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Abstract: In this paper, a solution is provided to solve the heat conduction equation in the three-
dimensional cylinder region, where the laser intensity of the material irradiation surface is ex-
pressed as a Gaussian distribution. Based on the symmetry of heat distribution, firstly, the form of 
the heat equation in the common rectangular coordinate system is changed to another form in the 
two-dimensional cylindrical coordinate system. Secondly, the ADI with the backward Euler method 
and with Crank–Nicolson method are established to discretize the model in the cylindrical coordi-
nate system, after which the simulation results are obtained, where the first kind of boundary value 
condition is used to verify the accuracy of these two algorithms. Then, the above two methods are 
used to solve the model with the third kind of boundary value condition. Finally, the comparison is 
performed with the results obtained by the MATLAB’s PDETOOL, which shows that the solution 
is more feasible and efficient. 

Keywords: heat distribution; three-dimensional heat equation; cylindrical coordinate system; ADI 
method; laser irradiation; numerical computation 
 

1. Introduction 
In the fields of advanced equipment manufacturing for example aerospace and new 

energy, hard and brittle materials such as beryllium, fused silica, and diamond are widely 
used to manufacture products and devices. Generally, when machining (drilling or cut-
ting) brittle and hard materials, it is pretty easy to cause damage on the processed mate-
rial. Therefore, at present, laser is commonly used to irradiate the surface of the processed 
material, after which the processed materials obtain heat through the interaction between 
light and itself, and the processing quality is significantly improved by heating and mod-
ification. In order to find the optimal laser intensity and distribution, it is necessary to 
calculate the propagation state of light and heat in three-dimensional object. Common 
numerical methods are the finite element method (FEM) and the finite difference method 
(FDM) [1,2], but they all require large amounts of computation. 

For the purpose, some numerical methods had been proposed [3–14], such as the 
alternating direction implicit (ADI) finite-difference time-domain method (FDTD) and its 
convolution perfect matching layer (CPML). The implementation of the ADI-FDTD and 
its CPML is divided into three steps. Firstly, transform the finite difference time domain 
method in the traditional three-dimensional cylindrical coordinate system into a matrix 
expression. Secondly, matrix expression of ADI-FDTD method in three-dimensional cy-
lindrical coordinate system is proposed by matrix transformation. Finally, the influence 
parameters of the marching layer are added to the method in the form of auxiliary varia-
bles.  

The existing methods directly give a three-dimensional cylindrical coordinate model 
in the electromagnetic environment, combined with the unconditionally stable ADI algo-
rithm. However, we propose a three-dimensional heat conduction model of laser pro 
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cessing in the rectangular coordinate system, which is then discretely transformed, 
simplified, and solved in three steps. Firstly, a three-dimensional heat conduction model 
in a rectangular coordinate system is developed, and it is transformed into a three-dimen-
sional heat conduction model in the cylindrical coordinate system. Secondly, since the 
heat conduction discussed in this article is irrelevant with the angle in the cylindrical co-
ordinate system, the three-dimensional problem in cylindrical coordinates is simplified to 
a two-dimensional problem. Finally, we use the backward Euler method and Crank–Nic-
olson method, combined with the unconditionally stable ADI method for discretization. 

In order to solve this problem, we first develop the heat conduction equation and 
boundary conditions. According to the characteristics of laser beam, the heat conduction 
equation solving problem in three-dimensional rectangular coordinate system is trans-
formed into the heat conduction equation solving problem in two-dimensional cylindrical 
coordinate system by using cylindrical coordinate transformation. Finally, an alternate 
implicit scheme algorithm is constructed. In conclusion, the heat conduction distribution 
can be solved quickly and stably, which provides an effective calculation method for the 
optimization of related parameter.  

2. Mathematical Model 
The problem model discussed in this article is first proposed in a rectangular coordi-

nate system, and then converted to a corresponding cylindrical coordinate system for dis-
cretization and solution. The significance of this chapter is to give the origin of the cylin-
drical coordinate equation model in the article and connect it to the original equation 
model in the rectangular coordinate system. 

Suppose Ω  is a cylinder with the origin of the coordinates as the center, then the 
model of the problem for three-dimensional heat conduction is as follows: 

( ) ( ) ( ]
ˆ ˆ + , , , , 0, ,e
T T f x y z t T
t

α∂ = ∇ ⋅ ∇ ∈ Ω ∈
∂

 (1)

( ) ( ) 2 2 2ˆ , , ,0 , , ,0 , ,T x y z x y z x X y z Rϕ= ≤ ≤ + ≤  (2)

where 0α ≥ . 
Boundary value conditions of the first kind are: 

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
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2 2 2
2
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= = = + ≤
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Boundary value conditions of the third kind are: 
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2 2 2
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ˆ 293K 20 C , , 0, ,

ˆ ˆ , , , \ 0, ,

S

a
S S

T n q y z y z x y z d

T S y z x d y z R
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κ β

κ

Γ
∇ ⋅ = + Γ = = + ≤

= = = < + ≤

∇ ⋅ = − = ∂Ω = + ≤

 (4)

where Γ  is the laser irradiation area, d  is the laser radius, β  is the material’s absorp-

tion rate of laser energy, H  is the heat dissipation coefficient, and aT  is the initial envi-
ronmental temperature, as shown in Figure 1. 
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Figure 1. Sketch of the domain of heat equation. 

Consider the problem model under the column coordinates and make the following 
coordinate transformation: 

( )
,

cos , 0 2 .
sin ,

x x
y r
z r

θ θ π
θ

=
 = ⋅ ≤ ≤
 = ⋅  

(5)

Then, Equation (1) is transformed into the following form: 
2 2 2

2 2 2 2

1 1= ,T T T T T f
t r r r r x

α
θ

 ∂ ∂ ∂ ∂ ∂⋅ + ⋅ + ⋅ + + ∂ ∂ ∂ ∂ ∂   
(6)

where ( ) ( )ˆ , , , , , .T x y z t T x r t=  

When the temperature distribution T  is independent of the θ , Equation (6) is trans-
formed into the simpler form: 

2 2

2 2

1= .T T T T f
t r r r x

α  ∂ ∂ ∂ ∂⋅ + ⋅ + + ∂ ∂ ∂ ∂   
(7)

Transforming Equation (1) into Equation (7) is equivalent to transforming three-di-
mensional problems into two-dimensional problems. Compared with the direct solution 
of three-dimensional problems, we have simplified the problem, saved time, and im-
proved the efficiency. 

Consider the transformed two-dimensional problem model as follows: 
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2 2

2 2
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T T T T f x X r R t T
t r r r x

α  ∂ ∂ ∂ ∂⋅ + ⋅ + + ≤ ≤ < ≤ < ≤ ∂ ∂ ∂ ∂ 
 (8)

( ) ( ), , 0 , , 0 , 0 .T x r x r x X r Rϕ= ≤ ≤ < ≤  (9)

Boundary value conditions of the first kind are as follows: 
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Boundary value conditions of the third kind are as follows: 
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r
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The alternate direction implicit format (abbreviated as ADI format) is an uncondi-
tionally stable format which can be solved by the catch-up method. This method is also 
called the P-R method, which was proposed by Peaceman and Rachford in 1955, and will 
be used to calculate the matrix form under the column coordinate. 

3. Establishment of Differential Approximation 

In the case of X R= , the space step is set to be ( )0 / ,h X M= −
 and the time step 

is set to be ( )0 / .eT Nτ = −
 Where M  and N  are positive integers, we have 

0 ,ix i h= + ⋅ 0 ,i M≤ ≤ 0 , 0 ,= + ⋅ < ≤jr j h j M  and 0 ,1 .kt k k Nτ= + ⋅ ≤ ≤  So we get a grid 

subdivision of the interval, and ( ), ,i j kx r t
 is a node. 

3.1. Difference Scheme for the Backward Euler Method  

At node ( )1, ,i j kx r t + , Equation (8) is considered as: 

( ) ( ) ( ) ( ) ( )
2 2

1 1 1 1
12 2

, , , , , , , ,1= , , ,i j k i j k i j k i j k
i j k
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(12)

1 , 1,1 1.≤ ≤ − ≤ ≤ −i j M k N  
Using the backward Euler method to discretize Equation (12), we obtain [2]: 
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R
r h
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α
τ

− + + + +

+ − + + + +

+ − +

+

 − +
 
 
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 

− 
+ ⋅ + 
 
 

+  

(13)

where the total truncation error is as follow: 
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(14)

The difference equation can be obtained by replacing the exact solution ( )1, ,i j kT x r t +  

with an approximate numerical solution 
1

,
k
i jT +

 and discarding the truncation error 
(1)

, ,i j kR
: 

1 1 1 1 1 1 1 1 1
, , 1, , 1, , 1 , , 1 , +1 , 1 1
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(15)

3.2. Difference Scheme for Crank–Nicolson Method  

Let 0f = , and at node ( )1/2, ,i j kx r t + , homogeneous form of Equation (8) is consid-
ered as the following form:  

( ) ( ) ( ) ( )2 2
1/2 1/2 1/2 1/2
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(16)

1 , 1,1 1.≤ ≤ − ≤ ≤ −i j M k N  
Using Crank–Nicolson method to discretize Equation (16), we obtain [2]: 
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where the total truncation error is: 
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The difference equation is obtained by replacing the exact solution ( )1, ,i j kT x r t +  with 

a numerical solution 
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3.3. Difference Scheme for the First Kind of Boundary Value 
3.3.1. Difference Scheme for ADI with the Backward Euler Method 

The difference scheme can be obtained by synthesizing the initial value condition and 
the boundary value condition as follows: 
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The difference equation is written as: 
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There exists a normal number 1C  independent of h  and τ  that causes the total 
truncation error: 
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To facilitate the calculation, the transition layer variable 
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the above equation becomes: 
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       

 

(29)

1 1/ 2
11 1

22 2

22 2

11 1

.

k k

MM M

MM M

gQ T T
gQ T T

gQ T T
gQ T T

+ +

−− −

−− −

      
      
      
       = −
      
      
            

  

 

(30)

Denote 
( ) ( )2 2

1 2
ˆ ˆ1 1ˆ ˆ ˆ ˆ1 , 1 ,

2 2
   

= + = + ⋅ = − = − ⋅   
   j j

r rb j r r b j r r
r j r j  then we have: 

( 1) ( 1) ( 1) ( 1)

ˆ ˆ1 2
ˆ ˆ1 2

, ,
ˆ ˆ1 2

ˆ ˆ1 2− × − − × −

− +   
   − +   
   = =
   − +   
   − +   

 

M M M M

r r
r r

D C
r r

r r  

(31)

( )
( ) ( )

( ) ( )
( ) ( ) ( )

2
1

2
2 1

2
2 1

2
2 1 1

ˆ ˆ2 1
ˆ ˆ ˆ2 2 2

,
ˆ ˆ ˆ2 2 2

ˆ ˆ1 2
− × −

 −
 − 
 =
 

− − − 
 − − 

  

M M

r rb
rb r rb

A
rb M r rb M

rb M r
 

(32)

( )
( ) ( )

( ) ( )
( ) ( ) ( )

2
1

2
2 1

2
2 1

2
2 1 1

ˆ ˆ1 4 2 1
ˆ ˆ ˆ2 2 1 4 2 2

ˆ ˆ ˆ2 2 1 4 2 2
ˆ ˆ2 1 1 4

− × −

 + −
 − + − 
 =
 

− − + − − 
 − − + 

  

M M

r rb
rb r rb

B
rb M r rb M

rb M r

(33)

( )
( ) ( )

( ) ( )
( ) ( ) ( )

1

2 1

2 1

2 1 1

ˆ1 2 1
ˆ2 1 2 2

,
ˆ2 1 2 2

ˆ1 1 2
− × −

 + −
 − + − 
 =
 

− − + − − 
 − − + 

  

M M

r b
b r b

Q
b M r b M

b M r
 

(34)
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( ) ( ) ( )

( ) ( ) ( ) ( )

2 1,0 2 ,0 2 1,0

1

1 1, 1 , 1 1, 1 1

ˆ ˆ ˆ1 2 1 1
0

,
0

ˆ ˆ ˆ1 2 1 1

− +

+

− + − ×

 − +
 
 
 = + ⋅
 
 
 − − − + − 



k k k
i i i

k
i i

k k k
i M i M i M M

rb T rb T rb T

F f

rb M T rb M T rb M T

τ

 

(35)

( ) ( ) ( )
1 1

2 ,0 1 , 1 1
1 , 0, , 0, 1 ,

Tk k
i i i M M
g b T b M T+ +

− ×
 = − − − 

 (36)

1 1,1 1.≤ ≤ − ≤ ≤ −i M k N  

The transition layer variable 
1/ 2 1/ 2

0 ,k k
MT T+ +

 should satisfy: 

2 1 1/ 2
0, 0,

2 1 1/ 2
, ,

1 ,1 1,

1 ,1 1.

k k
y y j j

j

k k
y y M j M j

j

I T T j M
r

I T T j M
r

τ δ δ

τ δ δ

+ +

+ +

  
 − + = ≤ ≤ −     
  
 − + = ≤ ≤ −       

(37)

There exists a normal number 2C , independent of h  and τ , so that the minor 
term is: 

( )2 2 2 2 1
, , 2

1max .+
 

+ − ≤  
 

k k
x r r i j i j

j

T T C
r

α τ δ δ δ τ
 

(38)

Therefore, Equations (24) and (38), show that a normal number C  is independent of 
h  and τ , so the total error R  of difference schemes for ADI with the backward Euler 
method of the first kind of boundary value is: 

( )2max .R C hτ= +
 (39)

3.3.2. Difference Scheme for ADI with Crank–Nicolson Method 
The difference scheme is obtained by synthesizing the initial value condition and the 

boundary value condition: 
1 1 1 1 1 1

1, , 1, 1, , 1, , 1 , , 1
1 2 2 2

, ,
1 1

, 1 , , 1 , +1 , 1 , +1 , 1
2

2 2 2
+

,
22 1 +

2 2

k k k k k k k k k
i j i j i j i j i j i j i j i j i j

k k
i j i j

k k k k k k k
i j i j i j i j i j i j i j

j

T T T T T T T T T
T T h h h

T T T T T T T
h r h h

α
τ

+ + + + + +
− + − + − +

+

+ +
− + − −

 − + − + − +
+ 

−  = ⋅  − + − −
 + + ⋅       

(40)

1 , 1,1 1,≤ ≤ − ≤ ≤ −i j M k N  

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

1 2

1 2

, ,0 , , 0 ,0 ,

0, , ( , ), , , ( , ),

, 0, , , , , , .

= ≤ ≤ < ≤

= =

= =

T x r x r x X r R

T r t r t T X r t r t

T x t x t T x R t x t

ϕ
φ φ
θ θ  

(41)

Denote: 

1, , 1, , 1 , , 1 , +1 , 12 2
, , ,2 2

2 2
, , .

2
− + − + −− + − + −

= = =
k k k k k k k k
i j i j i j i j i j i j i j i jk k k

x i j r i j r i j

T T T T T T T T
T T T

h h h
δ δ δ

 
(42)

The difference equation is written as: 

There exists a normal number 1C ′  independent of h  and τ  that causes the total 
truncation error: 
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( )
1

, , 2 1 2 2 1 2 1
, , , , , ,

1 ,
2

1 , 1,1 1.

+
+ + +

 −
= ⋅ + + + + +  

 
≤ ≤ − ≤ ≤ −

k k
i j i j k k k k k k

x i j x i j r i j r i j r i j r i j
j

T T
T T T T T T

r

i j M k N

α δ δ δ δ δ δ
τ  (43)

( )(2) 2 2
, , 1max .i j kR C hτ′= +  (44)

In Equation (43), adding the minor term 
( )

2
2 2 2 1

, ,
1

4
+

 
⋅ ⋅ + −  

 

k k
x r r i j i j

j

T T
r

τα δ δ δ
 leads to: 

2 2 1 2 2
, ,

1 1 .
2 2 2 2

+
            − − + = + + +                     

k k
x r r i j x r r i j

j j

I I T I I T
r r

ατ ατ ατ ατδ δ δ δ δ δ  (45)

To facilitate the calculation, the transition layer variable 
1/2

,
k
i jT

+

 is introduced, and 
the above equation becomes: 

2 1/ 2 2
, ,

2 1 2 1/ 2
, ,

1 ,
2 2

1 .
2 2

+

+ +

     − = + +         
     − + = +         

k k
x i j r r i j

j

k k
r r i j x i j

j

I T I T
r

I T I T
r

ατ ατδ δ δ

ατ ατδ δ δ
 

(46)

Denote 2ˆ ⋅=r
h

α τ
, then the vector forms of the above two equations are as follows:  

( ) ( )

( ) ( )

1/ 2 1/ 2 1/ 2
1, , 1, , 1 , , 1

1 1 1 1/ 2 1/ 2
, 1 , , 1 1, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1 1 ,
2 2 2 4 2 4

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1 1
2 4 2 4 2 2

+ + +
− + − +

+ + + + +
− + − +

   
− + + − = − + − + +   ⋅ ⋅   
   

− + + + + − − = + − +   ⋅ ⋅   

k k k k k k
i j i j i j i j i j i j

k k k k k
i j i j i j i j i j i

r r r r r rT r T T T r T T
j j

r r r r r rT r T T T r T T
j j

1/ 2
1, ,+k
j

 

(47)

1 1,1 1.≤ ≤ − ≤ ≤ −i M k N  

Denote ,1 ,2 , 2 , 1, , , , , 0 ,
T

i i i i M i MT T T T T i M− − = ≤ ≤   then we derive following forms: 
1

1/ 22
1 1 0 1

2 2 2

2 2 2
1/ 2

1 1 1

,

k k k

M M M
k

M M M M

E S VT T ST
S E S VT T

S E S VT T
S E VT T ST

ω
ω

ω
ω

+ +

− − −
+

− − −

     − +   
       
       
       = +
       
       
        − +        

     

 

(48)

11 1/22
1 1 0 1

2 2 2

2 2 2
1/2

1 1 1

k k k

M M M
k

M M M M

G W LT T LT e
G L W LT T e

G L W LT T e
G L WT T LT e

+ + +

− − −
+

− − −

    −   
        −       
       = +
       

−       
        −       

      (49)

Denote 
( ) ( )2 2

1 2
ˆ ˆ1 1ˆ ˆ ˆ ˆ1 , 1 ,

2 2
   

= + = + ⋅ = − = − ⋅   
   j j

r rb j r r b j r r
r j r j  then we get: 
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( ) ( ) ( ) ( )1 1 1 1

ˆ ˆ
2 2

ˆ ˆ
2 2

= , = ,
ˆ ˆ
2 2

ˆ ˆ
2 2− × − − × −

   −   
   
   −   
   
   
   

−   
   
   −      

 

M M M M

r r

r r

S L
r r

r r

 

(50)

( ) ( ) ( ) (1 1 1

ˆ ˆ1 1
ˆ ˆ1 1

= , =
ˆ ˆ1 1

ˆ ˆ1 1− × − − ×

+ −   
   + −   
   
   + −   
   + −   

 

M M M M

r r
r r

E W
r r

r r

(51)

( )

( ) ( )

( ) ( )

( )
( ) ( )

1

2 1

2 1

2

1 1

1
ˆ1

2
2 2

ˆ1
2 2

= ,
2 2

ˆ1
2 2

1
ˆ1

2 M M

b
r

b b
r

V
b M b M

r

b M
r

− × −

 
− 

 
 

− 
 
 
 − − − 
 − −  

  

 

(52)

( )

( ) ( )

( ) ( )

( )
( ) ( )

1

2 1

2 1

2

1 1

1
ˆ1

2
2 2

ˆ1
2 2

= ,
2 2

ˆ1
2 2

1
ˆ1

2 − × −

 
+ − 

 
 
− + − 
 
 
 − − − + − 
 − − +  

  

M M

b
r

b b
r

G
b M b M

r

b M
r

 

(53)

( ) ( )
( )

2 1
,0 ,

1 1

1 1
,0, , 0, ,

2 2

T

k k
i i i M

M

b b M
T Tω

− ×

 − 
=  
 



( ) ( )
( )

2 11 1
,0 ,

1 1

1 1
, 0, , 0, ,

2 2

T

k k
i i i M

M

b b M
e T T+ +

− ×

 − 
= − − 
 


 

(54)

1 1,1 1.≤ ≤ − ≤ ≤ −i M k N  

The transition layer variable 
1/ 2 1/ 2

0 ,k k
MT T+ +

 should satisfy: 

1/ 2 2 1 2
0 0 0

1/ 2 2 1 2

1 1 1 1 ,1 1,
2 2 2 2

1 1 1 1 ,1 1.
2 2 2 2

+ +

+ +

      
   = ⋅ − + + ⋅ + + ≤ ≤ −               
      
   = ⋅ − + + ⋅ + + ≤ ≤ −               

k k k
r r r r

j j

k k k
M r r M r r M

j j

T I T I T j M
r r

T I T I T j M
r r

ατ ατδ δ δ δ

ατ ατδ δ δ δ
 

(55)

There exists a normal number 2C ′ , independent of h  and τ , so the minor term is: 
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( )
2

2 2 2 1 2
, , 2

1max .
4

+
 

′⋅ ⋅ + − ≤  
 

k k
x r r i j i j

j

T T C
r

τα δ δ δ τ
 

(56)

Therefore, Equations (44) and (56), demonstrate that the normal number C′  is in-

dependent of h  and τ , so the total error 
(1)R  of difference schemes for ADI with 

Crank–Nicolson method of the first kind of boundary value is: 

( )(1) 2 2max .R C hτ′= +
 (57)

3.4. Difference Scheme for the Third Kind of Boundary Value 
3.4.1. Difference Scheme for ADI with the Backward Euler Method 

Based on the initial value condition, the boundary value condition and Equation (25), 
the difference scheme is obtained: 

( )2 2 1 2 2 2 2 1
, , ,

1 1 ,+ +
      
   − − + = + + + ⋅               

k k k
x r r i j x r r i j i j

j j

I I T I T f
r r

ατδ ατ δ δ α τ δ δ δ τ
 

(58)

1 , 1,1 1,≤ ≤ − ≤ ≤ −i j M k N  

( ) ( ), ,0 , ,0 ,0 ,= ≤ ≤ < ≤T x r x r x X r Rϕ
 (59)

( ) ( )
( ) ( )
( ) ( )

0

0

, ,

,0 ,

,0 ,

0,0 .

x

ax X

ar R

r

T n q r r

T n H T T r R

T n H T T x X

T x X
r

κ β

κ

κ

κ

=

=

=

=

∇ ⋅ = ∈Γ

∇ ⋅ = − < ≤

∇ ⋅ = − < ≤

∂ = < ≤
∂  

(60)

It is the same as the difference scheme under the boundary values of the first kind, 
and finally discretized into the corresponding ADI scheme. Therefore, the rest are con-
sistent, except that boundary value of the third type enjoys a separate center discretiza-

tion, and that the approaches to process discrete ADI scheme for 1i =  and 1i M= −  in 
the inner point vary widely. Therefore, only the discretization of the third type of bound-

ary value and the processing mode of the discrete ADI format when 1i =  and 1i M= −  
are discussed. 

According to Equation (39), the total error R  of the internal point is: 

( )2max .R C hτ= +
 (61)

For 
( )

0

,
=

∂− = ∈Γ
∂ x

T q r r
x

κ β
, it is discretized as the center at 0x = , 

( )1, 1,
ˆ

,0 ,
2

k k
j j

j

T T
q r j M

h
κ β

−
= ≤ ≤

 
(62)

where 1,
ˆ k
jT  is the virtual symmetric point of 1,

k
jT  about 0x = , and is estimated to be [3]: 

1, 1,
0,

ˆ
,0 .

2

k k
j jk

j

T T
T j M

+
≈ ≤ ≤  (63)

According to Equations (62) and (63), we obtain: 
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( )
0, 1, ,0 .jk k
j j

hq r
T T j M

β
κ

= + ≤ ≤  

For 
( ),0

=

∂ = − < ≤
∂ a

x X

T H T T r R
x

κ
, it is discretized as the center at x X= , 

( )1, 1,
ˆ

,0 ,
2

k k
M j M j

a x X

T T
H T T j M

h
κ − −

=

−
= − ≤ ≤  (64)

where 1,
ˆ k
M jT −  is the virtual symmetric point of 1,

ˆ k
M jT −  about x X= , and is estimated to be 

[3]: 

1, 1,
,

ˆ
,0 ,

2

k k
M j M jk

M j

T T
T j M− −+

≈ ≤ ≤
 

(65)

1, 1,
ˆ

,0 .
2

k k
M j M j

x X

T T
T j M− −

=

+
≈ ≤ ≤

 
(66)

According to Equations (64)–(66), we have: 

, 1, , 0 .k k
M j M j a

hHT T T j M
hH hH

κ
κ κ−= − ≤ ≤

− −
 

For 
( ),0

=

∂− = − < ≤
∂ a

r R

T H T T x X
r

κ
, it is discretized as the center at r R= , 

( ), 1 , 1
ˆ

,0 ,
2

k k
i M i M

a r R

T T
H T T i M

h
κ − −

=

−
= − ≤ ≤

 
(67)

where , 1
ˆ k
i MT −  is the virtual symmetric point of , 1

k
i MT −  about r R= , and is estimated to be 

[3]: 

, 1 , 1
,

ˆ
,0 ,

2

k k
i M i Mk

i M

T T
T i M− −+

≈ ≤ ≤
 

(68)

, 1 , 1
ˆ

,0 .
2

k k
i M i M

r R

T T
T i M− −

=

+
≈ ≤ ≤

 
(69)

According to Equations (67)–(69), we have: 

, , 1 , 0 .k k
i M i M a

hHT T T i M
hH hH

κ
κ κ−= + ≤ ≤

+ +
 

For 0

0,0
=

∂ = < ≤
∂ r

T x X
r

κ
, it is discretized as the center at 0r = , 

,1 ,1
ˆ

0,0 ,
2

k k
i iT T

i M
h

κ
−

= ≤ ≤
 

(70)

where ,1
ˆ k
iT  is the virtual symmetric point of ,1

k
iT  about 0r = , and is estimated to be [3]: 

,1 ,1
,0

ˆ
,0 .

2

k k
i ik

i

T T
T i M

+
≈ ≤ ≤

 
(71)

According to Equations (70) and (71), we have: 
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,0 ,1,0 .k k
i iT T i M= ≤ ≤  

If 1i = , the vector form of ADI with the backward Euler format is: 

( )

( )

1/2 1/2 1/2 2 2 22 2
0, 1, 2, 0, 1 0, 0, 1

2 2 22 2
1, 1 1, 1, 1

2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1 2 2

ˆ ˆ ˆ ˆ2 2ˆ ˆ ˆ2 1 4 2

ˆ ˆˆ

+ + +
− +

− +

   ⋅ ⋅
− + + − = − − + +      

   
   ⋅ ⋅

+ − + + + + − −      
   
 ⋅

+ −  
 

k k k k k k
j j j j j j

j j

k k k
j j j

j j

j

r r r rrT r T rT r T r T r T
r r

r r r rr T r T r T
r r

r rr
r

2 2 12
2, 1 2, 2, 1 1,

ˆ ˆˆ ˆ2 ,+
− +

 ⋅
− + + + ⋅  

 

k k k k
j j j j

j

r rT r T r T f
r

τ
 

(72)

( )1 1 1 1/22 2
1, 1 1, 1, 1 1,

ˆ ˆˆ ˆ ˆ1 2 .+ + + +
− +

   
− + + + + − − =      
   

k k k k
j j j j

j j

r rr T r T r T T
r r

 

The third kind of boundary discrete 0, , , ,0, , , ,0 ,k k k k
j M j i M iT T T T i j M≤ ≤

 are substituted 
into the above two equations to obtain the final discrete format for 1i = . The processing 
method for 1i M= −  performs the same as the one when 1i = . Therefore, the final ma-
trix form of the difference scheme for the third kind of boundary value is: 

( )

1 1
2 2

1 1

2 2

2 2

1 1

1 1
1

2
2

2

1

0

+
0

k k

M M

M M

k
k

M

M

DC D T T
D C D T T

D C D T T
D C DT T

hH
F A T W DW

B A T
FA B A T

A B A T
A B T

κ
κ

+ +

− −

− −

−

−

                                          ⋅      − 

+ + −
  
  
  
  = +
  
  
     

    

   
2

1 1

,
M

k
M M a a

F
hH hHF A T T I D T I

hH hH hH
κ

κ κ κ

−

− −

 
 
 
 
 
 
 

    + ⋅ − ⋅ − ⋅ − ⋅    − − −    



 

(73)

1 1 1/2
1 1 1

2 2 2

2 2 2

1 1 1

,

k k k

M M M

M M M

Q QQ ggT T T
Q QQ ggT T T

Q QQ ggT T T
Q QQ ggT T T

+ + +

− − −

− − −

          
          
          
          + = −
          
          
                    

      (74)

where, 

( ) ( ) ( )1 2 1, , , ,
T

Mhq r hq r hq r
W

β β β
κ κ κ

− 
=  
 


 

(75)

( )
( )

[ ]1 ( 1) 1
1 1

0,0, ,0, 1 , 1,1, ,1,1 ,
T

T
a m

M

hHgg b M T I
hHκ − ×

− ×

 = − − ⋅ = + 
 

 
(76)

( )

( )

2

1
( 1) ( 1)

1
0

.
0

1
m m

b

QQ

b M
hH

κ
κ − × −

− 
 
 
 

=  
 
 

− − ⋅ 
+ 



 

(77)

The other matrices, , , , , ,A B C D T F , and Q  are the same as the case of the first kind 
of boundary value. 
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The discretization of the third kind of boundary value is all the central difference 

quotient discretization, so there exists a normal number 3C  independent of h  and τ , 

so that the total error bzR  of boundary value discretization be: 
2

3max .bzR Ch=
 (78)

Therefore, Equations (61) and (78) represent that the normal number 4C  is inde-

pendent of h  and τ , so the total error 1R  of difference schemes for ADI with the back-
ward Euler method of the third kind of boundary value is: 

( )2
1 4max .R C hτ= +

 (79)

3.4.2. Difference Scheme for ADI with Crank–Nicolson Method 
Based on the initial value condition, the boundary value condition and Equation (45), 

the difference scheme is obtained: 

2 2 1 2 2
, ,

1 1 .
2 2 2 2

1 , 1, 1 1,

+
            − − + = + + +                     

≤ ≤ − ≤ ≤ −

k k
x r r i j x r r i j

j j

I I T I I T
r r

i j M k N

ατ ατ ατ ατδ δ δ δ δ δ

 
(80)

( ) ( ), ,0 , ,0 ,0 ,= ≤ ≤ < ≤T x r x r x X r Rϕ
 (81)

( ) ( )
( ) ( )
( ) ( )

0

0

, ,

,0 ,

,0 ,

0,0 .

x

ax X

ar R

r

T n q r r

T n H T T r R

T n H T T x X

T x X
r

κ β

κ

κ

κ

=

=

=

=

∇ ⋅ = ∈Γ

∇ ⋅ = − < ≤

∇ ⋅ = − < ≤

∂ = < ≤
∂  

(82)

The discrete processing of interior points and boundary values is the same as that of 
ADI with the backward Euler method for the third kind of boundary value. Therefore, the 
final matrix form of the difference scheme for the third kind of boundary value is: 

1 1
2 2

1 1

2 2

2 2

1 1

1
1

2
2

2
2

1

0

0

k k

M M

M M

k

M
M

M

SE S T T
S E S T T

S E S T T
S E ST T

hH
SW

V T
V T

V T
hHV ST
hH

κ
κ
ω

ω

ω

κ

+ +

− −

− −

−
−

−

                        +                   ⋅      − 
− +

  
  
  
  = +
  
  
   − −    −

    


 

1

,

a MT I ω −

 
 
 
 
 
 
   ⋅ +      

(83)
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1 1
1 1

2 2

2 2

1 1

1
2

1

2

2

1

0

0

k k

M M

M M

k

M

M

G GGT T
G GGT T

G GGT T
G GGT T

LW L T
L W L T

L W L T
L W LT

hH
κ

κ

+ +

− −

− −

+

−

−

      
      
      
      +
      
      
            

               = +          ⋅    − 

  

   

1
2

1

2

2

1

,

k

M

M a

LW
T
T

T
hHT L T I
hH

θ
θ

θ

θ
κ

+

−

−

 −
   −   
   
  +     −          − ⋅ −    −   




 (84)

where, 

( )

( )
( ) ( )

2

1

1 1

1
2

0
,

0
1

2 M M

b

GG

b M
hH

κ
κ − × −

− 
 
 
 
 =  
 
 

− − ⋅ + 



 

(85)

( ) ( ) ( ) ( )
( )

1 2 1 1

1 1

1
, , , , 0, 0, , 0, .

2

T T
M

a
M

hq r hq r hq r b M hHW T
hH

β β β
θ

κ κ κ κ
−

− ×

   − − 
= = ⋅   +   

   (86)

The other matrices, , , , , , ,S E V G W L T , and ω  are the same as the case of the first 
kind of boundary value. 

Therefore, Equations (57) and (78) show that the normal number 4C ′  is independent 

of h  and τ , so the total error 
(1)

1R  of difference schemes for ADI with Crank–Nicolson 
method of the third kind of boundary value is: 

( )(1) 2 2
1 4max .R C hτ′= +

 (87)

4. Stability and Convergence of Difference Scheme Solutions 
4.1. Stability of Difference Scheme Solutions 

The following will prove that ADI format with the backward Euler method and ADI 

format with Crank–Nicolson method are unconditionally 
2L  stable whether for the first 

kind of boundary value or the third kind of boundary value. 

Definition 1. A function ( )v x
 is defined on ( ),−∞ +∞

. If ( ) 2
d ,v x x

+∞

−∞
< ∞  then there exists: 

( ) ( ) ( )1 d d ,
2

i xv x v e λ εε ε λ
π

+∞ +∞ − −

−∞ −∞
=    

(88)

where 1i = −  is an imaginary unit and the above transformation is called the Fourier transform. 

Definition 2. The 
2L  module refers to the Euclidean module, and the 

2L  stable refers to the sta-
bility under the second norm [2]. 
Theorem 1. The difference Equation (25) under the first kind of the boundary value and the bound-

ary value of the third kind is unconditionally 
2L  stable. 

Proof. From the total error R  of the differential format for the first kind of boundary 

value and the total error 1R  of the differential format for the third kind of boundary 

value, the total error is ( )2O hτ +
. □ 
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Let 2h
α τλ ⋅=

 be the grid ratio and use the Fourier method to analyze the stability of 
Equation (25): 

( )2 2 1 2 2 2 2 1
, , ,

1 1 .+ +
      
   − − + = + + + ⋅               

k k k
x r r i j x r r i j i j

j j

I I T I T f
r r

ατδ ατ δ δ α τ δ δ δ τ
 

(89)

Since the stability of homogeneous equations and non-homogeneous equations are 
consistent, the stability of homogeneous equations can be discussed. The difference equa-
tion of ADI with the backward Euler method corresponding to the homogeneous equation 
is: 

( )2 2 1 2 2 2 2
, ,

1 1 .+
      
   − − + = + +               

k k
x r r i j x r r i j

j j

I I T I T
r r

ατδ ατ δ δ α τ δ δ δ
 

(90)

Substituting 
1 2

,
ik jh ik lhk k

j lT v e e=
 and cos sin= +ie iθ θ θ into the Equation (90), we get

1 ˆ ,k kv G k vτ+ = （ , ）  where the growth factor ( )ˆ ,G kτ is represented as: 

( )
( )

( )

2 2 21 2 1
22 2 2

2 2 21 2 1
22 2 2

4 4 41 sin sin sin sin
2 2 2ˆ , ,

4 4 41 sin 1 sin + 1 sin sin
2 2 2

  + ⋅ + − ⋅    ⋅   =
     + + − + ⋅      ⋅     

j

j

k h k h k hi k h
h h h h r

G k
k h k h k hi k h

h h h h r

ατ ατ ατ ατ

τ
ατ ατ ατ ατ

 

(91)

then, 

( )
( )

( )

22
2 2 21 2 1

22 2 2

22 2
2 2 21 2 1

22 2 2

4 4 41 sin sin sin sin
2 2 2ˆ , ,

4 4 41 sin 1 sin 1 sin sin
2 2 2

  + ⋅ + − ⋅    ⋅   =
      + ⋅ + + − + ⋅       ⋅      

j

j

k h k h k h k h
h h h h r

G k
k h k h k h k h

h h h h r

ατ ατ ατ ατ

τ
ατ ατ ατ ατ

 (92)

where ( )1 2,k k k=
. Obviously, 

( )ˆ , 1≤G kτ
 means that the difference scheme Equation 

(90) is unconditionally 
2L  stable. Therefore, the difference Equation (25) is uncondition-

ally 
2L  stable. 

Theorem 2. The difference Equation (45) for the first kind of the boundary value and the third 

kind of boundary value is unconditionally 
2L  stable. 

Proof. From the total error 
(1)R  of the differential format for the first kind of the bound-

ary value and the total error 
(1)

1R  of the differential format for the third kind of the 

boundary value, the total error is ( )2 2O hτ +
. □ 

Let 2h
α τλ ⋅=

 be the grid ratio and use the Fourier method to analyze the stability of 
Equation (45): 

2 2 1 2 2
, ,

1 1 .
2 2 2 2

+
            − − + = + + +                     

k k
x r r i j x r r i j

j j

I I T I I T
r r

ατ ατ ατ ατδ δ δ δ δ δ
 

(93)
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Substituting 
1 2

,
ik jh ik lhk k

j lT v e e=
 and cos sin= +ie iθ θ θ  into Equation (45), we get

( )1 ˆ , ,k kv G k vτ+ = where the growth factor ( )ˆ ,G kτ  of Equation (45) is as the following 
form: 

( )
( )

( )

2 2 21 2 1
22 2 2

2 2 21 2 1
22 2 2

1 2 sin 1 2 sin 1 2 sin sin
2 2 2 2ˆ , ,

1 2 sin 1 2 sin 1 2 sin sin
2 2 2 2

      − − + − ⋅       ⋅      =
      + + + − + ⋅       ⋅      

j

j

k h k h k hi k h
h h h h r

G k
k h k h k hi k h

h h h h r

ατ ατ ατ ατ

τ
ατ ατ ατ ατ

 

(94)

then, 

( )
( )

( )

22 2
2 2 21 2 1

22 2 2

22 2
2 2 21 2 1

22 2 2

1 2 sin 1 2 sin 1 2 sin sin
2 2 2 2ˆ , ,

1 2 sin 1 2 sin 1 2 sin sin
2 2 2 2

      − ⋅ − + − ⋅       ⋅      =
      + ⋅ + + − + ⋅       ⋅      

j

j

k h k h k h k h
h h h h r

G k
k h k h k h k h

h h h h r

ατ ατ ατ ατ

τ
ατ ατ ατ ατ

 

(95)

where ( )1 2,k k k=
. Obviously, 

( )ˆ , 1≤G kτ
 means that the difference scheme Equation 

(45) is unconditionally 
2L  stable. 

4.2. Convergence of Difference Scheme Solutions 
The following will prove that ADI format with the backward Euler method and ADI 

format with Crank–Nicolson method are convergent whether for the first kind of bound-
ary value or the third kind of boundary value. 
Definition 3. For a sufficiently smooth function u , if the time step and the space step both ap-
proach 0, the truncation error of the difference equation approaches 0 for each node, it is said that 
the difference equation approximates the differential equation, that is, the difference equation is 
consistent with differential equations [2]. 
Theorem 3. If the difference equation satisfies the consistency condition and is stable according to 
the initial value, the difference solution converges to the solution of the original equation [2]. 
Theorem 4. The difference Equation (25) in the case of boundary value of the first kind and bound-
ary value of the third kind is consistent. 
Proof. The consistency of the difference equation can be proved by the Taylor expansion 
method. □ 

For the difference scheme Equation (25): 

( )2 2 1 2 2 2 2 1
, , ,

1 1 ,+ +
      
   − − + = + + + ⋅               

k k k
x r r i j x r r i j i j

j j

I I T I T f
r r

ατδ ατ δ δ α τ δ δ δ τ
 

(96)

,
k
i jT  is expanded at node ( )1, ,i j kx r t +  for t ，

1 1
1, 1,,k k

i j i jT T+ +
− +  and 1, 1,,k k

i j i jT T− +  are ex-

panded at node ( )1, ,i j kx r t +  and ( ), ,i j kx r t
 for x , respectively,

1 1
, 1 , 1,k k
i j i jT T+ +

− +  and

, 1 , 1,k k
i j i jT T− +  are expanded at node ( )1, ,i j kx r t + and ( ), ,i j kx r t

 for r , respectively. We have 
obtained: 
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( )
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,
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2 4 4 3
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2 2 4 2 2 4 2 3
2 2

2 4 2 4 3

1

1
2 12 12 6

1 1
12 12 6

+

+

  ∂ ∂ ∂ ∂− ⋅ + ⋅ + − =  ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂− ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ + +  ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂ ∂ ∂− + ⋅ + ⋅ + ⋅ + ⋅ ⋅  ∂ ∂ ∂ ∂ ∂ ∂  

k

i j

k

i j

T T T T f
t r r r x

T h T h T h T o h
t x r r r

T h T T h T T h T
x x r r r r r r
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T h T T h T T h T
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(97)

In the above equation，when , 0hτ → ，all the terms at the right-hand side of the 
above equation are close to 0, and the difference equation approaches to the original dif-
ferential equation. Therefore, the difference Equation (25) is consistent with the original 
equation. 
Theorem 5. The difference Equation (25) in the case of boundary value of the first kind and the 
third kind of boundary value is convergent. 

Proof. Order error is ( )2O hτ +
, and according to Theorems 3, 4, and 1, the difference 

scheme Equation (25) in the case of boundary value of the first kind and the third kind of 
boundary value is convergent. □ 
Theorem 6. The difference scheme Equation (45) in the case of the first kind of boundary value 
and the third kind of boundary value is consistent. 
Proof. The consistency of the difference equation can be proved by the Taylor expansion 
method. □ 

For the difference Equation (45): 

2 2 1 2 2
, ,

1 1 ,
2 2 2 2

+
            − − + = + + +                     

k k
x r r i j x r r i j

j j

I I T I I T
r r

ατ ατ ατ ατδ δ δ δ δ δ
 

(98)

,
k
i jT  and 

1
,
k
i jT

+

 is expanded at node ( )1, ,i j kx r t +  for t，
1 1

1, 1,,k k
i j i jT T+ +
− +  and 1, 1,,k k

i j i jT T− +  are 

expanded at node ( )1, ,i j kx r t +  and ( ), ,i j kx r t
 for x , respectively,

1 1
, 1 , 1,k k
i j i jT T+ +

− +  and

, 1 , 1,k k
i j i jT T− +  are expanded at node ( )1, ,i j kx r t + and ( ), ,i j kx r t

 for r , respectively. We have 
obtained: 
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,
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2 2

2 3 2 33
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τ
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In the above equation，when , 0hτ → , all the terms at the right-hand side of the 
above equation are close to 0, and the difference equation approaches to the original dif-
ferential equation. Therefore, the difference Equation (45) is consistent with the original 
equation. 
Theorem 7. The difference Equation (45) in the case of the first kind of boundary value and the 
third kind of boundary value is convergent. 

Proof. Order error is ( )2 2O hτ +
, and according to theorems 3, 6, and 2, the difference 

scheme Equation (45) in the case of the first kind of boundary value and the third kind of 
boundary value is convergent. □ 

5. Examples 
5.1. Verification of Convergence of Algorithm 
5.1.1. Example of ADI with the Backward Euler Method  

Using the difference scheme for ADI with the backward Euler method of the first 
kind of boundary value to solve the following definite solution problems, we can verify 
the convergence of the algorithm. 
Example 1.  

( )
2 2

2 2

1 1= 1+ , 0 1,0 1,
t

+ +∂ ∂ ∂ ∂  + ⋅ + − ⋅ ≤ ≤ < ≤ ∂ ∂ ∂ ∂  
x r tT T T T e x r

r r r x r  
(100)

( ) ( ), , 0 ,x rT x r e +=  (101)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

0, , , 1, , ,

, 0, , ,1, ,

r t r t

x t x t

T r t e T r t e

T x t e T x t e

+ + +

+ + +

= =

= =  
(102)

the exact solution of the above fixed solution problem is ( ) ( ), , .x r tT x r t e + +=  

Space interval [ ]0,1
 is uniformly divided into M  blocks. Denote 

1 2 1 / ,h h h M= = = 0 ,= +ix ih 0 ,= +jr jh 0 ,0 .≤ ≤ < ≤i M j M  Time interval [ ]0,1
 is uni-

formly divided into N  blocks. Denote 1/ , 0 ,1= = + ≤ ≤kN t k k Nτ τ , and call ( ), ,i j kx r t
 

as a network node. 

The calculation formula of the maximum error ( ),E h τ∞  of the numerical solution 
is given by: 

( ) ( ) ,0 ,
0

, max , , .k
i j k i ji j M

k N

E h T x r t Tτ∞ ≤ ≤
≤ ≤

= −
 

(103)

The absolute error is the absolute value of the distinction between the exact solution 
and numerical solution. 

Table 1 shows the numerical solution, the exact solution, and the absolute error at 
some nodes when 1/ 32=h  and 1/ 512=τ . 

Table 2 shows the maximum error of the numerical solution when the asynchronous 
step length is taken. It performs that when the space step is reduced to 1/2 and the time 
step is reduced to 1/4, the maximum error is approximately reduced by about 3/4. 

Figure 2 shows the three-dimensional image of the approximate solution of the dif-

ference equation when 1/ 64h =  and 1 / 2048τ = . 
Figure 3 shows the numerical solutions obtained by PDETOOL of MATLAB. 
Compare the longitudinal section and the cross section of Figures 2 and 3. If the sim-

ilarity is high, it means that the numerical solution obtained by the algorithm is basically 
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consistent with the numerical solution given by PDETOOL of MATLAB. It shows that the 
algorithm is more accurate. 

Figure 4 shows the longitudinal section contrast between Figures 2 and 3. 
Figure 5 shows the cross-sectional contrast between Figures 2 and 3. 
It shows from Figures 2–5 that the numerical solution obtained by the ADI with the 

backward Euler method for the first kind of boundary value is in good agreement with 
the numerical solution given by the PDETOOL of MATLAB in the same environment. 

From the comparison of the Tables 1 and 2 and Figures 2–5 of this example, it shows 
that the ADI with the backward Euler method enjoys a better convergence. 

Table 1. Numerical solution, exact solution, and absolute error at some nodes 
( )= 1 / 32 , = 1 / 512h τ . 

( , , )x r t  Numerical Solution Exact  
Solution 

Absolute  
Error 

(0.25,0.25,0.25) 2.1172881 2.1170000 2.881 × 10−4 
(0.25,0.75,0.25) 3.4905527 3.4903430 2.097 × 10−4 
(0.75,0.75,0.25) 5.7548814 5.7546027 2.787 × 10−4 
(0.25,0.25,0.50) 2.7186570 2.7182818 3.752 × 10−4 
(0.25,0.75,0.50) 4.4819608 4.4816891 2.717 × 10−4 
(0.75,0.75,0.50) 7.3894165 7.3890561 3.604 × 10−4 
(0.25,0.25,0.75) 3.4908248 3.4903430 4.818 × 10−4 
(0.25,0.75,0.75) 5.7549516 5.7546027 3.489 × 10−4 
(0.75,0.75,0.75) 9.4881986 9.4877358 4.628 × 10−4 
(0.25,0.25,1.00) 4.4823077 4.4816891 6.186 × 10−4 
(0.25,0.75,1.00) 7.3895041 7.3890561 4.480 × 10−4 
(0.75,0.75,1.00) 12.1830881 12.1824940 5.941 × 10−4 

Table 2. The maximum error 
( ),E h τ∞  corresponding to the asynchronous step length, where * 

means null. 

h  τ  ( ),E h τ∞  ( ) ( )2 ,4 / ,E h E hτ τ∞ ∞  
1/16 1/32 8.7000E-03 * 
1/32 1/128 2.6000E-03 3.35 
1/64 1/512 6.7742E-04 3.84 

1/128 1/2048 1.7223E-04 3.93 
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Figure 2. Numerical solutions of difference equations ( )=1/ 64, = 1/ 2048h τ . 

 
Figure 3. Numerical solutions obtained by PDETOOL of MATLAB. 
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Figure 4. Longitudinal section contrast. 

 
Figure 5. Cross-sectional contrast. 

5.1.2. Example of ADI with Crank–Nicolson Method 
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Using the difference scheme for ADI with Crank–Nicolson method of the first kind 
of boundary value to solve the following definite solution problems, we verify the con-
vergence of the algorithm. 

Example 2. 

2 2

2 2
1= ,1 2,1 2,

t
T T T T x r

r r r x
∂ ∂ ∂ ∂+ ⋅ + ≤ ≤ ≤ ≤
∂ ∂ ∂ ∂  

(104)

( ), ,0 ln ,xT x r e r= +
 (105)

( ) ( )
( ) ( )

1 21, , ln , 2, , ln ,

,1, , , 2, ln 2,

t t

x t x t

T r t e r T r t e r

T x t e T x t e

+ +

+ +

= + = +

= = +  
(106)

the exact solution of the above fixed solution problem is ( ), , ln .x tT x r t e r+= +
 

Space interval [ ]1,2
 is uniformly divided into M  blocks. Denote 

1 2 1 / ,h h h M= = = 1 ,= +ix ih 1 ,= +jr jh 0 , .≤ ≤i j M  Time interval [ ]0,1
 is uniformly di-

vided into N  blocks. Denote 1/ , 0 ,1= = + ≤ ≤kN t k k Nτ τ , and call ( ), ,i j kx r t
 as a net-

work node. 

The calculation formula of the maximum error ( ),E h τ∞  of the numerical solution 
is given by: 

( ) ( ) ,0 ,
0

, max , , .k
i j k i ji j M

k N

E h T x r t Tτ∞ ≤ ≤
≤ ≤

= −
 

(107)

Table 3 shows the numerical solution, the exact solution, and the absolute error at 
some nodes when 1/ 32=h  and 1/ 64=τ . 

Table 4 shows the maximum error of the numerical solution when the asynchronous 
step length is taken. It represents that when the space step is reduced to 1/2 and the time 
step is decreased to 1/2, the maximum error is approximately dropped to about 3/4. 

Figure 6 shows the three-dimensional image of the approximate solution of the dif-

ference equation when 1/ 64h =  and 1 / 128τ = . 
Figure 7 shows the numerical solutions obtained by PDETOOL of MATLAB. 
Compare the longitudinal section and the cross section of Figures 6 and 7. If the com-

parison is highly similar, the numerical solution obtained by the algorithm is basically 
consistent with the numerical solution given by PDETOOL of MATLAB, which shows 
that the algorithm is much accurate. 

Figure 8 shows the longitudinal section contrast between Figures 6 and 7. 
Figure 9 shows the cross-sectional contrast between Figures  6 and 7. 
From Figures 6–9, the numerical solution obtained by the ADI with Crank–Nicolson 

method for the first kind of boundary value is in good agreement with the numerical so-
lution given by the PDETOOL of MATLAB in the same environment. 

Corresponding to the comparison in the Tables 3 and 4 and Figures 6–9 that the ADI 
with Crank–Nicolson method has better convergence. 

Table 3. Numerical solution, exact solution, and absolute error at some nodes 
( )= 1 / 32 , = 1 / 64h τ . 

( , , )x r t  Numerical Solution Exact  
Solution 

Absolute  
Error 

(0.25,0.25,0.25) 4.7048536 4.7048326 2.100 × 10−5 
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(0.25,0.75,0.25) 5.0413253 5.0413049 2.040 × 10−5 
(0.75,0.75,0.25) 7.9486993 7.9486719 2.740 × 10−5 
(0.25,0.25,0.50) 5.9777740 5.9777462 2.780 × 10−5 
(0.25,0.75,0.50) 6.3142452 6.3142185 2.670 × 10−5 
(0.75,0.75,0.50) 10.0473873 10.0473516 3.570 × 10−5 
(0.25,0.25,0.75) 7.6122360 7.6121997 3.630 × 10−5 
(0.25,0.75,0.75) 7.9487066 7.9486719 3.470 × 10−5 
(0.75,0.75,0.75) 12.7421559 12.7421097 4.620 × 10−5 
(0.25,0.25,1.00) 9.7109269 9.7108794 4.750 × 10−5 
(0.25,0.75,1.00) 10.0473965 10.0473516 4.490 × 10−5 
(0.75,0.75,1.00) 16.2023073 16.2022477 5.960 × 10−5 

Table 4. The maximum error 
( ),E h τ∞  corresponding to the asynchronous step length, where * 

means null. 

h  τ  ( ),E h τ∞  ( ) ( )2 ,2 / ,E h E hτ τ∞ ∞  
1/8 1/16 1.4000E-03 * 
1/16 1/32 3.4836E-04 4.02 
1/32 1/64 8.7437E-05 3.98 
1/64 1/128 2.1908E-05 3.99 

 

Figure 6. Numerical solutions of difference equations ( )=1/64, =1/128h τ . 



Mathematics 2021, 9, 1368 25 of 34 
 

 

 
Figure 7. Numerical solutions obtained by PDETOOL of MATLAB. 

 
Figure 8. Longitudinal section contrast. 

 
Figure 9. Cross-sectional contrast. 

5.2. Laser Machining Simulation 
We now use the difference scheme of the third kind of boundary value to solve the 

laser machining problem. 
Example 3. Let a laser beam irradiate the surface of the material vertically under the ambient 

temperature of ( )o293K 20 C
. For simplicity, we consider that the input of laser energy acts on the 

material surface in the form of Gaussian heat flux. In this way, the center of the laser can reach the 
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heat peak, and the temperature of the material boundary tends to the initial temperature. Therefore, 
the laser radius is equal to the material radius. 

Table 5 shows the thermal property parameters of 316 stainless steel. 

Table 5. The thermal property parameters of 316 stainless steel. 

Density ρ  
38000kg / m  

Specific heat capacity c  ( )500J / kg K⋅
 

Coefficient of thermal conductivity κ  ( )21.5W/ m K⋅
 

Melting point  1673K  
The parameters are set to the initial temperature 0T  ( )o293K 20 C

 
The initial ambient temperature aT  293K  

The laser radius R  0.001m  
The material thickness X  0.001m  

The material surface radius R  0.001m  
The material’s absorption rate of laser energy β  1 

The laser power P  200W  
1. The input of laser energy acts on the material surface in the form of Gaussian heat 

flux, specifically: 

( )
2

2
8

2

8 .
r
RPq r e

R
β β

π
−

= ⋅
⋅  

(108)

2. In the laser irradiation area Γ , the moving laser beam is loaded through the bound-
ary conditions of the surface heat source: 

( ) ( ) , , 0.
S

T n q r S xκ β∇ ⋅ = ∈Γ =  (109)

3. The boundary outside the laser irradiation area Γ  is in contact with air, and the 
boundary conditions are as following: 

( ) ( ) ( ) { }{ }, , \ 0, .aS S
T n H T T S x r x r Rκ ∇ ⋅ = − = ∂Ω = ≤  (110)

4. The initial temperature of the substrate is the ambient temperature, that is, the initial 
conditions of the substrate are: 

( ), ,0 .aT x r T=  (111)

Cylindrical coordinates should be adopted to this three-dimensional problem. Since 
the temperature distribution along the depth is symmetric after the laser beam irradiates 
the surface of the material, it can be converted into a two-dimensional problem with co-

ordinates ( ),r x
. The heat conduction format in cylindrical coordinates is rewritten as: 

2 2

2 2

1= ,0 ,0 ,0 ,
 ∂ ∂ ∂ ∂⋅ + ⋅ + + ≤ ≤ < ≤ < ∂ ∂ ∂ ∂ 

T T T T f x X r R t
t r r r x

α  (112)

( )
0

, ,at
T x r T

=
=  (113)
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( ) ( ) ( ) ( )

( ) ( )
0

0

, , ,0 ,

,0 , 0,0 .

ax x X

ar R
r

T n q r r T n H T T r R

TT n H T T x X x X
r

κ β κ

κ κ

= =

=
=

∇ ⋅ = ∈Γ ∇ ⋅ = − < ≤

∂∇ ⋅ = − < ≤ = < ≤
∂

 (114)

where c
κα
ρ

=
 is the thermal diffusivity. 

Using ADI with the backward Euler method and ADI with Crank–Nicolson method 
to solve the problem on MATLAB, we can obtain Figures 10 and 11. 

Figure 10 shows the numerical solutions of difference equations by ADI with the 
backward Euler method when = 0.001/100h , = 0.01/1000τ  and = 1.5H . 

Figure 11 shows the numerical solutions of difference equations by ADI with Crank-
Nicolson method when = 0.001/100h , = 0.01/ 500τ  and = 1.5H . 

 
Figure 10. Numerical solutions of difference equations ( )= 0.001 / 100 , = 0.01 / 1000 = 1.5，h τ H . 

 
Figure 11. Numerical solutions of difference equations ( )= 0.001 / 100 , = 0.01 / 500 = 1.5，h τ H . 
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The laser source is a function of r , and the temperature is symmetrically distributed 
along the radius of the material. Therefore, the temperature becomes lower in the x  di-
rection, distributed along the laser source function in the r  direction. 

Table 6 is the maximum error and the maximum relative error between the numerical 
solutions of the ADI with the backward Euler method and the exact solutions of ADI with 
Crank–Nicolson method when the asynchronous step length is taken. 

The maximum relative error is the maximum error divided by the corresponding ex-
act solution. 

From Table 6, when / hτ  gets smaller, the maximum error and the maximum rela-

tive error of the two algorithms gets smaller. The smaller 
2/ hτ , the less the maximum 

error and the maximum relative error of the two algorithms when / hτ  comes the same. 

Table 6. The maximum error, 
( ),E hτ∞ , and the maximum relative error corresponding to the 

asynchronous step length. 

h  τ  ( ),E h τ∞  
Maximum Relative 

Error  
1/50 1/1000 8.6134 0.0188 
1/50 1/2000 4.0032 0.0081 
1/50 1/3000 2.6143 0.0052 
1/50 1/4000 1.9412 0.0038 

1/100 1/1000 27.8724 0.0702 
1/100 1/2000 10.0051 0.0284 
1/100 1/3000 5.8613 0.0157 
1/100 1/4000 4.1185 0.0107 

Use the PDETOOL of MATLAB to simulate Example 3. The results are shown in Fig-
ure 12. 

 
Figure 12. Numerical solutions obtained by PDETOOL of MATLAB. 

The approximate solution in Figures 10 and 11 is compared with the cross and the 
longitudinal sections of the numerical solution in Figure 12, as shown in Figures 13 and 
14. 

Figure 13 shows the longitudinal section contrast among Figures 10, 11 and 12. 
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Figure 14 shows the cross-sectional contrast among Figures 10, 11 and 12. 

 

(a) ADI with Crank–Nicolson method 

 
(b) ADI with the backward Euler method 

 
(c) PDETOOL of MATLAB 

Figure 13. Longitudinal sectional contrast. 
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(a) ADI with Crank–Nicolson method 

 

(b) ADI with the backward Euler method 

 

(c) PDETOOL of MATLAB 

Figure 14. Cross section contrast. 

From Figures 10–14, both numerical solutions obtained by the ADI with the back-
ward Euler method and with Crank–Nicolson method for the third kind of boundary 
value are in good agreement with the numerical solutions given by the PDETOOL of 
MATLAB in the same environment within a certain small error, which shows that these 
methods are feasible and effective in laser processing. 
Example 4. To be compared with Example 3, we take the laser radius as 0.0008m  so that the 
laser radius is smaller than the material radius under the same environmental conditions. 

(1) In the laser irradiation surface, we have: 
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(2) The input of laser energy acts on the material surface in the form of Gaussian heat 
flux, specifically: 
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Other parameters and environmental conditions behavior the same as Example 3. 
Using the ADI with Crank–Nicolson method to solve the problem on MATLAB, we 

can obtain Figure 15. 
Figure 15 shows the numerical solutions of difference equations by ADI with Crank-

Nicolson method when = 0.001/100h , = 0.01/ 500τ  and = 1.5H . 

 
Figure 15. Numerical solutions of difference equations ( )= 0.001 / 100 , = 0.01 / 500 = 1.5，h τ H . 

Use the PDETOOL of MATLAB to simulate Example 4. The results are shown in Fig-
ure 16. 
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Figure 16. Numerical solutions obtained by PDETOOL of MATLAB. 

From the results of Figures 15 and 16, it shows the correctness of the algorithm.  

We consider combining the ( )q̂ rβ  of Example 4 and the rest of the environmental 
conditions of Example 3 to form a new problem. This new problem and Example 4 vary 
from the laser irradiation area. Using ADI with Crank–Nicolson method to solve this new 
problem on MATLAB, we can attain Figure 17. 

Figure 17 shows the numerical solutions of difference equations by ADI with Crank-
Nicolson method when = 0.001/100h , = 0.01/ 500τ  and = 1.5H . 

 
Figure 17. Numerical solutions of difference equations ( )= 0.001 / 100 , = 0.01 / 500 = 1.5，h τ H . 

From Figures 15 and 17, the maximum error and the maximum relative error obvi-
ously appear on the boundary. Since the maximum error and the maximum relative error 
respectively is 8.5667 K and 0.0284, and the melting point of the material is relatively high, 
the temperature distinction in the interior point is negligible in Figures 15 and 17. 

6. Conclusion 
In this article, the effective computation of the heat distribution of the material is 

studied when the laser beam is irradiated on the section of the cylinder material, where 
the laser beam is expressed as a Gaussian distribution. The mathematical model—three-
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dimensional heat conduction equation, is converted into a two-dimensional parabolic 
equation. Based on the symmetry of the heat distribution, the three-dimensional equation 
in the rectangular coordinate system can be changed to the simplified two-dimensional 
equation in the cylindrical coordinate system, which raises the work efficiency, but also 
saves the storage space. 

Subsequently, to solve the simplified equation, the unconditionally stable ADI 
scheme is developed with the classic backward Euler method or Crank–Nicolson method 
in the cylindrical coordinate system, and then the simulation results are obtained, where 
the first kind of boundary value condition or the third kind of boundary value condition 

is considered. Further, these two methods have been proved to be unconditionally 
2L  

stable and convergent, and their accuracies are verified by Examples 1 and 2. Examples 3 
and 4 demonstrate that these two methods are feasible, stable, and efficient to solve the 
laser processing problem model. Example 4 also verifies that under certain conditions and 
errors, the entire laser irradiation can be used to replace the partial laser irradiation, 
thereby simplifying the boundary heat dissipation problem. 

Comparison between the results obtained by these two methods and the results ob-
tained by PDETOOL of MATLAB in each example, shows that our results are more con-
vincing, and our treatment has two advantages. Firstly, self-programming can use differ-
ent methods to discretize distinct problems, which improves the flexibility of the algo-
rithm, saves running space and time and raises efficiency. Secondly, in the absence of an 
exact solution, our approach can check whether the algorithm is correct or not by compar-
ing with the numerical solution of PDETOOL. 

The three-dimensional heat conduction problem model of the article is also universal. 
The material irradiated by the laser is not necessarily cylindrical. As long as a circle is set 
at the center of the laser spot, the problem model in this article is still applicable. The only 
difference is the processing of the boundary, that is, the expression and discretization of 
the boundary conditions may need to be processed separately. 
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