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Abstract: In this paper, a solution is provided to solve the heat conduction equation in the three-
dimensional cylinder region, where the laser intensity of the material irradiation surface is expressed
as a Gaussian distribution. Based on the symmetry of heat distribution, firstly, the form of the
heat equation in the common rectangular coordinate system is changed to another form in the
two-dimensional cylindrical coordinate system. Secondly, the ADI with the backward Euler method
and with Crank–Nicolson method are established to discretize the model in the cylindrical coordinate
system, after which the simulation results are obtained, where the first kind of boundary value
condition is used to verify the accuracy of these two algorithms. Then, the above two methods are
used to solve the model with the third kind of boundary value condition. Finally, the comparison is
performed with the results obtained by the MATLAB’s PDETOOL, which shows that the solution is
more feasible and efficient.

Keywords: heat distribution; three-dimensional heat equation; cylindrical coordinate system; ADI
method; laser irradiation; numerical computation

1. Introduction

In the fields of advanced equipment manufacturing for example aerospace and new
energy, hard and brittle materials such as beryllium, fused silica, and diamond are widely
used to manufacture products and devices. Generally, when machining (drilling or cutting)
brittle and hard materials, it is pretty easy to cause damage on the processed material.
Therefore, at present, laser is commonly used to irradiate the surface of the processed mate-
rial, after which the processed materials obtain heat through the interaction between light
and itself, and the processing quality is significantly improved by heating and modification.
In order to find the optimal laser intensity and distribution, it is necessary to calculate
the propagation state of light and heat in three-dimensional object. Common numerical
methods are the finite element method (FEM) and the finite difference method (FDM) [1,2],
but they all require large amounts of computation.

For the purpose, some numerical methods had been proposed [3–14], such as the
alternating direction implicit (ADI) finite-difference time-domain method (FDTD) and
its convolution perfect matching layer (CPML). The implementation of the ADI-FDTD
and its CPML is divided into three steps. Firstly, transform the finite difference time
domain method in the traditional three-dimensional cylindrical coordinate system into a
matrix expression. Secondly, matrix expression of ADI-FDTD method in three-dimensional
cylindrical coordinate system is proposed by matrix transformation. Finally, the influence
parameters of the marching layer are added to the method in the form of auxiliary variables.

The existing methods directly give a three-dimensional cylindrical coordinate model in
the electromagnetic environment, combined with the unconditionally stable ADI algorithm.
However, we propose a three-dimensional heat conduction model of laser processing in the
rectangular coordinate system, which is then discretely transformed, simplified, and solved
in three steps. Firstly, a three-dimensional heat conduction model in a rectangular coordi-
nate system is developed, and it is transformed into a three-dimensional heat conduction
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model in the cylindrical coordinate system. Secondly, since the heat conduction discussed
in this article is irrelevant with the angle in the cylindrical coordinate system, the three-
dimensional problem in cylindrical coordinates is simplified to a two-dimensional problem.
Finally, we use the backward Euler method and Crank–Nicolson method, combined with
the unconditionally stable ADI method for discretization.

In order to solve this problem, we first develop the heat conduction equation and
boundary conditions. According to the characteristics of laser beam, the heat conduction
equation solving problem in three-dimensional rectangular coordinate system is trans-
formed into the heat conduction equation solving problem in two-dimensional cylindrical
coordinate system by using cylindrical coordinate transformation. Finally, an alternate
implicit scheme algorithm is constructed. In conclusion, the heat conduction distribution
can be solved quickly and stably, which provides an effective calculation method for the
optimization of related parameter.

2. Mathematical Model

The problem model discussed in this article is first proposed in a rectangular coor-
dinate system, and then converted to a corresponding cylindrical coordinate system for
discretization and solution. The significance of this chapter is to give the origin of the
cylindrical coordinate equation model in the article and connect it to the original equation
model in the rectangular coordinate system.

Suppose Ω is a cylinder with the origin of the coordinates as the center, then the model
of the problem for three-dimensional heat conduction is as follows:

∂T̂
∂t

= ∇
(
α·∇T̂

)
+ f , (x, y, z) ∈ Ω, t ∈ (0, Te], (1)

T̂(x, y, z, 0) = ϕ(x, y, z), 0 ≤ x ≤ X, y2 + z2 ≤ R2, (2)

where α ≥ 0.
Boundary value conditions of the first kind are:

T̂
∣∣
S1

= k(y, z, t), S1 =
{
(x, y, z)|x = 0, y2 + z2 ≤ R2},

T̂
∣∣
S2

= l(x, t), S2 =
{
(x, y, z)|0 < x < X, y2 + z2 = R2},

T̂
∣∣
S3

= g(y, z, t), S3 =
{
(x, y, z)|x = X, y2 + z2 ≤ R2}.

(3)

Boundary value conditions of the third kind are:

κ
(
∇T̂·n

)∣∣
Γ = βq

(√
y2 + z2

)
, Γ =

{
(y, z)|x = 0,

√
y2 + z2 ≤ d

}
,

T̂
∣∣
S4

= 293 K(20 ◦C), S4 =
{
(y, z)|x = 0, d <

√
y2 + z2 ≤ R

}
,

κ
(
∇T̂·n

)∣∣
S = H

(
T̂ − Ta

)∣∣
S, S =

{
(x, y, z)|∂Ω\

{
x = 0, y2 + z2 ≤ R2}},

(4)

where Γ is the laser irradiation area, d is the laser radius, β is the material’s absorption rate
of laser energy, H is the heat dissipation coefficient, and Ta is the initial environmental
temperature, as shown in Figure 1.

Consider the problem model under the column coordinates and make the following
coordinate transformation: 

x = x,
y = r· cos θ,
z = r· sin θ,

(0 ≤ θ ≤ 2π). (5)
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Figure 1. Sketch of the domain of heat equation.

Then, Equation (1) is transformed into the following form:

∂T
∂t

= α·
(

∂2T
∂r2 +

1
r2 ·

∂2T
∂θ2 +

1
r
·∂T

∂r
+

∂2T
∂x2

)
+ f , (6)

where T̂(x, y, z, t) = T(x, r, t).
When the temperature distribution T is independent of the θ, Equation (6) is trans-

formed into the simpler form:

∂T
∂t

= α·
(

∂2T
∂r2 +

1
r
·∂T

∂r
+

∂2T
∂x2

)
+ f . (7)

Transforming Equation (1) into Equation (7) is equivalent to transforming three-
dimensional problems into two-dimensional problems. Compared with the direct solution
of three-dimensional problems, we have simplified the problem, saved time, and improved
the efficiency.

Consider the transformed two-dimensional problem model as follows:

∂T
∂t

= α·
(

∂2T
∂r2 +

1
r
·∂T

∂r
+

∂2T
∂x2

)
+ f , 0 ≤ x ≤ X, 0 < r ≤ R, 0 < t ≤ Te, (8)

T(x, r, 0) = ϕ(x, r), 0 ≤ x ≤ X, 0 < r ≤ R. (9)

Boundary value conditions of the first kind are as follows:

T(0, r, t) = φ1(r, t), T(X, r, t) = φ2(r, t),
T(x, 0, t) = θ1(x, t), T(x, R, t) = θ2(x, t).

(10)

Boundary value conditions of the third kind are as follows:

κ(∇T·n)|x=0 = βq(r), r ∈ Γ,
κ(∇T·n)|x=X = H(T − Ta), 0 < r ≤ R,
κ(∇T·n)|r=R = H(T − Ta), 0 < x ≤ X,
κ ∂T

∂r

∣∣∣
r=0

= 0, 0 < x ≤ X.

(11)

The alternate direction implicit format (abbreviated as ADI format) is an uncondition-
ally stable format which can be solved by the catch-up method. This method is also called
the P-R method, which was proposed by Peaceman and Rachford in 1955, and will be used
to calculate the matrix form under the column coordinate.
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3. Establishment of Differential Approximation

In the case of X = R, the space step is set to be h = (X− 0)/M, and the time step
is set to be τ = (Te − 0)/N. Where M and N are positive integers, we have xi = 0 + i·h,
0 ≤ i ≤ M, rj = 0 + j·h, 0 < j ≤ M, and tk = 0 + k·τ, 1 ≤ k ≤ N. So we get a grid
subdivision of the interval, and

(
xi, rj, tk

)
is a node.

3.1. Difference Scheme for the Backward Euler Method

At node
(

xi, rj, tk+1
)
, Equation (8) is considered as:

∂T
(

xi, rj, tk+1
)

∂t
= α·

(
∂2T

(
xi, rj, tk+1

)
∂r2 +

1
rj
·
∂T
(
xi, rj, tk+1

)
∂r

+
∂2T

(
xi, rj, tk+1

)
∂x2

)
+ f

(
xi, rj, tk+1

)
, (12)

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1.

Using the backward Euler method to discretize Equation (12), we obtain [2]:

T(xi ,rj ,tk+1)−T(xi ,rj ,tk)
τ ≈ α·


T(xi−1,rj ,tk+1)−2T(xi ,rj ,tk+1)+T(xi+1,rj ,tk+1)

h2

+
T(xi ,rj−1,tk+1)−2T(xi ,rj ,tk+1)+T(xi ,rj+1,tk+1)

h2

+ 1
rj
· T(xi ,rj+1,tk+1)−T(xi ,rj−1,tk+1)

2h + R(1)
i,j,k


+ f
(
xi, rj, tk+1

)
(13)

where the total truncation error is as follow:

R(1)
i,j,k =

∂2T(xi ,rj ,tk+1)
∂t2 · τ2 −

1
rj
· ∂

3T(xi ,rj ,tk+1)
∂r3 · h2

6 −
∂4T(xi ,rj ,tk+1)

∂x4 · h2

12

− ∂4T(xi ,rj ,tk+1)
∂r4 · h2

12 + · · ·= O
(
τ + h2). (14)

The difference equation can be obtained by replacing the exact solution T
(
xi, rj, tk+1

)
with an approximate numerical solution Tk+1

i,j and discarding the truncation error R(1)
i,j,k:

Tk+1
i,j −Tk

i,j
τ = α·

(
Tk+1

i−1,j−2Tk+1
i,j +Tk+1

i+1,j
h2 +

Tk+1
i,j−1−2Tk+1

i,j +Tk+1
i,j+1

h2 + 1
rj
·

Tk+1
i,j+1−Tk+1

i,j−1
2h

)
+ f k+1

i,j . (15)

3.2. Difference Scheme for Crank–Nicolson Method

Let f = 0, and at node
(
xi, rj, tk+1/2

)
, homogeneous form of Equation (8) is considered

as the following form:

∂T
(

xi, rj, tk+1/2
)

∂t
= α·

(
∂2T

(
xi, rj, tk+1/2

)
∂r2 +

1
rj
·
∂T
(
xi, rj, tk+1/2

)
∂r

+
∂2T

(
xi, rj, tk+1/2

)
∂x2

)
, (16)

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1.

Using Crank–Nicolson method to discretize Equation (16), we obtain [2]:

T
(

xi, rj, tk+1
)
− T

(
xi, rj, tk

)
τ

≈ α

2
·



T(xi−1,rj ,tk+1)−2T(xi ,rj ,tk+1)+T(xi+1,rj ,tk+1)
h2

+
T(xi−1,rj ,tk)−2T(xi ,rj ,tk)+T(xi+1,rj ,tk)

h2

+
T(xi ,rj−1,tk+1)−2T(xi ,rj ,tk+1)+T(xi ,rj+1,tk+1)

h2

+
T(xi ,rj−1,tk+1)−2T(xi ,rj ,tk+1)+T(xi ,rj+1,tk+1)

h2

+ 1
rj
· T(xi ,rj+1,tk+1)−T(xi ,rj−1,tk+1)

2h

+ 1
rj
· T(xi ,rj+1,tk)−T(xi ,rj−1,tk)

2h


+ R(2)

i,j,k, (17)
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where the total truncation error is:

R(2)
i,j,k = τ2

24 ·
∂3T(xi ,rj ,tk+1/2)

∂t3 − ατ2

8
∂4T(xi ,rj ,tk+1/2)

∂x2∂t2 − αh2

12 ·
∂4T(xi ,rj ,tk+1/2)

∂x4

− ατ2

8 ·
∂4T(xi ,rj ,tk+1/2)

∂r2∂t2 − αh2

12 ·
∂4T(xi ,rj ,tk+1/2)

∂r4 − ατ2

8 ·
1
rj
· ∂

3T(xi ,rj ,tk+1/2)
∂r∂t2

− αh2

6 ·
1
rj
· ∂

3T(xi ,rj ,tk+1/2)
∂r3 + · · · = O

(
τ2 + h2).

(18)

The difference equation is obtained by replacing the exact solution T
(

xi, rj, tk+1
)

with
a numerical solution Tk+1

i,j and discarding the truncation error R(2)
i,j,k:

Tk+1
i,j − Tk

i,j

τ
=

α

2
·

 Tk+1
i−1,j−2Tk+1

i,j +Tk+1
i+1,j

h2 +
Tk

i−1,j−2Tk
i,j+Tk

i+1,j
h2 +

Tk+1
i,j−1−2Tk+1

i,j +Tk+1
i,j+1

h2

+
Tk

i,j−1−2Tk
i,j+Tk

i,j+1
h2 + 1

rj
·
(

Tk+1
i,j+1−Tk+1

i,j−1
2h +

Tk
i,j+1−Tk

i,j−1
2h

)
. (19)

3.3. Difference Scheme for the First Kind of Boundary Value
3.3.1. Difference Scheme for ADI with the Backward Euler Method

The difference scheme can be obtained by synthesizing the initial value condition and
the boundary value condition as follows:

Tk+1
i,j − Tk

i,j

τ
= α·

Tk+1
i−1,j − 2Tk+1

i,j + Tk+1
i+1,j

h2 +
Tk+1

i,j−1 − 2Tk+1
i,j + Tk+1

i,j+1

h2 +
1
rj
·
Tk+1

i,j+1 − Tk+1
i,j−1

2h

+ f k+1
i,j , (20)

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1,

T(x, r, 0) = ϕ(x, r), 0 ≤ x ≤ X, 0 < r ≤ R,
T(0, r, t) = φ1(r, t), T(X, r, t) = φ2(r, t),
T(x, 0, t) = θ1(x, t), T(x, R, t) = θ2(x, t).

(21)

Denote:

δ2
xTk

i,j =
Tk

i−1,j − 2Tk
i,j + Tk

i+1,j

h2 , δ2
r Tk

i,j =
Tk

i,j−1 − 2Tk
i,j + Tk

i,j+1

h2 , δrTk
i,j =

Tk
i,j+1 − Tk

i,j−1

2h
. (22)

The difference equation is written as:

Tk+1
i,j −Tk

i,j
τ = α·

(
δ2

xTk+1
i,j + δ2

r Tk+1
i,j + 1

rj
δrTk+1

i,j

)
+ f k+1

i,j ,

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1.
(23)

There exists a normal number C1 independent of h and τ that causes the total trunca-
tion error:

max
∣∣∣R(1)

i,j,k

∣∣∣ = C1

(
τ + h2

)
. (24)

In Equation (23), adding the minor term α2τ2δ2
x

(
δ2

r +
1
rj

δr

)(
Tk+1

i,j − Tk
i,j

)
leads to:

(
I − ατδ2

x

)(
I − ατ

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =

(
I + α2τ2δ2

x

(
δ2

r +
1
rj

δr

))
Tk

i,j + τ· f k+1
i,j . (25)

To facilitate the calculation, the transition layer variable Tk+1/2
i,j is introduced, and the

above equation becomes:(
I − ατδ2

x
)
Tk+1/2

i,j =
(

I + α2τ2δ2
x

(
δ2

r +
1
rj

δr

))
Tk

i,j + τ· f k+1
i,j ,(

I − ατ
(

δ2
r +

1
rj

δr

))
Tk+1

i,j = Tk+1/2
i,j .

(26)
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Denote r̂ = α·τ
h2 and r̂2 = α·τ

2h , then the vector form of the above two equations is:

−r̂Tk+1/2
i−1,j + (1 + 2r̂)Tk+1/2

i,j − r̂Tk+1/2
i+1,j =

(
r̂2 − r̂·r̂2

rj

)
Tk

i−1,j−1 − 2r̂2Tk
i−1,j +

(
r̂2 + r̂·r̂2

rj

)
Tk

i−1,j+1

+
(
−2r̂2 + 2r̂·r̂2

rj

)
Tk

i,j−1 +
(
1 + 4r̂2)Tk

i,j +
(
−2r̂2 − 2r̂·r̂2

rj

)
Tk

i,j+1

+
(

r̂2 − r̂·r̂2
rj

)
Tk

i+1,j−1 − 2r̂2Tk
i+1,j +

(
r̂2 + r̂·r̂2

rj

)
Tk

i+1,j+1 + τ· f k+1
i,j ,

(27)

(
−r̂ +

r̂2

rj

)
Tk+1

i,j−1 + (1 + 2r̂)Tk+1
i,j +

(
−r̂− r̂2

rj

)
Tk+1

i,j+1 = Tk+1/2
i,j , (28)

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1.

Denote Ti = [Ti,1, Ti,2, · · · , Ti,M−2, Ti,M−1]
T , f i = [ fi,1, fi,2, · · · , fi,M−2, fi,M−1]

T ,
0 ≤ i ≤ M, then we have:


C D
D C D

. . . . . . . . .
D C D

D C




T1
T2
...

TM−2
TM−1



k+ 1
2

=


B A
A B A

. . . . . . . . .
A B A

A B




T1
T2
...

TM−2
TM−1



k

+


F1 + ATk

0 − DT0
k+1/2

F2
...

FM−2

FM−1 + ATk
M − DTM

k+1/2

, (29)


Q

Q
. . .

Q
Q




T1
T2
...

TM−2
TM−1



k+1

=


T1
T2
...

TM−2
TM−1



k+1/2

−


g1
g2
...

gM−2
gM−1

. (30)

Denote b1(j) = r̂ + r̂2
rj
=
(

1 + 1
2j

)
·r̂, b2(j) = r̂− r̂2

rj
=
(

1− 1
2j

)
·r̂, then we have:

D =


−r̂

−r̂
. . .
−r̂

−r̂


(M−1)×(M−1)

, C =


1 + 2r̂

1 + 2r̂
. . .

1 + 2r̂
1 + 2r̂


(M−1)×(M−1)

, (31)

A =


−2r̂2 r̂b1(1)

r̂b2(2) −2r̂2 r̂b1(2)
. . . . . . . . .

r̂b2(M− 2) −2r̂2 r̂b1(M− 2)
r̂b2(M− 1) −2r̂2


(M−1)×(M−1)

, (32)

B =


1 + 4r̂2 −2r̂b1(1)
−2r̂b2(2) 1 + 4r̂2 −2r̂b1(2)

. . . . . . . . .
−2r̂b2(M− 2) 1 + 4r̂2 −2r̂b1(M− 2)

−2r̂b2(M− 1) 1 + 4r̂2


(M−1)×(M−1)

, (33)
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Q =


1 + 2r̂ −b1(1)
−b2(2) 1 + 2r̂ −b1(2)

. . . . . . . . .
−b2(M− 2) 1 + 2r̂ −b1(M− 2)

−b2(M− 1) 1 + 2r̂


(M−1)×(M−1)

, (34)

Fi =


r̂b2(1)Tk

i−1,0 − 2r̂b2(1)Tk
i,0 + r̂b2(1)Tk

i+1,0
0
...
0

r̂b1(M− 1)Tk
i−1,M − 2r̂b1(M− 1)Tk

i,M + r̂b1(M− 1)Tk
i+1,M


(M−1)×1

+ τ· f k+1
i , (35)

gi =
[
−b2(1)Tk+1

i,0 , 0, . . . , 0,−b1(M− 1)Tk+1
i,M

]T
(M−1)×1, (36)

1 ≤ i ≤ M− 1, 1 ≤ k ≤ N − 1.

The transition layer variable Tk+1/2
0 , Tk+1/2

M should satisfy:(
I − τ

(
δ2

y +
1
rj

δy

))
Tk+1

0,j = Tk+1/2
0,j , 1 ≤ j ≤ M− 1,(

I − τ
(

δ2
y +

1
rj

δy

))
Tk+1

M,j = Tk+1/2
M,j , 1 ≤ j ≤ M− 1.

(37)

There exists a normal number C2, independent of h and τ, so that the minor term is:

max

∣∣∣∣∣α2τ2δ2
x

(
δ2

r +
1
rj

δr

)(
Tk+1

i,j − Tk
i,j

)∣∣∣∣∣ ≤ C2τ. (38)

Therefore, Equations (24) and (38), show that a normal number C is independent of h
and τ, so the total error R of difference schemes for ADI with the backward Euler method
of the first kind of boundary value is:

max|R| = C
(

τ + h2
)

. (39)

3.3.2. Difference Scheme for ADI with Crank–Nicolson Method

The difference scheme is obtained by synthesizing the initial value condition and the
boundary value condition:

Tk+1
i,j − Tk

i,j

τ
=

α

2
·

 Tk+1
i−1,j−2Tk+1

i,j +Tk+1
i+1,j

h2 +
Tk

i−1,j−2Tk
i,j+Tk

i+1,j
h2 +

Tk+1
i,j−1−2Tk+1

i,j +Tk+1
i,j+1

h2

+
Tk

i,j−1−2Tk
i,j+Tk

i,j+1
h2 + 1

rj
·
(

Tk+1
i,j+1−Tk+1

i,j−1
2h +

Tk
i,j+1−Tk

i,j−1
2h

)
, (40)

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1,

T(x, r, 0) = ϕ(x, r), 0 ≤ x ≤ X, 0 < r ≤ R,
T(0, r, t) = φ1(r, t), T(X, r, t) = φ2(r, t),
T(x, 0, t) = θ1(x, t), T(x, R, t) = θ2(x, t).

(41)

Denote:

δ2
xTk

i,j =
Tk

i−1,j − 2Tk
i,j + Tk

i+1,j

h2 , δ2
r Tk

i,j =
Tk

i,j−1 − 2Tk
i,j + Tk

i,j+1

h2 , δrTk
i,j =

Tk
i,j+1 − Tk

i,j−1

2h
. (42)

The difference equation is written as:
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There exists a normal number C′1 independent of h and τ that causes the total trunca-
tion error:

Tk+1
i,j −Tk

i,j
τ = α

2 ·
(

δ2
xTk+1

i,j + δ2
xTk

i,j + δ2
r Tk+1

i,j + δ2
r Tk

i,j +
1
rj

(
δrTk+1

i,j + δrTk
i,j

))
,

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1.
(43)

max
∣∣∣R(2)

i,j,k

∣∣∣ = C′1
(

τ2 + h2
)

. (44)

In Equation (43), adding the minor term α2· τ2

4 ·δ2
x

(
δ2

r +
1
rj

δr

)(
Tk+1

i,j − Tk
i,j

)
leads to:

(
I − ατ

2
δ2

x

)(
I − ατ

2

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =
(

I +
ατ

2
δ2

x

)(
I +

ατ

2

(
δ2

r +
1
rj

δr

))
Tk

i,j. (45)

To facilitate the calculation, the transition layer variable Tk+1/2
i,j is introduced, and the

above equation becomes:(
I − ατ

2 δ2
x
)
Tk+1/2

i,j =
(

I + ατ
2

(
δ2

r +
1
rj

δr

))
Tk

i,j,(
I − ατ

2

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =
(

I + ατ
2 δ2

x
)
Tk+1/2

i,j .
(46)

Denote r̂ = α·τ
h2 , then the vector forms of the above two equations are as follows:

− r̂
2 Tk+1/2

i−1,j + (1 + r̂)Tk+1/2
i,j − r̂

2 Tk+1/2
i+1,j =

(
r̂
2 −

r̂
4·j

)
Tk

i,j−1 + (1− r̂)Tk
i,j +

(
r̂
2 + r̂

4·j

)
Tk

i,j+1,(
− r̂

2 + r̂
4·j

)
Tk+1

i,j−1 + (1 + r̂)Tk+1
i,j +

(
− r̂

2 −
r̂

4·j

)
Tk+1

i,j+1 = r̂
2 Tk+1/2

i−1,j + (1− r̂)Tk+1/2
i,j + r̂

2 Tk+1/2
i+1,j ,

(47)

1 ≤ i ≤ M− 1, 1 ≤ k ≤ N − 1.

Denote Ti = [Ti,1, Ti,2, · · · , Ti,M−2, Ti,M−1]
T , 0 ≤ i ≤ M, then we derive following forms:


E S
S E S

. . . . . . . . .
S E S

S E




T1
T2
...

TM−2
TM−1



k+ 1
2

=


V

V
. . .

V
V




T1
T2
...

TM−2
TM−1



k

+


−ST0

k+1/2
+ ω1

ω2
...

ωM−2

−STM
k+1/2

+ ωM−1

, (48)


G

G
. . .

G
G




T1
T2
...

TM−2
TM−1



k+1

=


W L
L W L

. . . . . . . . .
L W L

L W




T1
T2
...

TM−2
TM−1



k+ 1
2

+


LT0

k+1/2 − e1
−e2

...
−eM−2

LTM
k+1/2 − eM−1

. (49)

Denote b1(j) = r̂ + r̂2
rj
=
(

1 + 1
2j

)
·r̂, b2(j) = r̂− r̂2

rj
=
(

1− 1
2j

)
·r̂, then we get:

S =


− r̂

2
− r̂

2
. . .
− r̂

2
− r̂

2


(M−1)×(M−1)

, L =


r̂
2

r̂
2

. . .
r̂
2

r̂
2


(M−1)×(M−1)

, (50)
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E =


1 + r̂

1 + r̂
. . .

1 + r̂
1 + r̂


(M−1)×(M−1)

, W =


1− r̂

1− r̂
. . .

1− r̂
1− r̂


(M−1)×(M−1)

, (51)

V =



1− r̂ b1(1)
2

b2(2)
2 1− r̂ b1(2)

2
. . . . . . . . .

b2(M−2)
2 1− r̂ b1(M−2)

2
b2(M−1)

2 1− r̂


(M−1)×(M−1)

, (52)

G =



1 + r̂ − b1(1)
2

− b2(2)
2 1 + r̂ − b1(2)

2
. . . . . . . . .

− b2(M−2)
2 1 + r̂ − b1(M−2)

2
− b2(M−1)

2 1 + r̂


(M−1)×(M−1)

, (53)

ωi =

[
b2(1)

2
Tk

i,0, 0, · · · , 0,
b1(M− 1)

2
Tk

i,M

]T

(M−1)×1,ei =

[
− b2(1)

2
Tk+1

i,0 , 0, · · · , 0,− b1(M− 1)
2

Tk+1
i,M

]T

(M−1)×1, (54)

1 ≤ i ≤ M− 1, 1 ≤ k ≤ N − 1.

The transition layer variable Tk+1/2
0 , Tk+1/2

M should satisfy:

Tk+1/2
0 = 1

2 ·
(

I − ατ
2

(
δ2

r +
1
rj

δr

))
Tk+1

0 + 1
2 ·
(

I + ατ
2

(
δ2

r +
1
rj

δr

))
Tk

0, 1 ≤ j ≤ M− 1,

Tk+1/2
M = 1

2 ·
(

I − ατ
2

(
δ2

r +
1
rj

δr

))
Tk+1

M + 1
2 ·
(

I + ατ
2

(
δ2

r +
1
rj

δr

))
Tk

M, 1 ≤ j ≤ M− 1.
(55)

There exists a normal number C′2, independent of h and τ, so the minor term is:

max

∣∣∣∣∣α2·τ
2

4
·δ2

x

(
δ2

r +
1
rj

δr

)(
Tk+1

i,j − Tk
i,j

)∣∣∣∣∣ ≤ C′2τ2. (56)

Therefore, Equations (44) and (56), demonstrate that the normal number C′ is indepen-
dent of h and τ, so the total error R(1) of difference schemes for ADI with Crank–Nicolson
method of the first kind of boundary value is:

max
∣∣∣R(1)

∣∣∣ = C′
(

τ2 + h2
)

. (57)

3.4. Difference Scheme for the Third Kind of Boundary Value
3.4.1. Difference Scheme for ADI with the Backward Euler Method

Based on the initial value condition, the boundary value condition and Equation (25),
the difference scheme is obtained:(

I − ατδ2
x

)(
I − ατ

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =

(
I + α2τ2δ2

x

(
δ2

r +
1
rj

δr

))
Tk

i,j + τ· f k+1
i,j , (58)

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1,
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T(x, r, 0) = ϕ(x, r), 0 ≤ x ≤ X, 0 < r ≤ R, (59)

κ(∇T·n)|x=0 = βq(r), r ∈ Γ,

κ(∇T·n)|x=X = H(T − Ta), 0 < r ≤ R,

κ(∇T·n)|r=R = H(T − Ta), 0 < x ≤ X,

κ ∂T
∂r

∣∣∣
r=0

= 0, 0 < x ≤ X.

(60)

It is the same as the difference scheme under the boundary values of the first kind, and
finally discretized into the corresponding ADI scheme. Therefore, the rest are consistent,
except that boundary value of the third type enjoys a separate center discretization, and that
the approaches to process discrete ADI scheme for i = 1 and i = M− 1 in the inner point
vary widely. Therefore, only the discretization of the third type of boundary value and the
processing mode of the discrete ADI format when i = 1 and i = M− 1 are discussed.

According to Equation (39), the total error R of the internal point is:

max|R| = C
(

τ + h2
)

. (61)

For −κ ∂T
∂x

∣∣∣
x=0

= βq(r), r ∈ Γ, it is discretized as the center at x = 0,

κ
T̂k

1,j − Tk
1,j

2h
= βq

(
rj
)
, 0 ≤ j ≤ M, (62)

where T̂k
1,j is the virtual symmetric point of Tk

1,j about x = 0, and is estimated to be [3]:

Tk
0,j ≈

T̂k
1,j + Tk

1,j

2
, 0 ≤ j ≤ M. (63)

According to Equations (62) and (63), we obtain:

Tk
0,j = Tk

1,j +
βhq

(
rj
)

κ
, 0 ≤ j ≤ M.

For κ ∂T
∂x

∣∣∣
x=X

= H(T − Ta), 0 < r ≤ R, it is discretized as the center at x = X,

κ
T̂k

M−1,j − Tk
M−1,j

2h
= H (T − Ta)|x=X , 0 ≤ j ≤ M, (64)

where T̂k
M−1,j is the virtual symmetric point of T̂k

M−1,j about x = X, and is estimated to
be [3]:

Tk
M,j ≈

T̂k
M−1,j + Tk

M−1,j

2
, 0 ≤ j ≤ M, (65)

T|x=X ≈
T̂k

M−1,j + Tk
M−1,j

2
, 0 ≤ j ≤ M. (66)

According to Equations (64)–(66), we have:

Tk
M,j =

κ

κ − hH
Tk

M−1,j −
hH

κ − hH
Ta, 0 ≤ j ≤ M.

For −κ ∂T
∂r

∣∣∣
r=R

= H(T − Ta), 0 < x ≤ X, it is discretized as the center at r = R,

κ
Tk

i,M−1 − T̂k
i,M−1

2h
= H (T − Ta)|r=R, 0 ≤ i ≤ M, (67)
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where T̂k
i,M−1 is the virtual symmetric point of Tk

i,M−1 about r = R, and is estimated to
be [3]:

Tk
i,M ≈

Tk
i,M−1 + T̂k

i,M−1

2
, 0 ≤ i ≤ M, (68)

T|r=R ≈
Tk

i,M−1 + T̂k
i,M−1

2
, 0 ≤ i ≤ M. (69)

According to Equations (67)–(69), we have:

Tk
i,M =

κ

κ + hH
Tk

i,M−1 +
hH

κ + hH
Ta, 0 ≤ i ≤ M.

For κ ∂T
∂r

∣∣∣
r=0

= 0, 0 < x ≤ X, it is discretized as the center at r = 0,

κ
Tk

i,1 − T̂k
i,1

2h
= 0, 0 ≤ i ≤ M, (70)

where T̂k
i,1 is the virtual symmetric point of Tk

i,1 about r = 0, and is estimated to be [3]:

Tk
i,0 ≈

Tk
i,1 + T̂k

i,1

2
, 0 ≤ i ≤ M. (71)

According to Equations (70) and (71), we have:

Tk
i,0 = Tk

i,1, 0 ≤ i ≤ M.

If i = 1, the vector form of ADI with the backward Euler format is:

−r̂Tk+1/2
0,j + (1 + 2r̂)Tk+1/2

1,j − r̂Tk+1/2
2,j =

(
r̂2 − r̂·r̂2

rj

)
Tk

0,j−1 − 2r̂2Tk
0,j +

(
r̂2 + r̂·r̂2

rj

)
Tk

0,j+1

+
(
−2r̂2 + 2r̂·r̂2

rj

)
Tk

1,j−1 +
(
1 + 4r̂2)Tk

1,j +
(
−2r̂2 − 2r̂·r̂2

rj

)
Tk

1,j+1

+
(

r̂2 − r̂·r̂2
rj

)
Tk

2,j−1 − 2r̂2Tk
2,j +

(
r̂2 + r̂·r̂2

rj

)
Tk

2,j+1 + τ· f k+1
1,j ,

(72)

(
−r̂ +

r̂2

rj

)
Tk+1

1,j−1 + (1 + 2r̂)Tk+1
1,j +

(
−r̂− r̂2

rj

)
Tk+1

1,j+1 = Tk+1/2
1,j .

The third kind of boundary discrete Tk
0,j, Tk

M,j, Tk
i,M, Tk

i,0, 0 ≤ i, j ≤ M are substituted
into the above two equations to obtain the final discrete format for i = 1. The processing
method for i = M− 1 performs the same as the one when i = 1. Therefore, the final matrix
form of the difference scheme for the third kind of boundary value is:

C D
D C D

. . . . . . . . .
D C D

D C




T1
T2
...

TM−2
TM−1



k+ 1
2

+


D

0
. . .

0
κ

κ−hH ·D




T1
T2
...

TM−2
TM−1



k+ 1
2

=


B A
A B A

. . . . . . . . .
A B A

A B




T1
T2
...

TM−2
TM−1



k

+



F1 + A
(

Tk
1 + W

)
− DW

F2
...

FM−2

FM−1 + A
(

κ
κ−hH ·T

k
M−1 − hH

κ−hH Ta·I
)
− D·

(
− hH

κ−hH Ta·I
)


,

(73)
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Q

Q
. . .

Q
Q




T1
T2
...

TM−2
TM−1



k+1

+


QQ

QQ
. . .

QQ
QQ




T1
T2
...

TM−2
TM−1



k+1

=


T1
T2
...

TM−2
TM−1



k+1/2

−


gg
gg
...

gg
gg

, (74)

where,

W =

[
βhq(r1)

κ
,

βhq(r2)

κ
, · · · ,

βhq(rM−1)

κ

]T
, (75)

gg =

[
0, 0, · · · , 0,−b1(M− 1)· hH

κ + hH
Ta

]T

(M−1)×1, I = [1, 1, · · · , 1, 1]T(m−1)×1, (76)

QQ =


−b2(1)

0
. . .

0
−b1(M− 1)· κ

κ+hH


(m−1)×(m−1)

. (77)

The other matrices, A, B, C, D, T, F, and Q are the same as the case of the first kind of
boundary value.

The discretization of the third kind of boundary value is all the central difference
quotient discretization, so there exists a normal number C3 independent of h and τ, so that
the total error Rbz of boundary value discretization be:

max|Rbz| = C3h2. (78)

Therefore, Equations (61) and (78) represent that the normal number C4 is independent
of h and τ, so the total error R1 of difference schemes for ADI with the backward Euler
method of the third kind of boundary value is:

max|R1| = C4

(
τ + h2

)
. (79)

3.4.2. Difference Scheme for ADI with Crank–Nicolson Method

Based on the initial value condition, the boundary value condition and Equation (45),
the difference scheme is obtained:(

I − ατ
2 δ2

x
)(

I − ατ
2

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =
(

I + ατ
2 δ2

x
)(

I + ατ
2

(
δ2

r +
1
rj

δr

))
Tk

i,j.

1 ≤ i, j ≤ M− 1, 1 ≤ k ≤ N − 1,
(80)

T(x, r, 0) = ϕ(x, r), 0 ≤ x ≤ X, 0 < r ≤ R, (81)

κ(∇T·n)|x=0 = βq(r), r ∈ Γ,

κ(∇T·n)|x=X = H(T − Ta), 0 < r ≤ R,

κ(∇T·n)|r=R = H(T − Ta), 0 < x ≤ X,

κ ∂T
∂r

∣∣∣
r=0

= 0, 0 < x ≤ X.

(82)

The discrete processing of interior points and boundary values is the same as that of
ADI with the backward Euler method for the third kind of boundary value. Therefore, the
final matrix form of the difference scheme for the third kind of boundary value is:
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E S
S E S

. . . . . . . . .
S E S

S E




T1
T2
...

TM−2
TM−1



k+ 1
2

+


S

0
. . .

0
κ

κ−hH ·S




T1
T2
...

TM−2
TM−1



k+ 1
2

=


V

V
. . .

V
V




T1
T2
...

TM−2
TM−1



k

+



−SW + ω1
ω2
...

ωM−2

−S
(
− hH

κ−hH Ta·I
)
+ ωM−1

,

(83)


G

G
. . .

G
G




T1
T2
...

TM−2
TM−1



k+1

+


GG

GG
. . .

GG
GG




T1
T2
...

TM−2
TM−1



k+1

=


W L
L W L

. . . . . . . . .
L W L

L W




T1
T2
...

TM−2
TM−1



k+ 1
2

+


L

0
. . .

0
κ

κ−hH ·L




T1
T2
...

TM−2
TM−1



k+ 1
2

+



LW − θ

−θ
...
−θ

L
(
− hH

κ−hH Ta·I
)
− θ

,

(84)

where,

GG =



−b2(1)
2

0
. . .

0
κ

κ+hH ·
−b1(M−1)

2


(M−1)×(M−1)

, (85)

W =

[
βhq(r1)

κ
,

βhq(r2)

κ
, · · · ,

βhq(rM−1)

κ

]T
, θ =

[
0, 0, · · · , 0,

−b1(M− 1)
2

· hH
κ + hH

Ta

]T

(M−1)×1. (86)

The other matrices, S, E, V, G, W, L, T, and ω are the same as the case of the first kind
of boundary value.

Therefore, Equations (57) and (78) show that the normal number C′4 is independent of

h and τ, so the total error R(1)
1 of difference schemes for ADI with Crank–Nicolson method

of the third kind of boundary value is:

max
∣∣∣R(1)

1

∣∣∣ = C′4
(

τ2 + h2
)

. (87)

4. Stability and Convergence of Difference Scheme Solutions
4.1. Stability of Difference Scheme Solutions

The following will prove that ADI format with the backward Euler method and ADI
format with Crank–Nicolson method are unconditionally L2 stable whether for the first
kind of boundary value or the third kind of boundary value.
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Definition 1. A function v(x) is defined on (−∞,+∞). If
∫ +∞
−∞ |v(x)|2dx < ∞, then there exists:

v(x) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
v(ε)e−iλ(ε−x)dεdλ, (88)

where i =
√
−1 is an imaginary unit and the above transformation is called the Fourier transform.

Definition 2. The L2 module refers to the Euclidean module, and the L2 stable refers to the stability
under the second norm [2].

Theorem 1. The difference Equation (25) under the first kind of the boundary value and the
boundary value of the third kind is unconditionally L2 stable.

Proof. From the total error R of the differential format for the first kind of boundary value
and the total error R1 of the differential format for the third kind of boundary value, the
total error is O

(
τ + h2). �

Let λ = α·τ
h2 be the grid ratio and use the Fourier method to analyze the stability of

Equation (25):

(
I − ατδ2

x

)(
I − ατ

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =

(
I + α2τ2δ2

x

(
δ2

r +
1
rj

δr

))
Tk

i,j + τ· f k+1
i,j . (89)

Since the stability of homogeneous equations and non-homogeneous equations are
consistent, the stability of homogeneous equations can be discussed. The difference
equation of ADI with the backward Euler method corresponding to the homogeneous
equation is:

(
I − ατδ2

x

)(
I − ατ

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =

(
I + α2τ2δ2

x

(
δ2

r +
1
rj

δr

))
Tk

i,j. (90)

Substituting Tk
j,l = vkeik1 jheik2lh and eiθ = cos θ + i sin θ into the Equation (90), we get

vk+1 = Ĝ(τ, k)vk, where the growth factor Ĝ(τ, k) is represented as:

Ĝ(τ, k) =

(
1 + 4ατ

h2 sin2 k1h
2 ·

4ατ
h2 sin2 k2h

2

)
+ i
(
− 4ατ

h2 sin2 k1h
2 ·

ατ
h·rj

sin(k2h)
)

(
1 + 4ατ

h2 sin2 k1h
2

)(
1 + 4ατ

h2 sin2 k2h
2

)
+ i
(
−
(

1 + 4ατ
h2 sin2 k1h

2

)
· ατ

h·rj
sin(k2h)

) , (91)

then,

∣∣Ĝ(τ, k)
∣∣ =

√(
1 + 4ατ

h2 sin2 k1h
2 ·

4ατ
h2 sin2 k2h

2

)2
+
(
− 4ατ

h2 sin2 k1h
2 ·

ατ
h·rj

sin(k2h)
)2

√(
1 + 4ατ

h2 sin2 k1h
2

)2
·
(

1 + 4ατ
h2 sin2 k2h

2

)2
+
(
−
(

1 + 4ατ
h2 sin2 k1h

2

)
· ατ

h·rj
sin(k2h)

)2
, (92)

where k = (k1, k2). Obviously,
∣∣Ĝ(τ, k)

∣∣ ≤ 1 means that the difference scheme
Equation (90) is unconditionally L2 stable. Therefore, the difference Equation (25) is
unconditionally L2 stable.

Theorem 2. The difference Equation (45) for the first kind of the boundary value and the third kind
of boundary value is unconditionally L2 stable.

Proof. From the total error R(1) of the differential format for the first kind of the boundary
value and the total error R(1)

1 of the differential format for the third kind of the boundary
value, the total error is O

(
τ2 + h2). �
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Let λ = α·τ
h2 be the grid ratio and use the Fourier method to analyze the stability of

Equation (45):

(
I − ατ

2
δ2

x

)(
I − ατ

2

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =
(

I +
ατ

2
δ2

x

)(
I +

ατ

2

(
δ2

r +
1
rj

δr

))
Tk

i,j. (93)

Substituting Tk
j,l = vkeik1 jheik2lh and eiθ = cos θ + i sin θ into Equation (45), we get

vk+1 = Ĝ(τ, k)vk, where the growth factor Ĝ(τ, k) of Equation (45) is as the following form:

Ĝ(τ, k) =

(
1− 2 ατ

h2 sin2 k1h
2

)(
1− 2 ατ

h2 sin2 k2h
2

)
+ i
((

1− 2 ατ
h2 sin2 k1h

2

)
· ατ

2h·rj
sin(k2h)

)
(

1 + 2 ατ
h2 sin2 k1h

2

)(
1 + 2 ατ

h2 sin2 k2h
2

)
+ i
(
−
(

1 + 2 ατ
h2 sin2 k1h

2

)
· ατ

2h·rj
sin(k2h)

) , (94)

then,

∣∣Ĝ(τ, k)
∣∣ =

√(
1− 2 ατ

h2 sin2 k1h
2

)2
·
(

1− 2 ατ
h2 sin2 k2h

2

)2
+
((

1− 2 ατ
h2 sin2 k1h

2

)
· ατ

2h·rj
sin(k2h)

)2

√(
1 + 2 ατ

h2 sin2 k1h
2

)2
·
(

1 + 2 ατ
h2 sin2 k2h

2

)2
+
(
−
(

1 + 2 ατ
h2 sin2 k1h

2

)
· ατ

2h·rj
sin(k2h)

)2
, (95)

where k = (k1, k2). Obviously,
∣∣Ĝ(τ, k)

∣∣ ≤ 1 means that the difference scheme Equation (45)
is unconditionally L2 stable.

4.2. Convergence of Difference Scheme Solutions

The following will prove that ADI format with the backward Euler method and ADI
format with Crank–Nicolson method are convergent whether for the first kind of boundary
value or the third kind of boundary value.

Definition 3. For a sufficiently smooth function u, if the time step and the space step both
approach 0, the truncation error of the difference equation approaches 0 for each node, it is said
that the difference equation approximates the differential equation, that is, the difference equation is
consistent with differential equations [2].

Theorem 3. If the difference equation satisfies the consistency condition and is stable according to
the initial value, the difference solution converges to the solution of the original equation [2].

Theorem 4. The difference Equation (25) in the case of boundary value of the first kind and
boundary value of the third kind is consistent.

Proof. The consistency of the difference equation can be proved by the Taylor
expansion method. �

For the difference scheme Equation (25):

(
I − ατδ2

x

)(
I − ατ

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =

(
I + α2τ2δ2

x

(
δ2

r +
1
rj

δr

))
Tk

i,j + τ· f k+1
i,j , (96)
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Tk
i,j is expanded at node

(
xi, rj, tk+1

)
for t, Tk+1

i−1,j, Tk+1
i+1,j and Tk

i−1,j, Tk
i+1,j are expanded

at node
(

xi, rj, tk+1
)

and
(

xi, rj, tk
)

for x, respectively,Tk+1
i,j−1, Tk+1

i,j+1 and Tk
i,j−1, Tk

i,j+1 are ex-
panded at node

(
xi, rj, tk+1

)
and

(
xi, rj, tk

)
for r, respectively. We have obtained:[

∂T
∂t − α·

(
∂2T
∂r2 + 1

r ·
∂T
∂r + ∂2T

∂x2

)
− f

]k+1

i,j
=[

− τ
2 ·

∂2T
∂t2 + α·

(
h2

12 ·
∂4T
∂x4 + h2

12 ·
∂4T
∂r4 + 1

r ·
h2

6 ·
∂3T
∂r3

)
+ o
(
τ + h2)]k+1

i,j

−α2τ2
[(

∂2T
∂x2 + h2

12 ·
∂4T
∂x4

)(
∂2T
∂r2 + h2

12 ·
∂4T
∂r4 + 1

r ·
∂T
∂r + 1

r ·
h2

6 ·
∂3T
∂r3

)]k+1

i,j

+α2τ2
[(

∂2T
∂x2 + h2

12 ·
∂4T
∂x4

)(
∂2T
∂r2 + h2

12 ·
∂4T
∂r4 + 1

r ·
∂T
∂r + 1

r ·
h2

6 ·
∂3T
∂r3

)]k

i,j
.

(97)

In the above equation, when h, τ → 0 , all the terms at the right-hand side of the above
equation are close to 0, and the difference equation approaches to the original differential
equation. Therefore, the difference Equation (25) is consistent with the original equation.

Theorem 5. The difference Equation (25) in the case of boundary value of the first kind and the
third kind of boundary value is convergent.

Proof. Order error is O
(
τ + h2), and according to Theorems 3, 4, and 1, the difference

scheme Equation (25) in the case of boundary value of the first kind and the third kind of
boundary value is convergent. �

Theorem 6. The difference scheme Equation (45) in the case of the first kind of boundary value and
the third kind of boundary value is consistent.

Proof. The consistency of the difference equation can be proved by the Taylor
expansion method. �

For the difference Equation (45):

(
I − ατ

2
δ2

x

)(
I − ατ

2

(
δ2

r +
1
rj

δr

))
Tk+1

i,j =
(

I +
ατ

2
δ2

x

)(
I +

ατ

2

(
δ2

r +
1
rj

δr

))
Tk

i,j, (98)

Tk
i,j and Tk+1

i,j is expanded at node
(
xi, rj, tk+1

)
for t, Tk+1

i−1,j, Tk+1
i+1,j and Tk

i−1,j, Tk
i+1,j are ex-

panded at node
(

xi, rj, tk+1
)

and
(
xi, rj, tk

)
for x, respectively, Tk+1

i,j−1, Tk+1
i,j+1 and Tk

i,j−1, Tk
i,j+1

are expanded at node
(
xi, rj, tk+1

)
and

(
xi, rj, tk

)
for r, respectively. We have obtained:[

∂T
∂t − α·

(
∂2T
∂r2 + 1

r ·
∂T
∂r + ∂2T

∂x2

)]k+1/2

i,j
=− τ2

24 ·
∂3T
∂t3 + α·

 τ2

8 ·
∂4T

∂x2∂t2 +
h2

12 ·
∂4T
∂x4 + τ2

8 ·
∂4T

∂r2∂t2 +
h2

12 ·
∂4T
∂r4

+ 1
r ·
(

τ2

8 ·
∂3T

∂r∂t2 +
h2

6 ·
∂3T
∂r3

) + o
(
τ2 + h2)k+1/2

i,j

− α2τ2

4 ·
[(

∂2T
∂x2 + h2

12 ·
∂4T
∂x4

)(
∂2T
∂r2 + h2

12 ·
∂4T
∂r4 + 1

r ·
∂T
∂r + 1

r ·
h2

6 ·
∂3T
∂r3

)]k+1

i,j

+ α2τ2

4 ·
[(

∂2T
∂x2 + h2

12 ·
∂4T
∂x4

)(
∂2T
∂r2 + h2

12 ·
∂4T
∂r4 + 1

r ·
∂T
∂r + 1

r ·
h2

6 ·
∂3T
∂r3

)]k

i,j
.

(99)

In the above equation, when h, τ → 0 , all the terms at the right-hand side of the above
equation are close to 0, and the difference equation approaches to the original differential
equation. Therefore, the difference Equation (45) is consistent with the original equation.

Theorem 7. The difference Equation (45) in the case of the first kind of boundary value and the
third kind of boundary value is convergent.
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Proof. Order error is O
(
τ2 + h2), and according to theorems 3, 6, and 2, the difference

scheme Equation (45) in the case of the first kind of boundary value and the third kind of
boundary value is convergent. �

5. Examples
5.1. Verification of Convergence of Algorithm
5.1.1. Example of ADI with the Backward Euler Method

Using the difference scheme for ADI with the backward Euler method of the first kind
of boundary value to solve the following definite solution problems, we can verify the
convergence of the algorithm.

Example 1.

∂T
∂t

=
∂2T
∂r2 +

1
r
·∂T

∂r
+

∂2T
∂x2 −

(
1+

1
r

)
·e(x+r+t), 0 ≤ x ≤ 1, 0 < r ≤ 1, (100)

T(x, r, 0) = e(x+r), (101)

T(0, r, t) = e(r+t), T(1, r, t) = e(1+r+t),
T(x, 0, t) = e(x+t), T(x, 1, t) = e(x+1+t),

(102)

the exact solution of the above fixed solution problem is T(x, r, t) = e(x+r+t).

Space interval [0, 1] is uniformly divided into M blocks. Denote h = h1 = h2 = 1/M,
xi = 0+ ih, rj = 0+ jh, 0 ≤ i ≤ M, 0 < j ≤ M. Time interval [0, 1] is uniformly divided into
N blocks. Denote τ = 1/N, tk = 0 + kτ, 1 ≤ k ≤ N, and call

(
xi, rj, tk

)
as a network node.

The calculation formula of the maximum error E∞(h, τ) of the numerical solution is
given by:

E∞(h, τ) = max
0 ≤ i, j ≤ M
0 ≤ k ≤ N

∣∣∣T(xi, rj, tk
)
− Tk

i,j

∣∣∣. (103)

The absolute error is the absolute value of the distinction between the exact solution
and numerical solution.

Table 1 shows the numerical solution, the exact solution, and the absolute error at
some nodes when h = 1/32 and τ = 1/512.

Table 1. Numerical solution, exact solution, and absolute error at some nodes (h = 1/32, τ = 1/512).

(x,r,t) Numerical Solution Exact
Solution

Absolute
Error

(0.25,0.25,0.25) 2.1172881 2.1170000 2.881 × 10−4

(0.25,0.75,0.25) 3.4905527 3.4903430 2.097 × 10−4

(0.75,0.75,0.25) 5.7548814 5.7546027 2.787 × 10−4

(0.25,0.25,0.50) 2.7186570 2.7182818 3.752 × 10−4

(0.25,0.75,0.50) 4.4819608 4.4816891 2.717 × 10−4

(0.75,0.75,0.50) 7.3894165 7.3890561 3.604 × 10−4

(0.25,0.25,0.75) 3.4908248 3.4903430 4.818 × 10−4

(0.25,0.75,0.75) 5.7549516 5.7546027 3.489 × 10−4

(0.75,0.75,0.75) 9.4881986 9.4877358 4.628 × 10−4

(0.25,0.25,1.00) 4.4823077 4.4816891 6.186 × 10−4

(0.25,0.75,1.00) 7.3895041 7.3890561 4.480 × 10−4

(0.75,0.75,1.00) 12.1830881 12.1824940 5.941 × 10−4

Table 2 shows the maximum error of the numerical solution when the asynchronous
step length is taken. It performs that when the space step is reduced to 1/2 and the time
step is reduced to 1/4, the maximum error is approximately reduced by about 3/4.
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Table 2. The maximum error E∞(h, τ) corresponding to the asynchronous step length, where *
means null.

h τ E∞(h,τ) E∞(2h,4τ)/E∞(h,τ)

1/16 1/32 8.7000E-03 *
1/32 1/128 2.6000E-03 3.35
1/64 1/512 6.7742E-04 3.84
1/128 1/2048 1.7223E-04 3.93

Figure 2 shows the three-dimensional image of the approximate solution of the differ-
ence equation when h = 1/64 and τ = 1/2048.

Figure 2. Numerical solutions of difference equations (h = 1/64, τ = 1/2048).

Figure 3 shows the numerical solutions obtained by PDETOOL of MATLAB.

Figure 3. Numerical solutions obtained by PDETOOL of MATLAB.

Compare the longitudinal section and the cross section of Figures 2 and 3. If the
similarity is high, it means that the numerical solution obtained by the algorithm is basically
consistent with the numerical solution given by PDETOOL of MATLAB. It shows that the
algorithm is more accurate.
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Figure 4 shows the longitudinal section contrast between Figures 2 and 3.

Figure 4. Longitudinal section contrast.

Figure 5 shows the cross-sectional contrast between Figures 2 and 3.
It shows from Figures 2–5 that the numerical solution obtained by the ADI with the

backward Euler method for the first kind of boundary value is in good agreement with the
numerical solution given by the PDETOOL of MATLAB in the same environment.

From the comparison of the Tables 1 and 2 and Figures 2–5 of this example, it shows
that the ADI with the backward Euler method enjoys a better convergence.
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Figure 5. Cross-sectional contrast.

5.1.2. Example of ADI with Crank–Nicolson Method

Using the difference scheme for ADI with Crank–Nicolson method of the first kind of
boundary value to solve the following definite solution problems, we verify the conver-
gence of the algorithm.

Example 2.
∂T
∂t

=
∂2T
∂r2 +

1
r
·∂T

∂r
+

∂2T
∂x2 , 1 ≤ x ≤ 2, 1 ≤ r ≤ 2, (104)

T(x, r, 0) = ex + ln r, (105)

T(1, r, t) = e1+t + ln r, T(2, r, t) = e2+t + ln r,
T(x, 1, t) = ex+t, T(x, 2, t) = ex+t + ln 2,

(106)

the exact solution of the above fixed solution problem is T(x, r, t) = ex+t + ln r.

Space interval [1, 2] is uniformly divided into M blocks. Denote h = h1 = h2 = 1/M,
xi = 1+ ih, rj = 1+ jh, 0 ≤ i, j ≤ M. Time interval [0, 1] is uniformly divided into N blocks.
Denote τ = 1/N, tk = 0 + kτ, 1 ≤ k ≤ N, and call

(
xi, rj, tk

)
as a network node.

The calculation formula of the maximum error E∞(h, τ) of the numerical solution is
given by:

E∞(h, τ) = max
0 ≤ i, j ≤ M
0 ≤ k ≤ N

∣∣∣T(xi, rj, tk
)
− Tk

i,j

∣∣∣. (107)

Table 3 shows the numerical solution, the exact solution, and the absolute error at
some nodes when h = 1/32 and τ = 1/64.
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Table 3. Numerical solution, exact solution, and absolute error at some nodes (h = 1/32, τ = 1/64).

(x,r,t) Numerical Solution Exact
Solution

Absolute
Error

(0.25,0.25,0.25) 4.7048536 4.7048326 2.100 × 10−5

(0.25,0.75,0.25) 5.0413253 5.0413049 2.040 × 10−5

(0.75,0.75,0.25) 7.9486993 7.9486719 2.740 × 10−5

(0.25,0.25,0.50) 5.9777740 5.9777462 2.780 × 10−5

(0.25,0.75,0.50) 6.3142452 6.3142185 2.670 × 10−5

(0.75,0.75,0.50) 10.0473873 10.0473516 3.570 × 10−5

(0.25,0.25,0.75) 7.6122360 7.6121997 3.630 × 10−5

(0.25,0.75,0.75) 7.9487066 7.9486719 3.470 × 10−5

(0.75,0.75,0.75) 12.7421559 12.7421097 4.620 × 10−5

(0.25,0.25,1.00) 9.7109269 9.7108794 4.750 × 10−5

(0.25,0.75,1.00) 10.0473965 10.0473516 4.490 × 10−5

(0.75,0.75,1.00) 16.2023073 16.2022477 5.960 × 10−5

Table 4 shows the maximum error of the numerical solution when the asynchronous
step length is taken. It represents that when the space step is reduced to 1/2 and the time
step is decreased to 1/2, the maximum error is approximately dropped to about 3/4.

Table 4. The maximum error E∞(h, τ) corresponding to the asynchronous step length, where *
means null.

h τ E∞(h,τ) E∞(2h,2τ)/E∞(h,τ)

1/8 1/16 1.4000E-03 *
1/16 1/32 3.4836E-04 4.02
1/32 1/64 8.7437E-05 3.98
1/64 1/128 2.1908E-05 3.99

Figure 6 shows the three-dimensional image of the approximate solution of the differ-
ence equation when h = 1/64 and τ = 1/128.

Figure 6. Numerical solutions of difference equations (h = 1/64, τ = 1/128).

Figure 7 shows the numerical solutions obtained by PDETOOL of MATLAB.
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Figure 7. Numerical solutions obtained by PDETOOL of MATLAB.

Compare the longitudinal section and the cross section of Figures 6 and 7. If the
comparison is highly similar, the numerical solution obtained by the algorithm is basically
consistent with the numerical solution given by PDETOOL of MATLAB, which shows that
the algorithm is much accurate.

Figure 8 shows the longitudinal section contrast between Figures 6 and 7.

Figure 8. Longitudinal section contrast.

Figure 9 shows the cross-sectional contrast between Figures 6 and 7.

Figure 9. Cross-sectional contrast.
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From Figures 6–9, the numerical solution obtained by the ADI with Crank–Nicolson
method for the first kind of boundary value is in good agreement with the numerical
solution given by the PDETOOL of MATLAB in the same environment.

Corresponding to the comparison in the Tables 3 and 4 and Figures 6–9 that the ADI
with Crank–Nicolson method has better convergence.

5.2. Laser Machining Simulation

We now use the difference scheme of the third kind of boundary value to solve the
laser machining problem.

Example 3. Let a laser beam irradiate the surface of the material vertically under the ambient
temperature of 293 K(20 ◦C). For simplicity, we consider that the input of laser energy acts on the
material surface in the form of Gaussian heat flux. In this way, the center of the laser can reach the
heat peak, and the temperature of the material boundary tends to the initial temperature. Therefore,
the laser radius is equal to the material radius.

Table 5 shows the thermal property parameters of 316 stainless steel.

Table 5. The thermal property parameters of 316 stainless steel.

Density ρ 8000 kg/m3

Specific heat capacity c 500 J/(kg·K)
Coefficient of thermal conductivity κ 21.5 W/(m·K)

Melting point 1673 K
The parameters are set to the initial temperature T0 293 K (20 ◦C)

The initial ambient temperature Ta 293 K
The laser radius R 0.001 m

The material thickness X 0.001 m
The material surface radius R 0.001 m

The material’s absorption rate of laser energy β 1
The laser power P 200 W

1. The input of laser energy acts on the material surface in the form of Gaussian heat
flux, specifically:

βq(r) = β· 8P
π·R2 e−

8r2

R2 . (108)

2. In the laser irradiation area Γ, the moving laser beam is loaded through the boundary
conditions of the surface heat source:

κ(∇T·n)|S = βq(r), S ∈ Γ, x = 0. (109)

3. The boundary outside the laser irradiation area Γ is in contact with air, and the
boundary conditions are as following:

κ(∇T·n)|S = H(T − Ta)|S, S = { (x, r)|∂Ω\{x = 0, r ≤ R}}. (110)

4. The initial temperature of the substrate is the ambient temperature, that is, the initial
conditions of the substrate are:

T(x, r, 0) = Ta. (111)

Cylindrical coordinates should be adopted to this three-dimensional problem. Since
the temperature distribution along the depth is symmetric after the laser beam irradiates
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the surface of the material, it can be converted into a two-dimensional problem with
coordinates (r, x). The heat conduction format in cylindrical coordinates is rewritten as:

∂T
∂t

= α·
(

∂2T
∂r2 +

1
r
·∂T

∂r
+

∂2T
∂x2

)
+ f , 0 ≤ x ≤ X, 0 < r ≤ R, 0 < t, (112)

T(x, r)|t=0 = Ta, (113)

κ(∇T·n)|x=0 = βq(r), r ∈ Γ, κ(∇T·n)|x=X = H(T − Ta), 0 < r ≤ R,
κ(∇T·n)|r=R = H(T − Ta), 0 < x ≤ X, κ ∂T

∂r

∣∣∣
r=0

= 0, 0 < x ≤ X. (114)

where α = κ
ρc is the thermal diffusivity.

Using ADI with the backward Euler method and ADI with Crank–Nicolson method
to solve the problem on MATLAB, we can obtain Figures 10 and 11.

Figure 10. Numerical solutions of difference equations (h = 0.001/100, τ = 0.01/1000, H = 1.5).

Figure 11. Numerical solutions of difference equations (h = 0.001/100, τ = 0.01/500, H = 1.5).

Figure 10 shows the numerical solutions of difference equations by ADI with the
backward Euler method when h = 0.001/100, τ = 0.01/1000 and H = 1.5.
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Figure 11 shows the numerical solutions of difference equations by ADI with Crank-
Nicolson method when h = 0.001/100, τ = 0.01/500 and H = 1.5.

The laser source is a function of r, and the temperature is symmetrically distributed
along the radius of the material. Therefore, the temperature becomes lower in the x
direction, distributed along the laser source function in the r direction.

Table 6 is the maximum error and the maximum relative error between the numerical
solutions of the ADI with the backward Euler method and the exact solutions of ADI with
Crank–Nicolson method when the asynchronous step length is taken.

Table 6. The maximum error, E∞(h, τ), and the maximum relative error corresponding to the
asynchronous step length.

h τ E∞(h,τ) Maximum Relative Error

1/50 1/1000 8.6134 0.0188
1/50 1/2000 4.0032 0.0081
1/50 1/3000 2.6143 0.0052
1/50 1/4000 1.9412 0.0038

1/100 1/1000 27.8724 0.0702
1/100 1/2000 10.0051 0.0284
1/100 1/3000 5.8613 0.0157
1/100 1/4000 4.1185 0.0107

The maximum relative error is the maximum error divided by the corresponding
exact solution.

From Table 6, when τ/h gets smaller, the maximum error and the maximum relative
error of the two algorithms gets smaller. The smaller τ/h2, the less the maximum error and
the maximum relative error of the two algorithms when τ/h comes the same.

Use the PDETOOL of MATLAB to simulate Example 3. The results are shown in
Figure 12.

Figure 12. Numerical solutions obtained by PDETOOL of MATLAB.

The approximate solution in Figures 10 and 11 is compared with the cross and the
longitudinal sections of the numerical solution in Figure 12, as shown in Figures 13 and 14.
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Figure 13. Longitudinal sectional contrast.



Mathematics 2021, 9, 1368 27 of 31

Figure 14. Cross section contrast.

Figure 13 shows the longitudinal section contrast among Figures 10–12.
Figure 14 shows the cross-sectional contrast among Figures 10–12.
From Figures 10–14, both numerical solutions obtained by the ADI with the backward

Euler method and with Crank–Nicolson method for the third kind of boundary value are
in good agreement with the numerical solutions given by the PDETOOL of MATLAB in
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the same environment within a certain small error, which shows that these methods are
feasible and effective in laser processing.

Example 4. To be compared with Example 3, we take the laser radius as 0.0008 m so that the laser
radius is smaller than the material radius under the same environmental conditions.

(1) In the laser irradiation surface, we have:

κ(∇T·n)|S = βq̂(r), S ∈ Γ, x = 0,
T|S = 293K, S = { (x, r)|x = 0, 0.0008 < r ≤ R}. (115)

(2) The input of laser energy acts on the material surface in the form of Gaussian heat
flux, specifically:

βq̂(r) = β· 8P
π·R2 e−

40r2

R2 . (116)

Other parameters and environmental conditions behavior the same as Example 3.
Using the ADI with Crank–Nicolson method to solve the problem on MATLAB, we

can obtain Figure 15.

Figure 15. Numerical solutions of difference equations (h = 0.001/100, τ = 0.01/500, H = 1.5).

Figure 15 shows the numerical solutions of difference equations by ADI with Crank-
Nicolson method when h = 0.001/100, τ = 0.01/500 and H = 1.5.

Use the PDETOOL of MATLAB to simulate Example 4. The results are shown in
Figure 16.

From the results of Figures 15 and 16, it shows the correctness of the algorithm.
We consider combining the βq̂(r) of Example 4 and the rest of the environmental

conditions of Example 3 to form a new problem. This new problem and Example 4 vary
from the laser irradiation area. Using ADI with Crank–Nicolson method to solve this new
problem on MATLAB, we can attain Figure 17.
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Figure 16. Numerical solutions obtained by PDETOOL of MATLAB.

Figure 17. Numerical solutions of difference equations (h = 0.001/100, τ = 0.01/500, H = 1.5).

Figure 17 shows the numerical solutions of difference equations by ADI with Crank-
Nicolson method when h = 0.001/100, τ = 0.01/500 and H = 1.5.

From Figures 15 and 17, the maximum error and the maximum relative error obviously
appear on the boundary. Since the maximum error and the maximum relative error
respectively is 8.5667 K and 0.0284, and the melting point of the material is relatively high,
the temperature distinction in the interior point is negligible in Figures 15 and 17.

6. Conclusions

In this article, the effective computation of the heat distribution of the material is
studied when the laser beam is irradiated on the section of the cylinder material, where
the laser beam is expressed as a Gaussian distribution. The mathematical model—three-
dimensional heat conduction equation, is converted into a two-dimensional parabolic
equation. Based on the symmetry of the heat distribution, the three-dimensional equation
in the rectangular coordinate system can be changed to the simplified two-dimensional
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equation in the cylindrical coordinate system, which raises the work efficiency, but also
saves the storage space.

Subsequently, to solve the simplified equation, the unconditionally stable ADI scheme
is developed with the classic backward Euler method or Crank–Nicolson method in the
cylindrical coordinate system, and then the simulation results are obtained, where the
first kind of boundary value condition or the third kind of boundary value condition is
considered. Further, these two methods have been proved to be unconditionally L2 stable
and convergent, and their accuracies are verified by Examples 1 and 2. Examples 3 and
4 demonstrate that these two methods are feasible, stable, and efficient to solve the laser
processing problem model. Example 4 also verifies that under certain conditions and
errors, the entire laser irradiation can be used to replace the partial laser irradiation, thereby
simplifying the boundary heat dissipation problem.

Comparison between the results obtained by these two methods and the results
obtained by PDETOOL of MATLAB in each example, shows that our results are more
convincing, and our treatment has two advantages. Firstly, self-programming can use
different methods to discretize distinct problems, which improves the flexibility of the
algorithm, saves running space and time and raises efficiency. Secondly, in the absence
of an exact solution, our approach can check whether the algorithm is correct or not by
comparing with the numerical solution of PDETOOL.

The three-dimensional heat conduction problem model of the article is also universal.
The material irradiated by the laser is not necessarily cylindrical. As long as a circle is set
at the center of the laser spot, the problem model in this article is still applicable. The only
difference is the processing of the boundary, that is, the expression and discretization of the
boundary conditions may need to be processed separately.
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