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Abstract: An operator-based scheme for the numerical integration of fractional differential equations
is presented in this paper. The generalized differential operator is used to construct the analytic
solution to the corresponding characteristic ordinary differential equation in the form of an infinite
power series. The approximate numerical solution is constructed by truncating the power series,
and by changing the point of the expansion. The developed adaptive integration step selection
strategy is based on the controlled error of approximation induced by the truncation. Computational
experiments are used to demonstrate the efficacy of the proposed scheme.

Keywords: fractional differential equation; numerical integration; generalized differential operator

1. Introduction

Fractional differential equations (FDEs) play an important role in many research
fields. From classical applications of FDEs in modeling viscoelasticity [1,2], to engineering
problems [3,4], to more novel fields for the subject such as medical research [5,6] and
economics [7,8], FDEs are becoming increasingly widespread. It is natural that a wider
usage of fractional-order models has led to a growing interest in numerical integration of
FDEs. Some examples of recent research are given below.

A numerical integration technique based on converting the FDE into a set consisting
of integral and algebraic equations is presented in [9]. A recursive algorithm based on
the Laplace decomposition is used to construct semi-analytical solutions to a Ray-tracing
equation in [10]. A new scheme for the construction of numerical solutions that can be
applied to several types of fractional derivatives is discussed in [11]. The Ritz approxima-
tion is applied to construct numerical solutions to the fractional Fokker–Planck equation in
[12]. An approach based on Chebyshev polynomials with time-dependent coefficients is
employed to construct numerical solutions to Caputo-type time–space fractional partial
differential equations with variable coefficients in [13].

Müntz polynomials are used in conjunction with the collocation to develop a scheme
for the numerical integration of FDEs in [14]. Chebyshev polynomials are used in a similar
scheme in [15]. The infinite state representation of the Caputo derivative is used in [16]
to develop an algorithm for the numerical integration of FDEs. A number of approaches
applying wavelets to obtain numerical solutions to FDEs have been considered in [17,18].
A survey of current methods and a collection of software for the integration of FDEs,
including explicit, implicit and predictor–corrector methods can be found in [19].

The main objective of this paper is to present a novel FDE integration scheme based
on the generalized differential operator technique. The presented technique consists of
constructing piecewise-polynomial approximations to the solutions of FDEs via power
series. Using these approximations, integration with an adaptive step-size is performed to
construct the numerical solution.

Mathematics 2021, 9, 1372. https://doi.org/10.3390/math9121372 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3348-9717
https://doi.org/10.3390/math9121372
https://doi.org/10.3390/math9121372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9121372
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9121372?type=check_update&version=1


Mathematics 2021, 9, 1372 2 of 17

Riccati-type equations have recently been discussed in a number of publications
concerned with presenting novel FDE integration schemes. He’s variational method is
applied to the fractional Riccati equation in [20]. A novel homotopy perturbation technique
is applied to fractional Riccati models in [21]. A modification of the homotopy perturbation
method is used in [22] to construct numerical solutions to the Riccati-type FDEs.

As an example, the following form of the fractional Riccati equation is considered in
developing the numerical FDE integration strategy:

x
´

CD1{2
¯2

y “ a0 ` a1y` a2y2; a0, a1, a2 P R, (1)

where CD1{2 denotes the Caputo fractional differentiation operator.
The paper is outlined as follows. Preliminary results and motivation are discussed in

Section 2. The numerical integration scheme is described and validated by comparing the
numerical solution with a known solution in Section 3. The integration scheme is applied
to an FDE with no known analytical solution in Section 4. Concluding remarks are given in
Section 5.

2. Preliminaries and Motivation
2.1. The Generalized Differential Operator Scheme for ODEs

The main point of the proposed numerical scheme for FDEs is based on the trans-
formation of the considered FDE into a corresponding ODE [23]. The solutions to the
obtained ODEs can be constructed via the generalized differential operator technique. A
short outline of this technique is given in this section. An in-depth review for n-th-order
differential equations is presented in [24], and for systems of differential equations in [25].

2.1.1. The Construction of Analytic Solutions to ODEs in the Series Form

Consider the following explicit n-th-order ODE initial value problem with respect to
function z “ zpxq:

dnz
dxn “ P

˜

x,
dz
dx

, . . . ,
dn´1z
dxn´1

¸

; (2)

zpcq “ s0;
dkz
dxk

∣∣∣∣∣
x“c

“ sk; k “ 1, . . . , n´ 1. (3)

The generalized differential operator respective to (2), (3) reads:

D “ Dc `

n´2
ÿ

k“0

sk`1Dsk ` P
`

c, s0, . . . , sn´1
˘

Dsn´1 , (4)

where Dα denotes the partial differentiation operator with respect to variable α.
Let

pj “ pj
`

c, s0, . . . , sn´1
˘

“ Djs0. (5)

The series solution to (2), (3) reads:

z “
`8
ÿ

j“0

px´ cqj

j!
pj
`

c, s0, . . . , sn´1
˘

. (6)

2.1.2. The Construction of Closed-Form Solutions to ODEs

Necessary and sufficient conditions when the analytic series solution can be trans-
formed into a closed-form solution are given in [24] and are briefly described in this
sub-section.
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Let us define qj “
pj
j! ; j “ 0, 1, . . . and consider the following sequence of Hankel

determinants:
dn “ det

´

qj`k´2

¯

1ďj,kďn`1
; n “ 1, 2, . . . (7)

The sequence of series coefficients qj, j “ 0, 1, . . . is an m-th-order linear recurring se-
quence if and only if the following conditions hold true for the sequence of Hankel
determinants [26]:

dm ‰ 0; dm`k “ 0, k “ 1, 2, . . . ; m P N. (8)

If the above conditions do hold true, the coefficients qj can be expressed as:

qj “

m
ÿ

k“1

λkρ
j
k, (9)

where λk are constants and ρk are roots of the characteristic polynomial [26]:∣∣∣∣∣∣∣∣∣∣∣∣

q0 q1 . . . qm
q1 q2 . . . qm`1
...

...
. . .

...
qm´1 qm . . . q2m´1

1 ρ . . . ρm

∣∣∣∣∣∣∣∣∣∣∣∣
“ 0. (10)

Combining the series solutions (6) and (10) and using the geometric progression sum
formula

ř`8
j“0 qj “ 1

1´q , |q| ă 1, the solution to (2), (3) can be expressed in the closed form:

z “
`8
ÿ

j“0

px´ cqjqj “

m
ÿ

k“1

λk

`8
ÿ

j“0

ρ
j
kpx´ cqj “

m
ÿ

k“1

λk
1´ ρkpx´ cq

. (11)

As shown in [24], (11) can be transformed into a solitary solution with a particular sub-
stitution. However, this transformation can be performed if and only if the sequence of
coefficients λk, k “ 0, 1, . . . is a linear recurring sequence.

2.1.3. Truncated Series and Shifted Centers of the Expansion

The solution to a given ODE can be approximated by a truncated series when it
is not possible to transform the series solution into the closed form. Note that this is a
straightforward operation since the analytic expressions of the coefficients pjpc, s0, . . . , sn´1q

can be produced by the generalized differential operator.
Consider a first-order ODE:

z1 “ Ppx, zq; zpcq “ s. (12)

The derivations described in previous sections yield the series solution to (12):

zpx, c, sq “
`8
ÿ

j“0

px´ cqj

j!
pjpc, sq. (13)

Let us set c0 “ c, s0 “ s and consider zNpx, c0, s0q a truncated power series (13) by limiting
the highest-order terms to xN ; N P N:

zNpx, c0, s0q “

N
ÿ

j“0

px´ c0q
j

j!
pjpc0, s0q. (14)

Naturally, (14) is an approximation to (13) and generally decreases in accuracy as x moves
further away from the expansion center c0. However, a new approximation zNpx, c1, s1q
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at center x “ c1 “ c0 ` h1 can be derived from (13). The parameter s1 is chosen as
s1 “ zNpc1, c0, s0q in order to ensure that zNpc1, c0, s0q “ zNpc1, c1, s1q. The described steps
can be repeated for a new center, yielding a piecewise-polynomial approximation pzpxq of
the solution to (12):

pzpxq “ zNpx, ck, skq, ck ď x ă ck`1, k “ 0, 1, . . . , (15)

where c0 “ c ă c1 ă ¨ ¨ ¨ ă ck ă . . . and s0 “ s, sk “ zN
`

ck, ck´1, sk´1
˘

. The difference
hk “ ck ´ ck´1 ą 0 is denoted as the step-size of the k-th step. The selection of this step-size
to maintain a chosen level of error between the real solution zpxq and the approximation
pzpxq is a non-trivial problem, which is considered in the remainder of the paper.

2.2. The Ordinary Riccati Equation and Its Solution

As this paper deals with the fractional Riccati Equation (1), it is important to state the
main results concerning its ordinary counterpart.

Consider the Riccati differential equation [27]:

dz
dx

“ A0 ` A1z` A2z2; zpcq “ s. (16)

It is well-known that this equation admits kink solitary solutions [25,27]. However, they
cannot be directly obtained using the generalized differential operator technique. The
generalized differential operator with respect to (16) reads:

D “ Dc `
´

A0 ` A1s` A2s2
¯

Ds. (17)

The solution to (16) is then given by (6).
Let pj “ Djs and define the sequence of coefficients

pj
j! ; j “ 0, 1, . . .. Because this

sequence does not satisfy the condition (8) for any m, the sequence is not a linear recurring
sequence and the solution to the Riccati equation cannot be constructed using the algorithm
described above. However, the following independent variable substitution

px “ exp
`

ηx
˘

; pz
`

px
˘

“ z

˜

1
η

ln px

¸

“ zpxq, (18)

where η P R, η ‰ 0, yields the transformed Riccati equation:

ηpx
dpz
dpx

“ A0 ` A1pz` A2pz2; pz
`

pc
˘

“ s, (19)

where pc “ exp
`

ηc
˘

.
The generalized differential operator for (19) reads:

pD “ D
pc `

1
ηpc

´

A0 ` A1s` A2s2
¯

Ds. (20)

Defining ppj “ pD
j
s; j “ 0, 1, . . . now yields the sequence pqj “

ppj
j! , which becomes a linear

recurring sequence of order 2 at η “ A2pz1 ´ z2q, where z1, z2 are roots of the polynomial
A2z2 ` A1z` A0 “ 0 [28].

This result yields the closed-form kink solitary solution to the Riccati equation [28]:

zpxq “
z2ps´ z1q exp

`

ηpx´ cq
˘

´ y1
`

s´ y2
˘

ps´ z1q exp
`

ηpx´ cq
˘

´
`

s´ y2
˘ (21)
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2.3. The Fractional Power Series and Caputo Differentiation

Analytic solutions to fractional differential equations can be represented in the form
of the fractional power series [23]:

f pxq “
`8
ÿ

j“0

νjω
pnq
j pxq, (22)

where n P N denotes the order of the basis of fractional power series, νj P R are the

coefficients of the series, and ω
pnq
j are the base functions defined as follows [23]:

ω
pnq
j pxq “

x
j
n

Γ
´

j
n ` 1

¯ ; n P N; j “ 0, 1, . . . , (23)

where Γpxq denotes the Gamma function [29].
The Caputo differentiation operator CD1{n is defined for the base functions [30]:

CD1{nω
pnq
0 pxq “ 0; CD1{nω

pnq
j pxq “ ω

pnq
j´1, j “ 1, 2, . . . (24)

Subsequently, the order k{n Caputo derivative of (22) reads:

´

CD1{n
¯k

f pxq “
`8
ÿ

j“0

νj`kω
pnq
j pxq. (25)

Note that this definition of the Caputo differentiation operator is congruent with the
classical integral-based definition [31].

2.4. Motivation: The Fractional Riccati Equation

Note that the closed-form solution to the Riccati ODE (16) cannot be constructed
directly using the generalized differential operator technique. The substitution (18) is
needed to map the Riccati ODE to (19), which in turn can be solved via the method
described in the previous section.

Due to these reasons, we consider the Riccati fractional differential equation in the
form (1) as a generalization of (19) rather than directly considering the fractional analogue
of the Riccati equation (16). As shown in [32], closed-form solutions to equations of the
form (1) can be constructed, which is of vital importance to assess the efficacy of the
numerical scheme presented in this paper.

2.5. Transformation of the FDE into the Characteristic ODE

Consider the following fractional differential equation:

´

CD1{n
¯n

y “ Qpyq; (26)

ypx0q “ u0;
´

CD1{n
¯k

y

∣∣∣∣∣
x“0

“ vk, k “ 1, 2, . . . , n´ 1. (27)

As demonstrated in detail in [23], setting py “ yptnq and rearranging transforms (26) into
the following ODE:

py1t “ n

¨

˚

˝

tn´1Q
`

py
˘

`

n´1
ÿ

j“1

vj

Γ
´

j
n ` 1

¯ tj´1

˛

‹

‚

; py
`

n
?

x0
˘

“ u0. (28)
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The analytic solution to (28) yields the solution to (26) [23]:

ypxq “ py
´

n
?

x
¯

. (29)

Thus, (26) and (28) are equivalent: if an analytical or numerical solution to (28) can be
constructed, it immediately yields the FDE solution via (29).

3. The Development of the Numerical FDE Integration Scheme
3.1. Adaptive Step-Size Selection Strategy for the FDE Integration Scheme

As discussed in Section 2.1.3, the development of the step-size selection strategy for the
numerical FDE integration scheme is necessary to ensure a chosen level of computational
errors between the real and the approximated solutions. A fractional differential equation
with the known analytic closed-form solution is investigated in this section.

Consider the following fractional Riccati equation:

x
´

CD1{2
¯2

y “ 1´ 2y` y2; (30)

yp1q “ 1; CD1{2y

∣∣∣∣∣
x“0

“ ´1. (31)

Transforming (30)–(31) into the characteristic ODE (see Section 2.5) yields:

dpy
dx

“
2
´

1´ 2py` py2
¯

x
´

2
?

π
; (32)

pyp1q “ 1; py “ pypxq; pyp
?

xq “ ypxq. (33)

The initial-value problem (32)–(33) has the following analytic closed-form solution [32]:

pypxq “
γ1
`

Y1pγ1qJ1pγ2q ´ J1pγ1qY1pγ2q
˘

4
`

Y0pγ1qJ1pγ2q ´ J0pγ1qY1pγ2q
˘ ` 1, (34)

where γ1 “ 4
b

´ x?
π

, γ2 “ 4
b

´ 1?
π

; Jβpxq and Yβpxq are Bessel functions of the first and

second kind respectively.
Alternatively, the numerical solution to (32)–(33) can be obtained via the technique

presented in Section 2.1.3. Let pyNpx, c, sq denote the truncated power series approximation
to (32)–(33):

pyNpx, c, sq “
N
ÿ

j“0

px´ cqj

j!
pjpc, sq, N P N. (35)

The analytical expressions of coefficients pjpc, sq, j “ 0, . . . , 7 are given in Appendix A.
Let us execute the following steps:

• Step 1. Let c0 “ s0 “ 1. The absolute differences ∆Npx, c0, s0q “ |pypxq ´ pyNpx, c0, s0q|

are computed for N “ 0, . . . , 10 and x P r1, Ls, where L is the upper bound of x. The
contour plot depicting various levels of ∆Npx, c0, s0q is presented in Figure 1a. It can be
observed that for a fixed value of N the value of ∆Npx, c0, s0q increases as x increases.
New initial values c1, s1 for the next approximation are computed as follows:

c1 “ arg max
x

∆Npx, c0, s0q ď δ; s1 “ pyNpc1, c0, s0q, (36)

where δ is the maximal allowed error of the numerical solution. Naturally, higher
values of N result in larger values of c1 at a cost of greater computation time. Let N “ 6.
Then, the resulting values of c1 for different levels of δ are displayed in Figure 1b
(denoted as black dashed lines, while the thick gray line denotes the analytical solution
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and the black solid line denotes the numerical solution). Figure 1 part (a) contains a
contour plot with various levels of ∆Npx, c0, s0q (absolute differences between the exact
and numerical solutions to (32)–(33)). Parameter δ is set to 10´5 for the remainder of
this computational experiment, as shown by the point in Figure 1a.

• Step k “ 2, 3, . . . , K. Analogous computations are performed for steps k “ 2, 3, . . . , K.
Firstly, differences ∆Npx, ck´1, sk´1q “ |pypxq ´ pyNpx, ck´1, sk´1q| are evaluated for
N “ 0, . . . , 10 and x P rck´1, Ls and then new initial values ck, sk are computed:

ck “ arg max
x

∆Npx, ck´1, sk´1q ď δ; s1 “ pyNpck, ck´1, sk´1q. (37)

Results of the steps k “ 2, 3 are displayed in Figures 2 and 3.

1 1.229

10
-5

1.316

10
-4

1.436

10
-3

1.603

10
-2

1.840

10
-1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. The determination of the second set of initial values for the numerical solution (35). The
first set of initial values is c0 “ 1, s0 “ 1. Part (a) depicts a contour plot of the error for different
values of N. Part (b) depicts the next initial points for different errors for N “ 6.

1.229 1.409

10
-5

1.554

10
-4

1.692

10
-3

1.887

10
-2

2.170

10
-1

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2. The determination of the third set of initial values for the numerical solution (35). The
second set of initial values is c1 “ 1.229, s1 “ 0.750. Part (a) depicts a contour plot of the error for
different values of N. Part (b) depicts the next initial points for different errors for N “ 6.
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1.409 1.680

10
-5

1.897

10
-4

2.319

10
-3

2.490

10
-2

2.793

10
-1

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3. The determination of the fourth set of initial values for the numerical solution (35). The
third set of initial values is c2 “ 1.409, s2 “ 0.578. Part (a) depicts a contour plot of the error for
different values of N. Part (b) depicts the next initial points for different errors for N “ 6.

The number of steps K is set to K “ 6 in this study. The final piecewise-polynomial
approximation pyNpxq to (32)–(33) is depicted in Figure 4. Let the change in the numerical
solution pyNpxq at each step be denoted as

∆pypkqN “ max
ck´1ďxďck

pyNpx, ck´1, sk´1q ´ min
ck´1ďxďck

pyNpx, ck´1, sk´1q; k “ 1, . . . , K. (38)

The relationship between ∆pypkqN and the step-size hk can be approximated via the following
linear regression line:

∆pyN “ κ
pNq
0 ` κ

pNq
1 h, (39)

where κ
pNq
0 , κ

pNq
1 P R are regression coefficients. The constructions of linear regressions

for N “ 6 and N “ 7 are illustrated in Figure 5 (parts (a) and (b), respectively). Black
circles depict the values obtained from the final piecewise-polynomial approximation
shown in Figure 4. The digits above the black circles denote the step number. The gray
line corresponds to the linear regression (39). Regression equations for N “ 6 (part (a))
and N “ 7 (part (b)) read ∆pyN “ 0.26572 ´ 0.29293h and ∆pyN “ 0.27996 ´ 0.11987h,
respectively.

All computation steps performed for N “ 6 were also repeated for N “ 7 to obtain
the regression depicted in Figure 5b. Note that while the coefficient of h decreases for a
higher-order approximation, the overall trend remains unchanged.

The identification of the relationship between the change in the numerical solution
and the step-size can be incorporated into the numerical FDE integration scheme that is
described in the next section.
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Figure 4. Gray and black solid lines correspond to the exact solution and the piecewise-polynomial
approximation to (32)–(33), respectively (N “ 6, δ “ 10´5). Black dashed lines separate the parts of
the numerical solution obtained at different steps. Circled digits denote the step number.

Figure 5. The relationship between ∆pyN (the change in the numerical solution pyNpxq) and the
step-size h. Parts (a,b) correspond to N “ 6 and N “ 7, respectively.
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3.2. The Implementation of the Numerical FDE Integration Scheme

Let us consider the following fractional differential equation:

´

CD1{2
¯2

y “ Qpyq; (40)

ypx0q “ u0;
´

CD1{2
¯

y

∣∣∣∣∣
x“0

“ v0. (41)

The numerical solution to (40)–(41) can be obtained via the integration scheme pre-
sented below:

1. Transform the FDE (40)–(41) into the characteristic ODE using the procedure described
in Section 2.5:

dpy
dx

“ Pppy, v0q; (42)

pypc0q “ s0. (43)

2. Obtain analytic expressions of coefficients pjpc, sq in the series solution (35) to the
ODE (42)–(43) (see Section 2.1.1).

3. Fix the values of the following parameters: the order of the approximation N, the
upper bound of the independent variable L, the upper bound for the step-size hpUq,
the upper bound for the change in the numerical solution ∆pypUqN . Note that the

recommended values for the parameters hpUq and ∆pypUqN are derived from the study
presented in the previous section (Figure 5). The value hpUq corresponds to the highest
value of h on the regression line, while the value ∆pypUqN corresponds to the highest
value of ∆pyN on the regression line.

4. Repeat the following steps until the upper bound L is reached (k “ 0, 1, 2 . . . ):

• Evaluate coefficients pjpck, skq, j “ 1, . . . , N.
• Find the lowest value of x at which at least one of the following conditions is

violated:

hkpxq “ x´ ck ď hpUq; (44)

∆pypkqN pxq “ max
ckďx̃ďx

pyNpx̃, ck, skq ´ max
ckďx̃ďx

pyNpx̃, ck, skq ď ∆pypUqN ; (45)

∆pypkqN pxq ď κ
pNq
0 ` κ

pNq
1 hkpxq, (46)

where κ
pNq
0 , κ

pNq
1 P R are regression coefficients determined in Section 3.1.

The maximum and minimum values in (45) are necessary to ensure that the
change in the numerical solution is computed correctly for non-monotonous and
periodic functions.

• Assign new initial values:

ck`1 “ x´ ε; sk`1 “ pyNpck`1, ck, skq, (47)

where ε is an arbitrary small number.

5. Combine the obtained parts of the numerical solution to the ODE (42)–(43) into the
piecewise-polynomial approximation pyNpxq:

pyNpxq “ pyNpx, ck, skq, ck ď x ă ck`1, k “ 0, 1, . . . (48)

6. Construct the numerical solution to the FDE (40)–(41) by applying yNpxq “ pyN
`?

x
˘

.

In order to validate the proposed numerical FDE integration scheme, it is applied to
the FDE (30)–(31) presented in the previous section. The resulting piecewise-polynomial



Mathematics 2021, 9, 1372 11 of 17

approximations pyNpxq and yNpxq are depicted in Figure 6. Part (a) depicts the exact (gray
solid line) and the numerical (black solid line) solutions to the characteristic ODE (32)–(33)
(N “ 6, L “ 3, δ “ 10´5). Black dashed lines separate the parts of the numerical solution
obtained at different steps. Circled digits denote the step number. Part (b) displays the
exact solution (solid gray line) and piecewise-polynomial approximation (black solid line)
to the initial FDE (30)–(31).

Figure 6. The application of the numerical FDE integration scheme to (30)–(31). Part (a) depicts
the exact and approximate solutions to the characteristic ODE, while part (b) depicts the exact and
approximate solutions to the FDE.

4. The Application of the Proposed Numerical FDE Integration Scheme

Consider the following fractional Riccati-type equation:

x
´

CD1{2
¯2

y “ 1´ 2y` y2 ´ y3; (49)

yp1q “ 1; CD1{2y

∣∣∣∣∣
x“0

“ ´1. (50)

Transforming (49)–(50) into the characteristic ODE (see Appendix B for a detailed deriva-
tion) yields:

dpy
dx

“

2
´

1´ 2py` py2 ´ py3
¯

x
´

2
?

π
; (51)

pyp1q “ 1; py “ pypxq; pyp
?

xq “ ypxq. (52)

Note that the FDE (49)–(50) does have a solution (the existence of the solution follows
from (26)–(28)). However, the solution to (51)–(52) cannot be expressed in a closed form,
because the coefficients pj, as defined in (5), do not form a linear recurring sequence.
Furthermore, (51) cannot be transformed via such an independent variable substitution
if the coefficients would form a linear recurring sequence. The analytical expressions of
coefficients pjpc, sq, j “ 0, . . . , 6 can be found in Appendix C.

The numerical FDE integration scheme presented in the previous section is used in
order to obtain the piecewise-polynomial approximations pyNpxq and yNpxq to (51)–(52)
and (49)–(50), respectively. The linear regression equation approximating the relationship
between the step-size hk and the change in the numerical solution ∆pypkqN derived in Section
3.1 for N “ 6 (Figure 5 part (a)) is used in order to adaptively select the optimal step-
size. The resulting numerical solutions pyNpxq and yNpxq are displayed in the Figure 7.
Part (a) depicts the numerical solution to the characteristic ODE (51)–(52) (N “ 6, L “ 3,
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δ “ 10´5). Black dashed lines separate the parts of the numerical solution obtained at
different steps. Circled digits denote the step number. Part (b) displays the piecewise-
polynomial approximation to the initial FDE (49)–(50). The values of hk and ∆pypkqN at each
step are presented in Table 1.

Figure 7. The application of the numerical FDE integration scheme to (49)–(50). Part (a) depicts
the exact and approximate solutions to the characteristic ODE, while part (b) depicts the exact and
approximate solutions to the FDE.

Table 1. The values of the step-size hk and the variation ∆pypkqN in the numerical solution to (51)–(52)
at each step k “ 1, . . . , 8.

Step k hk ∆pypkq6

1 0.080 0.1992
2 0.128 0.1990
3 0.217 0.2000
4 0.311 0.1743
5 0.393 0.1500
6 0.399 0.1185
7 0.399 0.1006
8 0.073 0.0170

5. Concluding Remarks

A novel semi-analytical scheme for the numerical integration of fractional differential
equations was presented in this paper. The proposed integration scheme is adaptive: the
approximation error can be selected arbitrarily, and the algorithm is adapted by using
a higher-order piecewise-polynomial approximation. Furthermore, the scheme can eas-
ily be extended into higher-order fractional differential equations, since the generalized
differential operator technique is applicable to differential systems of any order.

All computational experiments in this paper were performed on fractional Riccati-
type nonlinear differential equations. Riccati equations play the central role in non-
linear dynamics because solutions to ordinary Riccati equations do represent soliton-
type solutions [28,33]. Without doubt, the proposed scheme can be used for numerical
integration of any other class of fractional differential equations.

While the FDEs analyzed in this paper have all had a base derivative order of α “ 1
2

for simplicity, the scheme remains valid for any fractional derivative base order α “ 1
k .

This change is implemented by replacing the operator CD1{2 with CD1{k, while the algo-
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rithm to obtain the characteristic ODE remains unchanged except for a higher number of
initial conditions.

The presented integration scheme cannot advance past a singularity point. The size of
the integration step becomes arbitrarily small as the solution nears the singularity point.
This fact can be considered the limitation of the scheme. However, this feature allows the
description of the solution in the surrounding of the singularity point with a predefined
accuracy.

The extension of the proposed integration scheme to singularity points remains a
definite objective for future research. Since the presented scheme is semi-analytical, there
are possibilities to adapt it in such a way that singularity points could be detected automat-
ically. Other avenues of future works include adapting the scheme so that any numerical
integration technique could be used while solving the characteristic ODE. While this would
make the scheme purely numerical and pose challenges in changing the timescale (since
the approximation would no longer be a polynomial function), it could potentially open
up new possibilities in applying already existing results.
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Appendix A. Analytical Expressions of the Coefficients pjpc, sq for the ODE (30)–(31)

Coefficients pjpc, sq in the series solution (35) to the ODE (30)–(31) read:

p0pc, sq “ s;

p1pc, sq “ ´2
´ps´ 1q2

?
π` c

c
?

π
;

p2pc, sq “ ´8

ˆ

´

´s2 ` 9{4 s´ 5{4
¯?

π` c
˙

ps´ 1q
?

πc2 ;

p3pc, sq “
´64

`

s´ 5{4
˘

cps´ 1q
?

π`
´

48 s4 ´ 216 s3 ` 364 s2 ´ 272 s` 76
¯

π` 16 c2

c3π
;

p4pc, sq “ 256
1

π3{2c4

¨

˝3{2

˜

s3 ´
15 s2

4
`

227 s
48

´
193
96

¸

ps´ 1q2π3{2`

` c

˜

c
ˆ

s´
19
16

˙

?
π´ 5{2 π

ˆ

s2 ´
99 s
40

`
31
20

˙

ps´ 1q

¸

˛

‚;
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p5pc, sq “
1

π2c5

˜

´7680
`

s´ 4{3
˘

ˆ

s2 ´
19 s

8
`

29
20

˙

cps´ 1qπ3{2 ´ 512
?

πc3 ` 3840 π2s6´

´26880 π2s5 ` 78480 π2s4 ´ 122320 π2s3 `
´

4352 π c2 ` 107328 π2
¯

s2 `
´

´10432 π c2 ´ 50256 π2
¯

s`

`6272 π c2 ` 9808 π2
¯

;

p6pc, sq “ ´17408
1

π3{2c6

¨

˝´
45 ps´ 1q2π3{2

17

˜

s5 ´
25 s4

4
`

377 s3

24
´

1271 s2

64
`

36407 s
2880

´
9347
2880

¸

`

`

¨

˝´
77 c

?
π

17

˜

s3 ´
279 s2

77
`

5409 s
1232

´
137
77

¸

`
105 π s5

17
´

4995 π s4

136
`

11903 π s3

136
´

56835 π s2

544
`

`

ˆ

c2 `
1062 π

17

˙

s´
171 c2

136
´

8141 π

544

¸

c

˛

‚;

p7pc, sq “
1

π2c7

¨

˝´1720320

˜

s5 ´
99 s4

16
`

9843 s3

640
´

18437 s2

960
`

324067 s
26880

´
81887
26880

¸

cps´ 1qπ3{2´

´507904
ˆ

s2 ´
1235 s

496
`

3097
1984

˙

c3?π` 645120 π2s8 ´ 6128640 π2s7 ` 25509120 π2s6 ´ 60762240 π2s5`

`

´

1548288 π c2 ` 90596352 π2
¯

s4 `
´

´7519232 π c2 ´ 86583840 π2
¯

s3 `
´

13735296 π c2 ` 51798528 π2
¯

s2`

`

´

´11187072 π c2 ´ 17734944 π2
¯

s` 34816 c4 ` 3428480 π c2 ` 2660544 π2
˙

.

Appendix B. Transformation of FDE (49) into the Characteristic ODE (51)

Consider the FDE initial value problem (49), (50). The solution can be written in series
form as:

y “
`8
ÿ

j“0

νjω
p2q
j “

`8
ÿ

j“0

γj

´?
x
¯j

, (A1)

where γj “
νj

Γ
´

j
2`1

¯ . Note that the coefficients ν0, ν1 are given by the initial conditions (50),

thus ν0 “ 1, ν1 “ ´1.
Denote Qpyq “ 1´ 2y ` y2 ´ y3 for brevity. Inserting the series solution into (49)

yields:

x
`8
ÿ

j“0

ˆ

j
2
` 1

˙

γj`2

´?
x
¯j
“ Qpyq (A2)

Substituting
?

x “ t and rearranging results in:

`8
ÿ

j“0

`

j` 2
˘

γj`2tj “
2
t2 Qpyq. (A3)

Multiplying both sides by t and re-indexing the left-hand side sum yields:

`8
ÿ

j“2

jγjtj´1 “
2
t

Qpyq. (A4)
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Adding γ1 to both sides results in:

`8
ÿ

j“1

jγjtj´1 “
2
t

Qpyq ` γ1. (A5)

Let pyptq “
ř`8

j“0 γjtj. Then, the left-hand side of (A5) is the derivative dpy
dt , while the

coefficient γ1 reads γ1 “
ν1

Γ
´

3
2

¯ “ ´ 2?
π

. Combining these derivations yields:

dpy
dt
“

2
t

Qpyq ´
2
?

π
. (A6)

The initial condition CD1{2y

∣∣∣∣∣
x“0

“ ´1 has already been incorporated into the above

equation. The other initial condition, yp1q “ 1, is transformed into an equivalent condition
pyp1q “ 1, since py

`?
x
˘

“ ypxq.

Appendix C. Analytical Expressions of the Coefficients pjpc, sq for the ODE (51)–(52)

Coefficients pjpc, sq in the series solution (35) to the ODE (51)–(52) read:

p0pc, sq “ s;

p1pc, sq “ ´2

´

s3 ´ s2 ` 2 s´ 1
¯?

π` c

c
?

π
;

p2pc, sq “ 12

´

s3 ´ s2 ` 2 s´ 1
¯´

s2 ´ 2{3 s` 5{6
¯?

π` c
´

s2 ´ 2{3 s` 2{3
¯

?
πc2 ;

p3pc, sq “
1

π c3

¨

˝´168 c

˜

s4 ´ 4{3 s3 `
47 s2

21
´

10 s
7
`

10
21

¸

?
π´ 120 π s7 ` 280 π s6 ´ 676 π s5`

`884 π s4 ´ 956 π s3 ` 688 π s2 `
´

´48 c2 ´ 320 π
¯

s` 16 c2 ` 76 π

˙

;

p4pc, sq “ 96
1

π3{2c4

¨

˚

˝

´

35 s3 ´ 35 s2 ` 70 s´ 35
¯

π3{2

2

˜

s6 ´ 2 s5 `
89 s4

21
´

472 s3

105
`

547 s2

140
´

407 s
210

`
31
60

¸

`

`c

˜

15 c
ˆ

s3 ´ s2 `
109 s

90
´

37
90

˙

?
π`

63 π s6

2
´ 63 π s5 `

1579 π s4

12
´ 141 π s3 `

1415 π s2

12
` c2´

178 π s
3

`
40 π

3

˙

¸

;
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p5pc, sq “
1

c5π2

¨

˝´66528 c

˜

s8 ´ 8{3 s7 `
9103 s6

1386
´

19829 s5

2079
`

15503 s4

1386
´

2755 s3

297
`

3812 s2

693
´

`
1468 s

693
`

788
2079

˙

π3{2 ´ 8640 c3
ˆ

s2 ´ 2{3 s`
56

135

˙

?
π´ 44928 π

˜

35 s11π

52
´

385 s10π

156
`

`
10675 s9π

1404
´

10661 s8π

702
`

139693 π s7

5616
´

6543 π s6

208
`

ˆ

c2 `
180403 π

5616

˙

s5 `

ˆ

´5{3 c2 ´
72665 π

2808

˙

s4`

`

˜

151 c2

52
`

5617 π

351

¸

s3 `

˜

´
259 c2

108
´

13589 π

1872

¸

s2 `

˜

961 c2

702
`

997 π

468

¸

s´
251 c2

702
´

841 π

2808

˛

‚

˛

‹

‚

;

p6pc, sq “ 34560
1

π5{2c6

¨

˚

˝

´

77 s3 ´ 77 s2 ` 154 s´ 77
¯

π5{2

4

˜

s10 ´ 10{3 s9 `
625 s8

66
´

25268 s7

1485
`

`
13513 s6

540
´

21309 s5

770
`

404011 s4

16632
´

67087 s3

4158
`

72073 s2

9240
´

51517 s
20790

`
16169
41580

¸

`

`c

¨

˝

219 π3{2c
5

˜

s7 ´ 7{3 s6 `
1108 s5

219
´

12280 s4

1971
`

283223 s3

47304
´

20117 s2

5256
`

4037 s
2628

´
7079
23652

¸

`

`c3`´1{3` s
˘?

π` 14 π

˜

143 s10π

40
´

143 s9π

12
`

1177 s8π

35
´

6347 π s7

105
`

2666387 π s6

30240
´

490493 π s5

5040
`

`

ˆ

c2 `
850561 π

10080

˙

s4 `

ˆ

´4{3 c2 ´
1944 π

35

˙

s3 `

˜

1529 c2

840
`

22031 π

840

¸

s2 `

˜

´
3907 c2

3780
´

4509 π

560

¸

s`

41 c2

140
`

8971 π

7560

¸

˛

‚

˛

‹

‚

.
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