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Abstract: This paper provides several error estimations for total variation (TV) type regularization,
which arises in a series of areas, for instance, signal and imaging processing, machine learning, etc.
In this paper, some basic properties of the minimizer for the TV regularization problem such as
stability, consistency and convergence rate are fully investigated. Both a priori and a posteriori rules
are considered in this paper. Furthermore, an improved convergence rate is given based on the
sparsity assumption. The problem under the condition of non-sparsity, which is common in practice,
is also discussed; the results of the corresponding convergence rate are also presented under certain
mild conditions.

Keywords: total variation; regularization; inverse problem

1. Introduction

Compressed sensing [1,2] has gained increasing attention in recent years; it plays an
important role in signal processing [3,4], imaging science [5,6] and machine learning [7].
Compressed sensing focusses on signals with sparse presentation. Let H1 be a Hilbert
space, and {ei ∈ H1|i ∈ N} be the orthonormal basis ofH1. For any x ∈ H1, let xi := 〈x, ei〉.
Given some operators K satisfy certain conditions, it is possible to recover a sparse x† ∈ Cn

signal with length n by Basis Pursuit (BP) [8], i.e.,

min ||x||1 s.t. y† = Kx,

from the samples y† = Kx†, even K is ill-posed [2,9,10]. However, in most cases, noise is
inevitable. The literatures has turned to studying the noised BP model

min ||x||1 s.t. ‖Kx− y†‖2 ≤ δ,

where δ is the allowed error. Actually, the unconstrained form of the noised BP model,
i.e., sparse regularization which is the focus in [11–16] is more attractive. While the
success of compressed sensing greatly inspired the development of sparse regularization,
it is interesting to see that sparse regularization appeared much earlier than compressed
sensing [11,12]. As an inverse problem, the error theory of sparse regularization is well
studied in the literature [17–19].

In practical terms, a large crowd of signals is not sparse unless being transformed by
some operators (maybe ill posed). Thus, many studies have been proposed to analyze the
regularized optimization problem [20]. A typical example of them is signal with a sparse
gradient which arises frequently from imaging processing (nature images are usually piece-
wise constant, i.e., they have a sparse gradient). The Total Variation (TV) has been used
extensively in the literature for decades in imaging sciences and a series of techniques have
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been dedicated to researching its choice of regularization parameter [21–31]; others [32,33]
are developed based on this observation. Similar to [34], Total Variation can also smooth
the signal of interest. Let H2 be another Hilbert space. For any x ∈ H1, define that
T : H1 7→ H1 satisfies

(Tx)i := xi − xi+1.

Under the above definition, T is an ill-posed linear operator. Given a linear map
K : H1 7→ H2 and yδ ∈ H2, the total variation regularization problem can be represented as

Ψα(x) =
1
2
‖Kx− yδ‖2

2 + α ∑
i
|(Tx)i|,

where α > 0 is the regularization parameter. The regularization term ∑i |(Tx)i| is the
right total variation (TV) of x. The TV type regularization has a similar form to the
sparse regularization. However, the perfect reconstruction result established in sparse
regularization can not be applied to theTV type directly, especially when T is ill-posed
(T has a nontrivial null space).

So in this paper, firstly, we discuss the stability and consistency of the minimizers of
Ψα. Besides basic properties, we are also interested in the convergence rate to solve the TV
problem. Then, under the source conditions [19,35,36], convergence rates get obtained for
both a priori and a posteriori parameter choice rules. However, the linear convergence rate
requires K to be injective, which is strict usually. In the latter part, the linear convergence
rate can also be derived under the sparsity assumption on Tx† and some suitable conditions
for K. This requirement of deduction does not depend on the injectivity of K. Meanwhile,
this paper also considers the case when the sparsity assumption on Tx† fails. Last, based
on some recent works [37–39], which also assume the Tx† is not sparse, a convergence rate
is also given in this case.

The rest of this paper is organized as follows. Section 2 provides a brief summary of
the notations. Section 3 presents some basic properties and gives the convergence rate of
the minimizer. Section 4 proves the improved convergence rate. Finally, Section 5 concludes
the whole paper.

2. Notation

The notations described in this section are adopted throughout this paper. Let H1,
H2 be two Hilbert spaces and {ei ∈ H1|i ∈ N}, {ξi ∈ H2|i ∈ N} be the orthonormal basis
of H1 and H2, respectively. For any x ∈ H1 and y ∈ H2, xi := 〈x, ei〉 and yi := 〈y, ξi〉.
The `1 and `2 norms of x and y are denoted by ‖x‖`1 := ∑i |xi|, ‖x‖`2 := (∑i |xi|2)

1
2 and

‖y‖1 := ∑i |yi|, ‖y‖2 := (∑i |yi|2)
1
2 , respectively. In this paper, if not specified, for any

x ∈ H1 and y ∈ H2, we assume that x, y ∈ L2, i.e., ‖x‖`2 < +∞ and ‖y‖2 < +∞. xn ⇀ x
means that xn converges weakly to x, while xn → x means xn converges strongly to x.
The operator norm of the linear operator K : H1 7→ H2 is defined as

‖K‖ := max
‖x‖

`2=1
‖Kx‖2.

Through the paper, x† means the signal of interest; y† := Kx† are the measurements.
yδ denotes an element in H2 satisfying ‖y† − yδ‖2 ≤ δ. Under these notations, the TV
regularization can be expressed as

Ψα(x) =
1
2
‖Kx− yδ‖2

2 + α‖Tx‖`1 .

Denote that xδ
α is one of the minimizers of Ψα.
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Remark 1. Considering the set L = {xn}n=1,2,... ⊆ H1, where

xn
i :=

{
1/
√

n if i ≤ n,
0 if i > n.

.

Obviously, for any n, xn ∈ L2 and T(xn) = 1/
√

n. As n → +∞, ‖xn‖`2 = 1 and
T(xn)→ 0. That means T is ill posed.

Remark 2. Let D = T− Id, where Id is the identical operator overH1. Then, (Dx)i = −xi+1 for
any i ∈ N. It is easy to verify that D is continuous. Then, T is continuous overH1 and

‖T − Id‖ = ‖D‖ ≤ 1. (1)

In practice, The ill condition of T brings trouble to the analysis. To overcome this
problem, we consider a condition which plays an important role in the deduction.

Condition 1. There exist two constants c, m > 0 such that

c‖Kx‖2 + m‖Tx‖`2 ≥ ‖x‖`2

for any x ∈ H1.

We present a finite-dimensional understanding of this condition. Let dim(H1) = M
and dim(H2) = N. Then, K ∈ RM×N satisfies null(K) 6= 0 and T ∈ R(N−1)×N . In the
finite dimension case, T has the form

1 −1
1 −1

. . . . . .
1 −1


(N−1)×N

.

The definition of T gives that null(T) = span(
−→
1 ). If K

−→
1 6= 0. Then, null(K)

⋂
null(T)

= 0, we have that null
(

ĉK
m̂T

)
= 0, where ĉ, m̂ > 0. Hence, for any x ∈ Rn and some

ι > 0, ι‖
(

ĉK
m̂T

)
x‖2 ≥ ‖x‖2. Note that ‖

(
ĉK
m̂T

)
x‖2 ≤ ĉ‖Kx‖2 + m̂‖Tx‖2; we then have

ιĉ‖Kx‖2 + ιm̂‖Tx‖2 ≥ ‖x‖2.

3. Basic Error Estimations

The properties of TV type regularization are investigated in this section. First, a lemma
is introduced which is used in this section frequently.

Lemma 1. Let yδ be bounded, α be fixed and {xn}n=1,2,... be a sequence. Assume that Condition 1
holds and {Ψα(xn)}n=1,2,... is bounded. Then, {xn}n=1,2,... is also bounded.

Proof. It is trivial to prove {‖Kxn − yδ‖2}n=1,2,... and {‖Txn‖`1}n=1,2,... are bounded.
Note that

‖Txn‖`2 ≤ ‖Txn‖`1 and ‖Kxn‖2 ≤ ‖Kxn − yδ‖2 + ‖yδ‖2,

which implies {‖Kxn‖2}n=1,2,... and {‖Txn‖`2}n=1,2,... are bounded. From Condition 1, we
derive that

‖xn‖`2 ≤ c‖Kxn‖2 + m‖Txn‖.
`2

implies the boundedness of {xn}n=1,2,....
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3.1. Stability

In this subsection, we investigate the performance of xδ
α̂ as α̂ → α, when yδ is fixed.

A lemma is introduced which arises in convex optimization.

Lemma 2 ([40,41]). Let χ∗ be the solution set of the convex minimization problem

min
x

Ψα(x).

Then, Kx and ‖Tx‖1 is constant over χ∗.

Theorem 1. Assume that K, T satisfies Condition 1. For any fixed α > 0 and yδ ∈ H2, we have

lim
αn→α

Kxδ
αn = Kxδ

α. (2)

Proof. The minimizing property of xδ
αn gives that 1

2‖Kxδ
αn − yδ‖2

2 + α‖Txδ
αn‖1 ≤ Ψαn(0).

Then, Lemma 1 indicates that there exists a subsequence of {xδ
αn} converging weakly to

some x∗ ∈ `2. For simplicity, we also denote this subsequence as {xδ
αn}. By the weak lower

continuity of the norms, we have

‖Kx∗ − yδ‖2 ≤ lim inf
n
‖Kxδ

αn − yδ‖2 and ‖Tx∗‖`1 ≤ lim inf
n
‖Txδ

αn‖`1 . (3)

Therefore, we have that

Ψα(x∗) =
1
2
‖Kx∗ − yδ‖2

2 + α‖Tx∗‖1

≤ lim inf
n
{1

2
‖Kxδ

αn − yδ‖2
2 + αn‖Txδ

αn‖`1}

= lim inf
n

Ψαn(xδ
αn).

On the other hand, by the minimizing property of xδ
αn ,

lim sup
n

Ψαn(xδ
αn) ≤ lim sup

n
Ψαn(xδ

α) = lim
n

Ψαn(xδ
α) = Ψα(xδ

α).

Obviously, it holds that

lim sup
n

Ψαn(xδ
αn) ≤ Ψα(xδ

α) ≤ Ψα(x∗) ≤ lim inf
n

Ψαn(xδ
αn).

That means x∗ minimizes Ψα(x). From Lemma 2, Kx∗ = Kxδ
α and ‖Tx∗‖`1 = ‖Txδ

α‖`1 .
Consequently, we have Kxδ

αn ⇀ Kxδ
α, Ψαn(xδ

αn)→ Ψα(xδ
α) and ‖Txδ

α‖`1 ≤ lim infn ‖Txδ
αn‖`1 .

In the following, we present the proof by the mean of contradiction. Assume that t :=
lim supn ‖Kxδ

αn − yδ‖2 > ‖Kxδ
α − yδ‖2. We can obtain that

α‖Txδ
α‖`1 ≤ lim inf

n
{α‖Txδ

αn‖`1}

= lim inf
n
{Ψαn(xδ

αn)− ‖Kxδ
αn − yδ‖2

2}

= Ψα(xδ
α)− lim sup

n
‖Kxδ

αn − yδ‖2
2 (4)

= α‖Txδ
α‖`1 + (‖Kxδ

α − yδ‖2 − t)

< α‖Txδ
α‖`1 .

This is a contradiction. Then, we have

lim sup
n
‖Kxδ

αn − yδ‖2 ≤ ‖Kxδ
α − yδ‖2.
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From relations (3), we can obtain that Kxδ
αn → Kxδ

α.

If K is injective, we can further have that limαn→α xδ
αn = xδ

α. The theorem above
indicates that Ψα(xδ

α) and ‖Txδ
α‖1 are continuous at α. In fact, we can obtain a stronger

result; the value function is differentiable at α.

Theorem 2. Let F(α) := Ψα(xδ
α); then, F(α) is differentiable with respect to α, and F′(α) =

‖Txδ
α‖1.

Proof. For α > α̂, we have

F(α)− F(α̂) =
1
2
‖Kxδ

α − yδ‖2
2 + α‖Txδ

α‖`1 −
1
2
‖Kxδ

α̂ − yδ‖2
2

− α‖Txδ
α̂‖`1 + (α− α̂)‖Txδ

α̂‖`1 .

Due to that xδ
α minimizing Ψα, we have

1
2
‖Kxδ

α − yδ‖2
2 + α‖Txδ

α‖`1 −
1
2
‖Kxδ

α̂ − yδ‖2
2 − α‖Txδ

α̂‖`1 ≤ 0.

It follows that F(α)− F(α̂) ≤ (α− α̂)‖Txδ
α̂‖`1 . On the other hand, F(α)− F(α̂) can be

written as

F(α)− F(α̂) =
1
2
‖Kxδ

α − yδ‖2
2 + α̂‖Txδ

α‖`1 −
1
2
‖Kxδ

α̂ − yδ‖2
2

− α̂‖Txδ
α̂‖`1 + (α− α̂)‖Txδ

α‖`1 .

Similarly, we have F(α)− F(α̂) ≥ (α− α̂)‖Txδ
α‖`1 . Combining the two inequalities

above, we have

‖Txδ
α‖`1 ≤

F(α)− F(α̂)
α− α̂

≤ ‖Txδ
α̂‖`1 .

When α < α̂, similar results can be also obtained. The continuity of ‖Txδ
α‖`1 at α gives

that dF(α)
dα = ‖Txδ

α‖`1 .

3.2. Consistency

The performance of xδ
α is investigated under a prior parameter choice as δ→ 0. In the

analysis, we assume that the following conditions hold.

Condition 2. For any x ∈ H1 obeying Kx = y†, x† satisfies that

‖Tx†‖`1 ≤ ‖Tx‖`1 .

The equality holds if and only if x = x†.

Lemma 3. Let {xn}n ⇀ x∗, ‖Kxn − y†‖2
2 → ‖Kx∗ − y†‖2

2 and ‖Txn‖`1 → ‖Tx∗‖`1 . Then, we
have ‖T(xn − x∗)‖`1 → 0 and ‖K(xn − x∗)‖2 → 0.

Proof. We can obtain that

lim sup
n
‖T(xn − x∗)‖`1 = lim sup

n
((‖Txn‖`1 + ‖Tx∗‖`1)

− (‖Txn‖`1 + ‖Tx∗‖`1) + ‖T(xn − x∗)‖`1))

= 2‖Tx∗‖`1 − lim inf
n

((‖Txn‖`1 + ‖Tx∗‖`1)

− ‖T(xn − x∗)‖`1).
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The triangle inequality gives that (‖Txn‖`1 + ‖Tx∗‖`1)− ‖T(xn − x∗)‖`1 ≥ 0. The Fa-
tou’s lemma gives that

lim inf
n

((‖Txn‖`1 + ‖Tx∗‖`1)− ‖T(xn − x∗)‖`1)

= lim inf
n

(∑
i
|(Txn)i|+ |(Tx∗)i| − |(T(xn − x∗))i|)

≤ ∑
i

lim inf
n

(|(Txn)i|+ |(Tx∗)i| − |(T(xn − x∗))i|).

Note that xn − x∗ ⇀ 0; then, T(xn − x∗) ⇀ T0 = 0. Hence, [T(xn − x∗)]i → 0.
Similarly, we can obtain (Txn)i → (Tx∗)i. Therefore,

∑
i

lim inf
n

(|(Txn)i|+ |(Tx∗)i| − |(T(xn − x∗))i|) = ∑
i

2|(Tx∗)i| = 2‖Tx∗‖`1 .

Thus, we have
lim sup

n
‖T(xn − x∗)‖`1 = 0.

By the same method, we also can obtain that ‖K(xn − x∗)‖2 → 0.

Theorem 3. Assume that K, T satisfies Condition 1 and Lemma 1. Let the parameters satisfy that

α(δ),
δ2

α(δ)
→ 0 as δ→ 0.

Then the sequence {xδ
α}δ → x†.

Proof. By the definition of xδ
α, we have

1
2
‖Kxδ

α − yδ‖2
2 + α‖Txδ

α‖`1 ≤ 1
2
‖Kx† − yδ‖2

2 + α‖Tx†‖`1

≤ 1
2

δ2 + α‖Tx†‖`1 .

From the parameters’ choice rule of α and δ, we can see that {Ψα(xδ
α)} are bounded.

Then, from Lemma 1, there exists a subsequence also denoted by {xδ
α}δ and some point x∗

such that xδ
α ⇀ x∗. We can have that

‖Kx∗ − y†‖2
2 ≤ lim inf

δ
‖Kxδ

α − y†‖2
2

≤ 2 lim inf
δ

(‖Kxδ
α − yδ‖2

2 + ‖yδ − y†‖2
2)

≤ lim inf
δ

(δ2 + 2α(δ)‖Tx†‖`1 + δ2) = 0.

This means Kx∗ = y†. It is easy to see that limδ ‖Kxδ
α − y†‖2

2 = 0. On the other hand,
we can obtain that

‖Tx∗‖`1 ≤ lim inf
δ
{‖Txδ

α‖`1 +
δ2

2α(δ)
} = ‖Tx†‖`1 .

Condition 2 gives that x∗ = x†. From the inequality above, we see that limδ ‖Txδ
α‖`1 =

‖Tx†‖`1 . By Lemma 3, we have ‖T(xδ
α− x∗)‖`1 → 0 and ‖K(xδ

α− x∗)‖2 → 0. Consequently,
from Condition 1, it holds that

lim
δ
‖xδ

α − x∗‖`2 ≤ lim
δ

m‖T(xδ
α − x∗)‖`2 + c‖K(xδ

α − x∗)‖2

≤ lim
δ

m‖T(xδ
α − x∗)‖`1 + c‖K(xδ

α − x∗)‖2 = 0.
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3.3. Convergence Rate

This subsection concerns the convergence rate under different parameter choice rules
(a priori and a posteriori). First, we discuss the a priori one. Like the classical Tikhonov
regularization method [19,35,36], we introduce a source condition.

Condition 3. Let x† satisfy the source condition

∃w : K∗w ∈ T∗∂‖Tx†‖`1 .

Theorem 4. If x† satisfies the source condition, it holds that

‖Kxδ
α − yδ‖2 ≤ 2α‖w‖2 + δ.

If K is injective, there exists γ > 0 such that

‖xδ
α − x†‖`2 ≤ 2γα‖w‖2 + 2γδ.

Proof. The definition of xδ
α gives that

1
2
‖Kxδ

α − yδ‖2
2 + α‖Txδ

α‖`1 ≤
1
2
‖Kx† − yδ‖2

2 + α‖Tx†‖`1 .

Using the notation C(x) = ‖Tx‖`1 , we obtain that

1
2
‖Kxδ

α − yδ‖2
2 + αC(xδ

α) ≤
1
2
‖Kx† − yδ‖2

2 + αC(x†).

For any v ∈ ∂C(x†), the convexity of C indicates C(xδ
α) ≥ C(x†) + 〈v, xδ

α − x†〉. Then,
we have that

1
2
‖Kxδ

α − yδ‖2
2 + αC(x†) + α〈v, xδ

α − x†〉

≤ 1
2
‖Kxδ

α − yδ‖2
2 + αC(xδ

α)

≤ 1
2
‖Kx† − yδ‖2

2 + αC(x†).

Choose v = K∗w in the source condition; after simplification, we derive that

1
2
‖Kxδ

α − yδ‖2
2 + α〈w, Kxδ

α − yδ〉 ≤ 1
2
‖Kx† − yδ‖2

2 + α〈w, Kx† − yδ〉.

By adding both sides with α2‖w‖2
2

2 , we obtain that

‖Kxδ
α − yδ + αw‖2 ≤ ‖Kx† − yδ + αw‖2.

This means

‖Kxδ
α − yδ‖2 ≤ 2α‖w‖2 + ‖Kx† − yδ‖2 ≤ 2α‖w‖2 + δ.

If K is injective, there exists γ > 0 such that ‖x‖`2 ≤ γ‖Kx‖`2 . Then, we derive that

‖xδ
α − x†‖2 ≤ γ‖Kxδ

α − y†‖2

≤ γ(‖Kxδ
α − yδ‖2 + ‖yδ − y†‖)

≤ γ(2α‖w‖2 + 2δ).
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Remark 3. In fact, the first result in Theorem 4 has been proved by [42] for general convex
regularization. The proof here is for the completeness.

The following part investigates the a posteriori parameter choice rule. The analysis
is motivated by the work in [43,44]. For simplicity of presentation, the parameter α is
chosen as

‖Kxδ
α − yδ‖2 = δ. (5)

Theorem 5. Assume that α is chosen as rule (5), and x† satisfies Condition 2. It then holds that

lim
δ→0

xδ
α = x†.

If K is injective, there exists θ > 0 such that

‖xδ
α − x∗‖`2 ≤ 2θδ.

Proof. It is trivial to prove that

1
2
‖Kxδ

α − yδ‖2
2 + α‖Txδ

α‖`1 ≤
1
2
‖Kx† − yδ‖2

2 + α‖Tx†‖`1 .

Lemma 2 indicates that {xδ
α}δ is bounded. Note that ‖Kxδ

α − yδ‖2 = δ and ‖Kx† −
yδ‖2 ≤ δ. It then follows that

‖Txδ
α‖`1 ≤ ‖Tx†‖`1 . (6)

Then, the sequence has a sub-sequence also denoted by {xδ
α}δ converging weakly to

some x∗. We can easily see that

‖Kx∗ − y†‖2 ≤ lim inf
δ→0

‖Kxδ
α − y†‖2

≤ lim inf
δ→0

(‖Kxδ
α − yδ‖2 + ‖yδ − y†‖2)

≤ lim inf
δ→0

2δ = 0.

That is actually to say that Kx∗ = y†. Moreover, it is easy to see that limδ ‖Kxδ
α −

y†‖2
2 = 0. Using relation (6), we have that

‖Tx∗‖`1 ≤ lim inf
δ→0

‖Txδ
α‖`1 ≤ ‖Tx†‖`1 .

Condition 2 gives that x∗ = x†; hence, the whole sequence converges weakly to x† and

‖Tx†‖`1 ≤ lim inf
δ→0

(‖Txδ
α‖`1) ≤ lim sup

δ→0
(‖Txδ

α‖`1) ≤ ‖Tx†‖`1 .

Thus, we have ‖Txδ
α‖`1 → ‖Tx†‖`1 . From Lemma 3, we have ‖T(xδ

α − x∗)‖`1 → 0 and
‖K(xδ

α − x∗)‖2 → 0 which leads to

‖xδ
α − x∗‖`2 ≤ m‖T(xδ

α − x∗)‖`2 + c‖K(xδ
α − x∗)‖2

≤ m‖T(xδ
α − x∗)‖`1 + c‖K(xδ

α − x∗)‖2 → 0. (7)

If K is injective, there exists θ > 0 such that ‖x‖`2 ≤ θ‖Kx‖`2 . Then, we derive that

‖xδ
α − x†‖2 ≤ θ‖Kxδ

α − y†‖2

≤ θ(‖Kxδ
α − yδ‖2 + ‖yδ − y†‖) ≤ 2θδ.
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4. Improved Convergence Rate

In this section, we investigate the convergence rate when K may be not injective.
The first part presents the analysis under the sparse assumption while the second one deals
with the case when the sparsity assumption fails.

4.1. Performance under Sparsity Assumption

The analysis in this subsection assumes that Tx† is sparse. To prove the convergence
rate we need the finite injectivity property [45].

Condition 4. The operator K satisfies the uniformly finite injectivity property, i.e., for any finite
subset S ⊆ N, K|S is injective.

Remark 4. In the finite dimension case, if ]supp(S) is small, it is easy to find that the finite
injectivity property is actually the restrict isometry property [2,46].

Let z := Tx and z† := Tx†. Denote S as the set S := {i ∈ N : |vi| > 1
2}, where

v ∈ ∂‖z†‖`1 satisfies the source condition. Let m = supi/∈S{|vi|}. Due to that v ∈ `2, S is
finite and it contains the support of z†. Let P be the identical projection onto S and P⊥ be
the one onto N \ S. From Condition 4, there exists some d > 0 such that

d‖KPz‖2 ≥ ‖Pz‖`2 .

Lemma 4. Assume that x† satisfies the source condition and Condition 1 holds. If md‖K‖ < 1,
there exist c1 > 0 and c2 > 0 such that

‖Tx‖`1 − ‖Tx†‖`1 ≥ c1‖x− x†‖`2 − c2‖T(x− x†)‖2.

Proof. Assume the conditions in Lemma 4 are held. Then, we can obtain that

‖z− z†‖`2 ≤ ‖P(z− z†)‖`2 + ‖P⊥(z− z†)‖`2

≤ d‖KP(z− z†)‖2 + ‖P⊥z‖`2

≤ d‖K(z− z†)‖2 + (1 + d‖K‖)‖P⊥z‖`2 .

Hence, we derive that

‖K(z− z†)‖2 = ‖KT(x− x†)‖2

≤ ‖K(x− x†)‖2 + ‖K(T − Id)(x− x†)‖2

≤ ‖K(x− x†)‖2 + ‖K‖ · ‖T − Id‖ · ‖x− x†‖`2

≤ ‖K(x− x†)‖2 + ‖K‖ · ‖x− x†‖`2 .

We now turn to estimating ‖P⊥z‖`2 . Let m = supi/∈S{|vi|}. Obviously, m ≤ 1
2 . We

then have that

‖P⊥z‖`2 ≤ ∑
i/∈S
|zi| ≤ 2 ∑

i/∈S
(1−m)|zi| ≤ 2 ∑

i/∈S
(|zi| − vizi)

≤ 2 ∑
i/∈S

(|zi| − |z†
i | − vi(zi − z†

i ))

≤ 2(‖z‖`1 − ‖z†‖`1 − 〈v, z− z†〉)
= 2(‖Tx‖`1 − ‖Tx†‖`1 − 〈v, z− z†〉).
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The source condition gives that

−〈v, z− z†〉 = −〈v, Tx− Tx†〉 = −〈T∗v, x− x†〉
= −〈K∗w, x− x†〉 = −〈w, Kx− Kx†〉
≤ ‖w‖2 · ‖Kx− Kx†‖2.

Therefore, we have that

‖z− z†‖`2 ≤ d‖K‖ · ‖x− x†‖`2 + 2(1 + d‖K‖)(‖Tx‖`1 − ‖Tx†‖`1)

+ (2‖w‖2 + 2d‖K‖‖w‖2 + d)‖K(x− x†)‖2.

From Condition 1, we have that

‖x− x†‖`2 = c‖K(x− x†)‖2 + m‖Tx− Tx†‖`2

≤ c‖K(x− x†)‖2 + m‖z− z†‖`2

≤ md‖K‖ · ‖x− x†‖`2 + 2(m + md‖K‖)(‖Tx‖1 − ‖Tx†‖1)

+ (2m‖w‖2 + 2dm‖K‖‖w‖2 + md + c)‖K(x− x†)‖2.

Note that md‖K‖ < 1; let q = 1
1−md‖K‖ ; we have that

‖x− x†‖`2 ≤ 2q(m + md‖K‖)(‖Tx‖1 − ‖Tx†‖1)

+ q(2m‖w‖2 + 2md‖K‖‖w‖2 + md + c)‖K(x− x†)‖2.

With the lemma above, we can obtain the following result. The proofs can be found
in [44,47–49].

Theorem 6. Let the regularization parameter be chosen a priori as α(δ) = O(δ) or a posteriori as
α(δ) according to the strong discrepancy principle (5) Then we have the convergence rate

‖xδ
α − x†‖`2 = O(δ).

4.2. Performance if Sparsity Assumption Fails

In this subsection, we focus on the case where Tx† is not sparse. As presented in the
last section, lemma 4 is critical for the convergence rate analysis. In this part, a similar
lemma will be proposed. Then, the convergence rate will be proved. The first lemma is
motivated by [37].

Lemma 5. For any x ∈ H1 and n ∈ N, it holds that

‖T(x− x†)‖`1 − ‖Tx‖`1 + ‖Tx†‖`1 ≤ 2(
∞

∑
k=n+1

|(Tx†)k|+
n

∑
k=1
|(Tx)k − (Tx†)k|).

Proof. Denote the projection Pn(x) = (x1, x2, . . . , xn, 0, . . .) for any x ∈ H1. Hence,
we have

‖Tx‖`1 = ‖PnTx‖`1 + ‖(Id − Pn)Tx‖`1 .

Algebra computation gives that

‖T(x− x†)‖`1 − ‖Tx‖`1 + ‖Tx†‖`1 = ‖PnT(x− x†)‖`1 + ‖(Id − Pn)Tx†‖`1

+ ‖(Id − Pn)(Tx− Tx†)‖`1 − ‖(Id − Pn)Tx‖`1

+ ‖PnTx†‖`1 − ‖PnTx‖`1 .
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Note that

‖(Id − Pn)(Tx− Tx†)‖`1 ≤ ‖(Id − Pn)Tx‖`1 + ‖(Id − Pn)Tx†‖`1

and
‖PnTx†‖`1 ≤ ‖PnT(x− x†)‖`1 + ‖PnTx‖`1 .

Combining the equations above, we obtain

‖T(x− x†)‖1 − ‖Tx‖`1 + ‖Tx†‖`1 ≤ 2‖PnT(x− x†)‖`1 + 2‖(Id − Pn)Tx†‖`1 .

Condition 5. For all k ∈ N there exists fk ∈ H2 such that T∗ek = K∗ fk and limk→∞ ‖ fk‖2 →
+∞.

Lemma 6. Let ϕ(t) := 2 infn{∑∞
k=n+1 |(Tx†)k|+ t ∑n

k=1 ‖ fk‖}; ϕ(t) is concave index function.
Assume that x† satisfies the source condition and Conditions 1 and 5 hold. If c‖K‖ < 1, it holds
that

‖x− x†‖`2 ≤ c1‖Tx‖`1 − c2‖Tx†‖`1 + c3 ϕ(‖K(x− x†)‖2)

for some positive c1, c2, c3.

Proof. ϕ is concave and upper semi-continuous since it is an infimum of affine functions.
For any t ≥ 0, ϕ is finite and continuous. Note that ϕ(0) = 0; the upper semi-continuity at
t = 0 gives the continuity of ϕ at t = 0. We turn to the strict monotonicity of ϕ. Condition 5
means the infimum of ϕ(t) is attained at some n ∈ N. Considering 0 < t1 < t2 < +∞,
we have

ϕ(t1) = 2(
∞

∑
k=n1+1

|(Tx†)k|+ t1

n1

∑
k=1
‖ fk‖2)

≤ 2(
∞

∑
k=n2+1

|(Tx†)k|+ t1

n2

∑
k=1
‖ fk‖2)

< 2(
∞

∑
k=n2+1

|(Tx†)k|+ t2

n2

∑
k=1
‖ fk‖2) = ϕ(t2).

From Condition 5, we have that

n

∑
k=1
|(Tx− Tx†)k| =

n

∑
k=1
|〈Tx− Tx†, ek〉|

=
n

∑
k=1
|〈x− x†, T∗ek〉| (8)

=
n

∑
k=1
|〈x− x†, K∗ fk〉|

≤ ‖K(x− x†)‖2

n

∑
k=1
‖ fk‖2.

Therefore, we obtain that

‖T(x− x†)‖`2 ≤ ‖Tx‖`1 − ‖Tx†‖`1 + 2ϕ(‖K(x− x†)‖2).
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From Condition 1, we have that

‖x− x†‖`2 ≤ c‖K(x− x†)‖`2 + m‖T(x− x†)‖2

≤ c‖K‖‖x− x†‖`2 + m‖Tx‖`1 −m‖Tx†‖`1

+ 2mϕ(‖K(x− x†)‖2).

Let q = 1
1−c‖K‖ , we obtain that

‖x− x†‖`2 ≤ qm‖Tx‖`1 − qm‖Tx†‖`1 + 2qmϕ(‖K(x− x†)‖2).

Theorem 7. Let the regularization parameter be chosen a priori as α(δ) = O( δ2

ϕ(δ)
) or a posteriori

as α(δ) according to the strong discrepancy principle (5). Then we have the convergence rate

‖xδ
α − x†‖`2 = O(ϕ(δ)).

5. Conclusions

In this paper, we study some problems in total variation type regularization. While own-
ing a familiar form as the sparse regularization, the TV type is hard to investigate for the
ill condition of T. A group of regularization conditions has been given in this paper. Un-
der these conditions, we study several theoretical properties such as stability, consistency
and convergence rates of the minimizer of the TV type regularization. These analyses are
deepened for the convergence rate under the assumption of sparsity. In the non-sparse case,
we also present a conservative result based on some recent works. Now, the regularizers
learned from the data are all the rage in research. So, in future work, we will make the
error estimations for this type of regularization problem.
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