥∥∥zσ − x∗ − F′(zσ)

−1F(zσ) +
(

F′(zσ)
−1 − F′(xσ)

−1
)

F(zσ)

+
1
2

[
I − F′(yσ)

−1F′(xσ)
]2

F′(xσ)
−1F(zσ) +

[
I − F′(yσ)

−1F′(xσ)
]

F′(yσ)
−1F(zσ)

∥∥∥∥∥
≤
[ ∫ 1

0 ψ
(
(1− µ)‖zσ − x∗‖

)
dµ

1− ψ0

(
‖zσ − x∗‖

)
+

[
ψ0(‖xσ − x∗‖) + ψ0

(
‖zσ − x∗‖

)] ∫ 1
0 v
(

µ‖zσ − x∗‖
)

dµ(
1− ψ0(‖zσ − x∗‖)

)(
1− ψ0

(
‖xσ − x∗‖

))

+
1
2

ψ0(‖xσ − x∗‖) + ψ0

(
‖yσ − x∗‖

)
1− ψ0

(
‖yσ − x∗‖

)


2 ∫ 1
0 v
(

µ‖zσ − x∗‖
)

dµ

1− ψ0(‖xσ − x∗‖)

+

(
ψ0(‖xσ − x∗‖) + ψ0(‖yσ − x∗‖)

1− ψ0(‖yσ − x∗‖)

) ∫ 1

0
v
(

µ‖zσ − x∗‖
)

dµ

]
‖zσ − x∗‖,

≤ Ḡ3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖.
The proof of uniqueness of the solution is given in Theorem 1.

Next, in order to study the local convergence of iterative procedure (3), we add
condition (B′) in (B) as follows:
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(B′) For some functions H : [0, 2ρ)→ [0, ∞) continuous and increasing, we have

‖Q(x, y)‖ ≤ H(‖x− y‖)

Again, there are no changes in the function G1. But, we have to re-define the functions
¯̄G2 and ¯̄G3 in the following way for ¯̄G1Ḡ1:

¯̄G2(θ) =

[
1 +

1
β

∫ 1
0 v
(

µ ¯̄G1(θ)θ
)

dµ

1− ψ0(θ)

]
¯̄G1(θ).

¯̄G3(θ) =
¯̄G2(θ) +

∣∣∣2− 1
β − β

∣∣∣ ∫ 1
0 ψ0

(
µ ¯̄G1(θ)θ

)
dµ ¯̄G1(θ) + |β|

∫ 1
0 v
(

µ ¯̄G2(θ)θ
)

dµ ¯̄G2(θ)

1− ψ0(θ)
.

and

¯̄G4(θ) =

1 +
H(θ)

∫ 1
0 v
(

µ ¯̄G1(θ)θ
)

dµ

1− ψ0(θ)

 ¯̄G3(θ).

We define the radius of convergence for method (4) in the following way:

¯̄r = min{ ¯̄ri}, i = 1, 2, 3, 4,

where ¯̄r4 is the smallest positive solution of the equation

¯̄G4(θ)− 1 = 0.

With these new functions, we arrive at the following theorem:

Theorem 3. Under the conditions (B′) for r̃ = ¯̄r, further suppose that x0 ∈ S(x∗, ¯̄r)− {x∗}.
Then, sequence {xσ} generated by iterative scheme (4) is well defined, remains in S(x∗, ¯̄r) for all
σ = 0, 1, 2, 3, . . . and converges to x∗. Moreover, the following assertions hold

‖yσ − x∗‖ ≤ ¯̄G1(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (22)

‖zσ − x∗‖ ≤ ¯̄G2(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖, (23)

and
‖xσ+1 − x∗‖ ≤ ¯̄G3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖ < r, (24)

where the “ ¯̄Gi” functions are given previously. Furthermore, x∗ is the only solution of equation
F(x) = 0 given in Ω2 by (B6).

Proof. By simply repeating the proof of Theorem 1 but using iterative procedure (4) instead
of method (2), we get the estimates

‖zσ − x∗‖ =
∥∥∥∥∥yσ − x∗ −

1
β

F′(xσ)
−1F(yσ)

∥∥∥∥∥
=

1 +
1
|β|

∫ 1
0 v
(

µ‖yσ − x∗‖
)

dµ

1− ψ0(‖xσ − x∗‖)

‖yσ − x∗‖,

≤ ¯̄G2(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖,
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‖wσ − x∗‖ =
∥∥∥∥∥zσ − x∗ − F′(xσ)

−1
[(

2− 1
β
− β

)
F(yσ) + βF(zσ)

]∥∥∥∥∥
≤ ‖zσ − x∗‖+

∣∣∣2− 1
β − β

∣∣∣ ∫ 1
0 ψ0

(
µ‖yσ − x∗‖

)
dµ

1− ψ0(‖xσ − x∗‖)
‖yσ − x∗‖

+ |β|
∫ 1

0
v
(

µ‖zσ − x∗‖
)

dµ‖zσ − x∗‖

≤ ¯̄G3(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖,

and

‖xσ+1 − x∗‖ =
∥∥∥∥∥wσ − x∗ −Q(tσ)F′(xσ)

−1F(wσ)

∥∥∥∥∥
≤

1 +
G(‖xσ − x∗‖)

∫ 1
0 v
(

µ‖wσ − x∗‖
)

dµ

1− ψ0(‖xσ − x∗‖)

‖wσ − x∗‖

≤ ¯̄G4(‖xσ − x∗‖)‖xσ − x∗‖ ≤ ‖xσ − x∗‖.

The proof of uniqueness of the solution is given in Theorem 1.

3. Numerical Examples

Here, we present the computational results based on the suggested theoretical results
in this paper. We also compare the results of iterative procedures (2)–(4)(

with Q(tσ) = I + β
(

tσ −
(

1− 1
β

)
I
)
+ 1

4 (6β2 − β)
(

tσ −
(

1− 1
β

)
I
)2
)

on the basis of radii

of convergence. By the proceeding definition of H(θ), we choose

H(θ) = 1 +
ψ0(θ) + ψ0

(
G1(θ)θ

)
2
(

1− ψ0(θ)
) +

|6β− 1|
(

ψ0(θ) + ψ0

(
G1(θ)θ

))2

16|β|
(

1− ψ0(θ)
)2 ,

for method (4). This way, hypothesis (B′) is satisfied. We use [x, y; F] =
∫ 1

0
F′
(

y + µ(x− y)
)

dµ.

We choose a well mixture of standard and applied science problems for the computational
results, which are illustrated in Examples 1–5. The results are listed in Tables 1–5. Additionally,
we obtain the COC approximated by means of

λ =
ln ‖xσ+1−x∗‖

|xσ−x∗‖

ln ‖xσ−x∗‖
‖xσ−1−x∗‖

, for σ = 1, 2, . . . (25)

or ACOC [19] by:

λ∗ =
ln ‖xσ+1−xσ‖
‖xσ−xσ−1‖

ln ‖xσ−xσ−1‖
‖xσ−1−xσ−2‖

, for σ = 2, 3, . . . (26)

In addition, we adopt ε = 10−100 as the error tolerance and the terminating criteria to
solve nonlinear system or scalar equations are: (i) ‖xσ+1 − xσ‖ < ε, and (ii) ‖F(xσ)‖ < ε.
The computations are performed with the package Mathematica 11 with multiple precision
arithmetic.

Example 1. Following the example presented in the Introduction, for x∗ = 1, we can set

ψ0(θ) = ψ(θ) = 96.6629073θ and v(θ) = 2.
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In Table 1, we present radii for example (1).

Table 1. Radii for Example 1.

Methods β r1 r2 r3 r4 r x0 σ λ

(2) - 0.00689682 0.00536828 0.00450397 - 0.00450397 1.004 2 7.9936
(3) - 0.00689682 0.00376088 0.00298051 - 0.00298051 1.001 2 7.9989
(4) 1 0.00689682 0.00344841 0.0015606 0.000621105 0.000621105 1.0005 2 6.9996
(4) 0.2 0.00689682 0.00141825 0.00105789 0.00039502 0.00039502 1.0003 2 7.9997

It is straightforward to say that method (2) is better than other mentioned methods because it has larger radius of convergence.

Example 2. Let B1 = B2 = R3 and Ω = S(0, 1). Assume F on Ω with v = (x, y, z)T as

F(u) = F(u1, u2, u3) =

(
eu1 − 1,

e− 1
2

u2
2 + u2, u3

)T
, (27)

where, u = (u1, u2, u3)
T . Then, we obtain

F′(u) =

eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

,

the Fréchet-derivative. Hence, for x∗ = (0, 0, 0)T , F′(x∗) = F′(x∗)−1 = diag{1, 1, 1},
we have

ψ0(θ) = (e− 1)θ, ψ(θ) = e
1

e−1 θ and v(θ) = e
1

e−1 .

So, we obtain convergence radii that are mentioned in Table 2.

Table 2. Radii for Example 2.

Methods β r1 r2 r3 r4 r x0 σ λ

(2) - 0.382692 0.30056 0.254218 - 0.254218 (0.2, 0.2, 0.2)T 3 7.8793
(3) - 0.382692 0.214132 0.172611 - 0.172611 (0.16, 0.16, 0.16)T 3 8.0000
(4) 1 0.382692 0.198328 0.0949498 0.040525 0.040525 (0.04, 0.04, 0.04)T 3 6.9999
(4) 0.2 0.382692 0.083595 0.0640997 0.0257119 0.0257119 (0.021, 0.021, 0.021)T 3 7.9987

It is clear to say on the basis of above table that method (2) has a larger radius of convergence as compared to the other mentioned methods.
So, we concluded that it better than the methods namely, (3) and (4).

Table 3. Radii for Example 3.

Methods β r1 r2 r3 r4 r x0 σ λ

(2) - 0.666667 0.518914 0.435347 - 0.435347 (1, 0.79, 0.75)T 5 5.9774
(3) - 0.666667 0.363537 0.288104 - 0.288104 (1.01, 0.82, 0.72)T 4 5.9920
(4) 1 0.666667 0.333333 0.150852 0.0600378 0.0600378 (0.85, 0.64, 0.61)T 4 5.8733
(4) 0.2 0.666667 0.137092 0.102259 0.0381838 0.0381838 (0.88, 0.67, 0.63)T 4 5.9998

Since the method (2) has a larger radius of convergence as compared to the other methods (3) and (4). This means that method (2) has a
wider domain for the choice of the starting points. So, we conclude that method (2) has more number of convergent points as compared to
methods (3) and (4).

Table 4. Radii of convergence for Example 4.

Methods β r1 r2 r3 r4 r x0 σ λ

(2) - 1.33333 1.03783 0.870694 - 0.870694 (0.8, 0.8, . . . , 0.8)T 3 8.0001
(3) - 1.33333 0.727075 0.576209 - 0.576209 (0.5, 0.5, . . . , 0.5)T 3 8.0000
(4) 1 1.33333 0.666667 0.301704 0.120076 0.120076 (0.11, 0.11, . . . , 0.11)T 3 7.0000
(4) 0.2 1.33333 0.274184 0.204518 0.0763676 0.0763676 (0.07, 0.07, . . . , 0.07)T 3 8.0000

We noticed from the above table that method (2) has better choices of staring points as compared to methods (3) and (4). Because methods
(3) and (4) have a smaller domain of convergence as a contrast to method (2).
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Table 5. Radii of convergence for Example 5.

Methods β r1 r2 r3 r4 r

(2) - 0.0666667 0.0527602 0.0438416 - 0.0438416
(3) - 0.0666667 0.0368014 0.0303958 - 0.0303958
(4) 1 0.0666667 0.0292298 0.0118907 0.00440901 0.00440901
(4) 0.2 0.0666667 0.0103807 0.00760454 0.00270217 0.00270217

It is straightforward to say on the basis of above table that method (2) has a larger domain of convergence in
contrast to methods (3) and (4).

Example 3. The kinematic synthesis problem for steering [20,26], is given as

[Ei(ν2 sin(ηi)− ν3)− Hi(ν2 sin(ϕi)− ν3)]
2 + [Hi(ν2 cos(ϕi) + 1)− Hi(ν2 cos(ηi)− 1)]2

− [ν1(ν2 sin(ηi)− ν3)(ν2 cos(ϕi) + 1)− ν1(ν2 cos(ηi)− ν3)(ν2 sin(ϕi)− ν3)]
2 = 0, for i = 1, 2, 3,

where

Ei = −ν3ν2(sin(ϕi)− sin(ϕ0))− ν1(ν2 sin(ϕi)− ν3) + ν2(cos(ϕi)− cos(ϕ0)), i = 1, 2, 3

and

Hi = −ν3ν2 sin(ηi) + (−ν2) cos(ηi) + (ν3 − ν1)ν2 sin(η0) + ν2 cos(η0) + ν1ν3, i = 1, 2, 3.

In Table 6, we present the values of ηi and ϕi (in radians).

Table 6. Values of ηi and ϕi (in radians) for Example 3.

i ηi ϕi

0 1.3954170041747090114 1.7461756494150842271
1 1.7444828545735749268 2.0364691127919609051
2 2.0656234369405315689 2.2390977868265978920
3 2.4600678478912500533 2.4600678409809344550

The approximated solution is for Ω = B̄
(

x∗, 1
8

)
x∗ = (0.9051567 . . . , 0.6977417 . . . , 0.6508335 . . . )T .

Then, we get
ψ0(θ) = ψ(θ) = θ and v(θ) = 2.

We provide the radii of convergence for Example 3 in Table 3.

Example 4. Consider the following nonlinear system that involves logarithmic functions

H(ν) = ln(νi + 1)− νi
20

, i = 1, 2, 3, . . . , N (28)

where ν = (ν1, ν2, ν3, . . . , νσ)T . For N = 50, the required zero is x∗ = (0, 0, 0, . . . , 0)T . Then, we
have for Ω = B̄

(
x∗, 1

20

)
ψ0(θ) = ψ(θ) =

1
2

θ and v(θ) = 2.

We mentioned the radii of convergence for Example 4 in Table 4.
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Example 5. Let us consider that T = Y = C[0, 1], Ω = B̄(0, 1) and introduce the domain of
maps continuous in [0, 1] having the max norm. We consider the following function ϕ on A:

Ψ(φ)(x) = Ψ(x)−
∫ 1

0
xτφ(τ)3dτ, (29)

which further yields:

Ψ′
(
φ(µ)

)
(x) = µ(x)− 3

∫ 1

0
xτφ(τ)2µ(τ)dτ, for µ ∈ Ω.

We have x∗ = 0 and

ψ0(θ) = 7.5θ, ψ(θ) = 15θ and v(θ) = 2.

We list the radii of convergence for Example 5 in Table 5.

Remark 1. We have noticed that, in all five examples, method (2) has a bigger radius of convergence
as compared to all the other mentioned methods. So, we conclude that method (2) is better than the
methods (3) and (4) in terms of convergent points and domain of convergence.

4. Conclusions

A comparative study was presented for three high convergence order methods uti-
lizing only the first derivative (and the divided difference of order one) that only exist in
these methods. Our analysis generated error bounds and results on the uniqueness of x∗
that can be computed using majorant functions. However, in earlier studies, these concerns
were not addressed and the procedures were limited to operators with the ninth order
derivatives that are not in these methods. Our technique is applicable to extend to other
procedures, since it is so general. In our numerical experiments, a comparison is given
between the convergence radii.
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