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Abstract: In this paper, we study the extended Hamilton–Jacobi Theory in the context of dynamical
systems with symmetries. Given an action of a Lie group G on a manifold M and a G-invariant
vector field X on M, we construct complete solutions of the Hamilton–Jacobi equation (HJE) related
to X (and a given fibration on M). We do that along each open subset U ⊆ M, such that π(U)

has a manifold structure and π|U : U → π(U), the restriction to U of the canonical projection
π : M→ M/G, is a surjective submersion. If X|U is not vertical with respect to π|U , we show that
such complete solutions solve the reconstruction equations related to X|U and G, i.e., the equations
that enable us to write the integral curves of X|U in terms of those of its projection on π(U). On the
other hand, if X|U is vertical, we show that such complete solutions can be used to construct (around
some points of U) the integral curves of X|U up to quadratures. To do that, we give, for some
elements ξ of the Lie algebra g of G, an explicit expression up to quadratures of the exponential curve
exp(ξ t), different to that appearing in the literature for matrix Lie groups. In the case of compact
and of semisimple Lie groups, we show that such expression of exp(ξ t) is valid for all ξ inside an
open dense subset of g.

Keywords: Hamilton–Jacobi Theory; symmetries; quadratures; integrability, first integrals; recon-
struction; Lie group exponential map

1. Introduction

In the last few years, several generalizations of the classical Hamilton–Jacobi equation
(HJE) have been developed for Hamiltonian systems on different contexts: on symplectic,
cosymplectic, contact, Poisson and almost-Poisson manifolds, and also on Lie algebroids.
The resulting Hamilton–Jacobi theories were applied to nonholonomic systems, dissipative
and time-dependent Hamiltonian systems, reduced systems by symmetries and Hamilto-
nian systems with external forces [1–8]. In all of them, the following ingredients are present:
(1) a fibration Π : M→ N (i.e., a surjective submersion) defined on the phase space M of
each system; (2) the solutions of the generalized HJE, which we shall call Π-HJE, given
by sections σ : N → M of such a fibration Π; (3) the complete solutions Σ : N ×Λ→ M,
given by local diffeomorphisms such that, for each λ ∈ Λ, σλ := Σ(·, λ) is a solution of the
Π-HJE. This clearly generalizes the classical situation [9,10], where the involved fibration
is the cotangent projection πQ : T∗Q→ Q of a manifold Q and the solutions σ :Q→ T∗Q
are exact 1-forms on Q.

In [11], an extension to general (i.e., not necessarily Hamiltonian) dynamical sys-
tems, of the previously mentioned Hamilton–Jacobi theories, was carried out, focusing
on the connection between complete solutions and the integrability by quadratures of the
involved systems.

The main aim of the present paper is to further study such an extended theory in
the context of dynamical systems with symmetry. Concretely, given a general action
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ρ : G×M → M (not necessarily free or proper) of a Lie group G on a manifold M and a
G-invariant vector field X on M (with respect to ρ), we investigate how to use ρ to construct
(local) fibrations Π of M and related solutions of the Π-HJE for X. We first show that,
around almost every point of M (depending on the isotropy subgroups of G), there exists a
neighborhood U, such that the canonical projection π : M→ M/G restricted to U, namely
π|U : U → π(U), defines a fibration (even though ρ is neither free nor proper). Then, we
consider two kinds of vector fields: (a) those for which X|U is not vertical with respect to
π|U , which we call horizontal, and (b) the vertical ones. For the horizontal vector fields,
we show that, related to the action ρ, there exists a submersion Θ transverse to π|U (which
plays the role of a flat principal connection), such that

Σ :=
(

π|U , Θ
)−1

: π(U)×Λ→ U, (1)

with Λ a submanifold of G, is a complete solution of the π|U -HJE for X|U . Such a Σ can be
seen as a solution of a reconstruction problem, in the sense that, if we know the integral
curves γ(t) of the projected vector field Y of X|U on π(U), then the integral curves of X|U
are given by Γ(t) = Σ(γ(t), λ), with λ ∈ Λ. For the vertical vector fields, we show that we
can construct up to quadratures a submersion Θ transverse to π|U , such that

Σ :=
(

Θ, π|U
)−1

: N × π(U)→ U, (2)

with N a submanifold of G, is a complete solution of the Θ-HJE for X|U . Moreover, we
prove that the integral curves of X|U also can be constructed up to quadratures around
some points of M. To do that, we first show that the exponential curves t 7→ exp(ξ t) of
G, for some elements ξ of its Lie algebra g, can be constructed up to quadratures. As it is
well-known, there exist several explicit expressions of exp(ξ, t) for the case of matrix Lie
groups. What we are giving here is an alternative expression for such curves, valid also
for non-matrix Lie groups. In the case in which G is semisimple or compact, we show that
such an expression is valid for all ξ in an open dense subset of g.

The paper is organized as follows. In Section 2, we make a brief review of the extended
Hamilton–Jacobi Theory appearing in [11,12]. We also present a result that ensures, in the
presence of a complete solution and in the context of symplectic manifolds, the integrability
by quadratures of general vector fields. It extends a result proved in [11] for Hamiltonian
vector fields only. In Section 3, given a dynamical system with symmetry, we construct
the complete solutions (1) and (2) for horizontal and vertical vector fields, respectively. In
Section 4, we show the intimate relationship that exists between the complete solutions of
a horizontal (and invariant) vector field and the so-called reconstruction processes. Finally,
in Section 5, using the abovementioned result of Section 2, we show that the exponential
curves t 7→ exp(ξ t) of G, for some points ξ ∈ g, can be constructed up to quadratures.
Then, based on that, we state sufficient conditions under which a vertical (and invariant)
vector field can also be integrable up to quadratures.

We assume that the reader is familiar with the main concepts of differential geometry
(see [13–15]) and with the basic ideas related to Hamiltonian systems, symplectic geometry
and Poisson geometry in the context of geometric mechanics (see for instance [9,16–18]).
We shall work in the smooth (i.e., C∞) category, focusing exclusively on finite-dimensional
smooth manifolds. Regarding the terminology associated to the concept of “integrability
by quadratures,” we shall adopt the following convention. We shall say that “a function"
F : P → Q can be constructed up to quadratures ,” or simply “can be constructed,” if its
domain P and its values F(p) (for all p ∈ P):

• are simply known;
• they can be determined by making a finite number of arithmetic operations (as the

calculation of a determinant) and/or solving a finite set of linear equations (which
actually can be reduced to arithmetic operations);
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• or they can be expressed in terms of the derivatives, primitives (i.e., quadratures)
and/or lateral inverses (by using the implicit or inverse function theorem) of other
known functions.

When the function F above is an integral curve Γ of a vector field and such a curve can
be constructed up to quadratures, we shall say that Γ can be integrated up to quadratures,
or by quadratures.

2. Preliminaries: Complete Solutions, First Integrals and Integrability
2.1. The Extended Hamilton–Jacobi Equation

Consider a manifold M, a vector field X ∈ X(M) and a surjective submersion Π :
M→ N (ipso facto an open map). Related to these data (see [11]), we have the Π-Hamilton–
Jacobi equation (Π-HJE) for X:

σ∗ ◦Π∗ ◦ X ◦ σ = X ◦ σ, (3)

whose unknown is a section σ : N → M of Π (ipso facto a closed map). If σ solves the
equation above, we shall say that σ is a (global) solution of the Π-HJE for X. On the other
hand, given an open subset U ⊆ M, we shall call local solution of the Π-HJE for X along U
to any solution of the Π|U -HJE for X|U . (Here, we are seeing Π|U as a submersion onto
Π(U) and X|U as an element of X(U)). Note that σ is a solution of the Π-HJE for X if, and
only if,

σ∗ ◦ Xσ = X ◦ σ, (4)

where
Xσ := Π∗ ◦ X ◦ σ, (5)

i.e., the vector fields X ∈ X(M) and Xσ ∈ X(N) are σ-related. (Moreover, it can be
shown that σ is a solution of Equation (3) if, and only if, its image is an X-invariant closed
submanifold). This means that, in order to find the trajectories of X along the image of σ,
we can look for the integral curves of Xσ.

Given another manifold Λ such that dim Λ + dim N = dim M, a complete solution
of the Π-HJE for X is a surjective local diffeomorphism Σ : N ×Λ→ M such that, for all
λ ∈ Λ,

σλ := Σ(·, λ) : p ∈ N 7−→ Σ(p, λ) ∈ M (6)

is a solution of the Π-HJE for X. The local version is obtained by replacing M, X, Π and N
by U, X|U , Π|U and Π(U), respectively, being U an open subset of M. Each section σλ is
called a partial solution. We showed in [11] that a (local) complete solution Σ exists around
every point m ∈ M for which X(m) /∈ KerΠ∗,m.

Denoting by pN and pΛ the projections of N ×Λ onto N and Λ, respectively, it is easy
to prove that a surjective local diffeomorphism Σ is a complete solution if, and only if,

Π ◦ Σ = pN and Σ∗ ◦ XΣ = X ◦ Σ, (7)

being XΣ ∈ X(N ×Λ) the unique vector field on N ×Λ satisfying

(pN)∗ ◦ XΣ = Π∗ ◦ X ◦ Σ and (pΛ)∗ ◦ XΣ = 0. (8)

Note that XΣ(p, λ) = (Xσλ(p), 0), with Xσλ := Π∗ ◦ X ◦ σλ ∈ X(N), so, in particular,

ImXΣ ⊆ TN × {0}. (9)

Furthermore, the fields X and XΣ are Σ-related. This implies that all the trajectories
of X can be obtained from those of XΣ. More precisely, since each integral curve of XΣ is
clearly of the form t 7→ (γ(t), λ) ∈ N ×Λ, for some fixed point λ ∈ Λ (see Equation (9)),
those of X are given by

t 7→ Σ(γ(t), λ) = σλ(γ(t)). (10)
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So, for each λ, we only need to find the curves γ, which are the integral curves of the
vector field Xσλ ∈ X(N).

2.2. The “Complete Solutions—First Integrals” Duality

Consider again a manifold M, a vector field X ∈ X(M) and a surjective submersion
Π : M→ N. We shall say that a submersion F : M→ Λ is a first integrals submersion if

ImX ⊆ KerF∗. (11)

Remark 1. Note that, if Λ = Rl , the components f1, ..., fl : M → R of F define a set of l
(functionally) independent first integrals, in the usual sense.

Moreover, we shall say that F is transverse to Π if

TM = KerΠ∗ ⊕KerF∗. (12)

It was shown in [11] that, given a complete solution Σ : N ×Λ → M of the Π-HJE
for X, we can construct around every point of M a neighborhood U and a submersion
F : U → Λ such that

• ImX|U ⊆ KerF∗ (first integrals),

• TU = Ker
(

Π|U
)
∗
⊕KerF∗ (transversality).

In other words, from Σ we have, around every point of M, a first integrals submersion
transverse to Π. The subset U and the function F are given by the formulae

U := Σ(V) and F := pΛ ◦
(

Σ|V
)−1

, (13)

where V ⊆ N ×Λ is an open subset for which Σ|V is a diffeomorphism onto its image.
Conversely (see also [11]), from a submersion F : M → Λ satisfying Equations (11)

and (12), we can construct, around every point of M, a neighborhood U and a local
complete solution Σ of the Π-HJE. The involved subset U is one for which (Π, F)|U is a
diffeomorphism onto its image, and Σ is given by

Σ =
(

Π|U , F|U
)−1

: Π(U)× F(U)→ U. (14)

In summary, a complete solution gives rise to local first integrals via Equation (13),
and first integrals give rise to a local complete solution via Equation (14).

2.3. Integrability by Quadratures on Symplectic Manifolds

Let (M, ω) be a symplectic manifold. Given a distribution V ⊆ TM (resp. m ∈ M and
a linear subspace V ⊆ Tm M), by V⊥, we shall denote, as usual, the symplectic orthogonal
of V w.r.t. ω. The following result is a slight extension to general dynamical systems of a
result given in [11] (only valid for Hamiltonian systems).

Theorem 1. Let F : M→ Λ be a surjective submersion and X ∈ X(M) a vector field, such that:

I. ImX ⊆ KerF∗ (first integrals);
II. KerF∗ ⊆ (KerF∗)

⊥, i.e., F is isotropic;
III. and LX β = 0, with β = iXω (if β = dH for some function H ∈ C∞(M), i.e., X = XH =

ω] ◦ dH, this point is always satisfied);

then the trajectories of X can be integrated up to quadratures.

Proof. We shall proceed in four steps.
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a. Given a point m ∈ M, consider an open neighborhood U of m and a surjective
submersion Π : U → Π(U) transverse to F|U : U → F(U). (As it is well-known, such
Π can be constructed just by fixing a coordinate chart and solving linear equations).
Using the point (I) above and the results of the last section, it is clear (shrinking U

if necessary) that Σ =
(

Π, F|U
)−1

(see Equation (14)), which can be constructed by
using the inverse function theorem, is a local complete solution of the Π-HJE for X.
According to Theorem 3.12 of [11] (replacing there dH by β), this implies that (recall
Equation (8))

iXΣ Σ∗ω = Σ∗β, (15)

omitting the restrictions to U of ω and β.
b. Using Equation (7) and the fact that Σ is a diffeomorphism, the point (III) is equiva-

lent to
LXΣ Σ∗β = 0. (16)

For each n ∈ Π(U), let us define βn ∈ Ω1(F(U)) such that

〈βn(λ), z〉 = 〈Σ∗β(n, λ), (0, z)〉, ∀λ ∈ F(U), z ∈ TλΛ. (17)

Then, along an integral curve (γ(t), λ) of XΣ, it can be shown from Equation (16) that

d
dt

〈
βγ(t)(λ), z

〉
= 0 (18)

and, consequently,〈
βγ(t)(λ), z

〉
=
〈

βγ(0)(λ), z
〉

, ∀λ ∈ F(U), z ∈ TλΛ.

Let us prove it. From (I) and (II), we have that iY β = iYiXω = 0 for all Y, such that
ImY ⊆ KerF∗. This implies that

iŶΣ∗β = 0

for all Ŷ ∈ X(Π(U)× F(U)) of the form (y, 0), i.e., ImŶ ⊆ TΠ(U)× {0} (compare
with Equation (9)). On the other hand, given a vector field z ∈ X(F(U)), for Z = (0, z),
it is easy to see that

[
XΣ, Z

]
is of the form (y, 0). Then, from that and Equation (16),

LXΣ ◦ iZ(Σ∗β) =
(
iZ ◦ LXΣ + i[XΣ ,Z]

)
(Σ∗β) = iZ ◦ LXΣ(Σ∗β) = 0.

Hence, Equation (18) follows by combining Equation (17) and the last equation.
c. Assuming that ω is closed, we can assume (without loss of generality) that

ω = −dθ, with θ ∈ Ω1(U).

Now, we can proceed as in [11] (see Section 3.3.1 in [11]). In fact,

0 = σ∗λω = −σ∗λ(dθ) = −d(σ∗λθ)

and, thus, a real C∞-function Wλ : Π(U)→ R can be constructed up to quadratures
(shrinking U if needed), such that

σ∗λθ = dWλ.

In turn, the family of functions Wλ’s gives rise to a real C∞-function W : Π(U)×
F(U)→ R satisfying

〈(dW − Σ∗θ)(n, λ), (y, 0)〉 = 0, for (n, λ) ∈ Π(U)× F(U) and y ∈ TnΠ(U).
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In particular, since XΣ ∈ KerF∗, it follows that

iXΣ Σ∗θ = iXΣ dW.

Therefore, we deduce that

iXΣ Σ∗ω = −iXΣ d(Σ∗θ) = −LXΣ Σ∗θ + diXΣ(Σ∗θ) = LXΣ(dW − Σ∗θ). (19)

Then, combining Equations (15) and (19),

LXΣ(dW − Σ∗θ) = Σ∗β. (20)

As a consequence, in terms of the functions ϕλ : Π(U)→ T∗λ F(U), given by

〈ϕλ(n), z〉 = 〈(dW − Σ∗θ)(n, λ), (0, z)〉, ∀z ∈ TλF(U), (21)

the Equation (20) along an integral curve (γ(t), λ) of XΣ translates to (using similar
calculations as in the previous step)

d
dt

ϕλ(γ(t)) = βγ(0)(λ),

or equivalently,
ϕλ(γ(t)) = ϕλ(γ(0)) + t βγ(0)(λ). (22)

d. Finally, since each ϕλ is an immersion (see Proposition 3.16, [11]), from the above
equation, we can construct the curves γ (by using the implicit function theorem), from
which all the integral curves of X|U can be obtained. In fact, the latter are given by the
formula Γ(t) = Σ(γ(t), λ), as explained at the end of Section 2.1 (see Equation (10)).
Since all that can be done around every m ∈ M, then all the integral curves of X can
be constructed in the same way.

Given a surjective submersion G : M→ Υ and a 1-form φ ∈ Ω1(Υ), the vector field

X = ω] ◦ G∗φ (23)

satisfies the point (I) above, for another submersion F : M→ Λ, if, and only if,

F∗,m ◦ω] ◦ G∗m(φ(G(m))) = 0, ∀m ∈ M. (24)

If, in addition,
KerF∗ ⊆ KerG∗, (25)

then iX ◦ F∗ = iX ◦ G∗ = 0 and consequently

LX β = LXG∗φ = (iX ◦ G∗dφ + d(iX ◦ G∗φ)) = 0. (26)

So, given a symplectic manifold (M, ω), examples of dynamical systems satisfying
the points (I)–(III) of Theorem 1 are given by submersions F and G satisfying (25), being F
isotropic, 1-forms φ satisfying (24) and vector fields given by (23). These examples can be
seen as a generalization of the non-commutative integrable systems, as we show below,
and they will appear in the last section of the paper.

2.4. Non-Commutative Integrability and Casimir 1-Forms

A Mishchenko-Fomenko or non-commutative integrable (NCI) system [19] (see
also [20] and references therein) can be defined as a triple given by a symplectic manifold
(M, ω), a Hamiltonian vector field XH = ω] ◦ dH and a surjective submersion F : M→ Λ
such that:
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1. ImXH ⊆ KerF∗;
2. KerF∗ ⊆ (KerF∗)

⊥;
3. (KerF∗)

⊥ is integrable.

When KerF∗ = (KerF∗)
⊥, i.e. F is Lagrangian, the third point is automatic. In such a

case, we have a so-called Liouville-Arnold or commutative integrable (CI) system [16,21].
It is well-known that all these systems are integrable by quadratures. The traditional way
of proving that relies on the Lie theorem on integrability by quadratures [14,22] (see also [23]).

Usually, in the definition of NCI and CI systems, one more requirement is included: F
has compact and connected leaves. In such a case, besides integrability by quadratures,
action-angle coordinates can be found for such systems (see [24,25]). We do not consider
this case here.

Remark 2. An alternative definition can be given in terms of subsets of functions F ⊆ C∞(M).
The conditions 3 and 2 above are replaced by asking F to be a Poisson sub-algebra and complete
(see [20]), respectively, and 1 is replaced by asking that the elements of F Poisson commute with H.

To analyze the relationship between NCI systems and the systems given at the end of
the last section, let us consider an arbitrary surjective submersion F : M→ Λ. On the one
hand, it can be shown that a Hamiltonian vector field XH belongs to (KerF∗)

⊥ if, and only
if, there exists a function h : Λ→ R, such that h ◦ F = H. So, if we ask that ImXH ⊆ KerF∗
and that F is isotropic, then

XH = ω] ◦ F∗dh. (27)

On the other hand, it is well-known (see, for instance, [26] Prop. 7.18) that (KerF∗)
⊥ is

integrable if, and only if, Λ is a Poisson manifold with bi-vector Ξ, given by the formula

Ξ](α) = F∗,m ◦ω] ◦ F∗m(α), α ∈ T∗F(m)Λ,

and F is a Poisson morphism. In such a case, the condition ImXH ⊆ KerF∗, for XH given by
Equation (27), is equivalent to (compare to Equation (24))

Ξ](dh(F(m))) = F∗,m ◦ω] ◦ F∗m(dh(F(m))) = 0,

which says precisely that dh is a Casimir 1-form for Ξ (and h is a Casimir function). In the
case when F is Lagrangian, then Ξ = 0, and consequently every 1-form on Λ is a Casimir.
Thus, the NCI systems are a subclass of the systems given at the end of the last section,
where Λ is a Poisson manifold, G = F : M → Λ is a Poisson morphism and φ = dh is an
exact Casimir 1-form with respect to the Poisson structure on Λ.

3. Complete Solutions and Symmetries

Given a general action ρ : G×M→ M (not necessarily free or proper) of a Lie group
G on a manifold M and a G-invariant vector field X on M (with respect to ρ), we shall
construct in this section, based on ρ and the canonical projection π : M → M/G, local
fibrations Π of M and related complete solutions of the Π-HJE for X. Let us begin with the
local fibrations Π based on π.

3.1. The Vertical Submersions
3.1.1. General Actions and Regular Points

Let ρ : G×M→ M be an action of a Lie group G on M. Let us introduce some basic
notation and recall some well-known facts.

As usual, given g ∈ G and m ∈ M, by ρg and ρm we shall denote the maps ρg : M→ M
and ρm : G → M, such that ρg(m) = ρm(g) = ρ(g, m). Moreover, we shall denote by g the
Lie algebra of G and by Gm the isotropy subgroup of m.
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For latter convenience, let us note that

Ker(ρm)∗,e = gm, (28)

where e ∈ G is the identity element and gm is the Lie algebra of Gm. Furthermore, recall
that the fundamental vector field associated with η ∈ g is given by

ηM(m) = (ρm)∗,e(η). (29)

Let π : M → M/G be the canonical projection and consider on M/G the quotient
topology. Recall that, since each ρg : M→ M is a homeomorphism for all g ∈ G, then π is
open (besides continuous). Recall also the identities

π ◦ ρm(g) = π ◦ ρg(m) = π(m), ∀m ∈ M, g ∈ G. (30)

When ρ is free (i.e., if Gm = {e} for all m ∈ M) and proper, then, as it is well-known
(see [9]), M/G has a unique manifold structure, such that π : M → M/G is a surjective
submersion. For more general actions, we shall show a similar result, but at a local level
around a regular point.

Definition 1. We shall say that m0 ∈ M is ρ-regular if there exists an open neighborhood U of
m0, such that

dim Gm = dim Gm0 , for every m ∈ U. (31)

We shall call such neighborhood U admissible if, in addition, U is connected. The (open) subset of
all the ρ-regular points will be denotedRρ.

Remark 3. Note that if m0 is a ρ-regular point, then the assigning

m ∈ U 7−→ gm ⊆ g

defines a vector subbundle of the trivial vector bundle pr1 : U × g → U for each admissible
neighborhood U.

Given m0 ∈ Rρ, there exists an admissible neighborhood U of m0, such that ρg(U) ⊆
U for all g ∈ G, i.e., U is a G-invariant subset. To show it, note that given m, m′ ∈ M such
that m′ = ρ(g, m) for some g, we have that g · Gm · g−1 = Gm′ , and consequently

dim Gm = dim Gρg(m), ∀g ∈ G, m ∈ M.

Then, given any admissible neighborhood V of m0, it is clear that

VG =
⋃

g∈G
ρg(V) (32)

includes m0, is open, G-invariant and admissible. As a consequence, the setRρ is G-invariant.
If the action ρ is free, then every element of M is ρ-regular, and M (if connected) is an

admissible neighborhood. For G = SO(3) acting on M = R3 with the natural action ρnat,
we have that dim Gm = 1 for m ∈ R3 − {0} and dim G0 = dim G = 3. Thus, all the points
of R3 except 0 are ρnat-regular. In general, we have the following result.

Proposition 1. Rρ is a G-invariant open dense subset of M.

Proof. We already saw thatRρ is G-invariant. We shall prove that

1. if k is the minimum dimension of the isotropy subgroups and dim Gm0 = k, then m0
is a ρ-regular point;

2. the complement ofRρ has an empty interior.
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For the first point, define

k := min{dim Gm : m ∈ M}

and m0 such that dim Gm0 = k. Consider the Lie algebra gm0 of Gm0 and a linear complement
gc

m0
of it. For any element v ∈ gc

m0
− {0}, we have that

ρ̃(v, m0) 6= 0,

where ρ̃ is the action of g on M induced by ρ. Then, by continuity, there exists a neighbor-
hood U of m0, such that

ρ̃(v, m) 6= 0, ∀m ∈ U.

This means that dim gm ≤ dim gm0 = k for all m ∈ U. However, k is the minimum
dimension, hence dim gm = k for all m ∈ U. This says precisely that m0 is a ρ-regular point.

For the second point, suppose that the complement Rc
ρ has interior, i.e., for some

m1 ∈ Rc
ρ there exists an open subset U1, such that m1 ∈ U1 ⊆ Rc

ρ. Consider the Lie
algebra gm1 of Gm1 and a linear complement gc

m1
of it. Proceeding as above, we can

ensure that there exists a neighborhood U2 ⊆ U1 of m1, such that dim gm ≤ dim gm1 for
all m ∈ U2. Since U2 ⊆ Rc

ρ, there must exist m2 ∈ U2, such that dim gm2 < dim gm1 .
Otherwise, m1 would be a ρ-regular point (with admissible neighborhood U2). Repeating
this reasoning for m2, we can ensure the existence of a neighborhood U3 ⊆ U1 of m2, for
which dim gm ≤ dim gm2 for all m ∈ U3, and consequently, the existence of a point m3 ∈ U3,
such that dim gm3 < dim gm2 . In this way, since the dimension of g is finite, in some step of
this procedure, we shall find m0 ∈ U1 ⊆ Rc

ρ, such that dim gm0 = k. Since such m0 must
belong toRρ, we have arrived at a contradiction.

3.1.2. The Submersions π|U
Now, let us construct smooth local versions of the canonical projection π.

Proposition 2. Given m0 ∈ Rρ, there exists a neighborhood U for m0, such that the open subset
π(U) has a manifold structure and the restriction π|U : U → π(U) is a submersion satisfying

Ker
(

π|U
)
∗,m

= Im(ρm)∗,e, ∀m ∈ U, (33)

and, consequently,
dim

(
Ker
(

π|U
)
∗

)
= dim G− dim Gm0 . (34)

Moreover, U can be taken G-invariant.

Proof. Let U1 be an admissible neighborhood of m0 and consider the distribution given by

F1(m) = Im(ρm)∗,e.

Since F1 is clearly generated by the fundamental vector fields ηM (see Equation (29)),
with η ∈ g, then F1 is involutive (see, for instance, [9]). Moreover, for the same reason,

dim(Im(ρm)∗,e) = dim g− dim(Ker(ρm)∗,e) = dim g− dim gm = dim G− dim Gm,

which is constant and equal to r1 = dim G−dim Gm0 for all m ∈ U1 (because of Equation (31)).
Then, defining r = dim M and using the Frobenius Theorem, we can find a local chart

(U2, ϕ ≡ (x1, . . . , xr1 , xr1+1, . . . , xr))

in U1 such that m0 ∈ U2,

ϕ(U2) = V2 ×V′2 ⊆ Rr1 ×Rr−r1 ,
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with V2 and V′2 open subsets in Rr1 and Rr−r1 , respectively, and

F1(m) =

〈
∂

∂x1

∣∣∣∣
m

, . . . ,
∂

∂xr1

∣∣∣∣
m

〉
for all m ∈ U2.

Now, we can consider the G-invariant open subset U of M given by

U =
⋃

g∈G
ρg(U2).

It is clear that m0 ∈ U2 ⊆ U and, moreover, U/G ∼= V′2 and the canonical projection
π|U : U → U/G ∼= V′2 is a surjective submersion.

From now on, by admissible, we shall mean any admissible neighborhood U of m0 for
which the last proposition holds.

The following result will be useful later.

Proposition 3. Given m0 ∈ Rρ and an admissible neighborhood U of m0, the subset

RU =
{(

m, ρg(m)
)

: g ∈ G, m ∈ U
}
⊆ U ×M (35)

is a closed submanifold of U×M, of dimension dim M +dim G−dim Gm0 , and the surjective map

ΦU : (g, m) ∈ G×U 7−→
(
m, ρg(m)

)
∈ RU (36)

is smooth and also a submersion.

Proof. Consider the admissible G-invariant open subset Ũ =
⋃

g∈G ρg(U) (see Equation (32)),
the related subset RŨ and the related surjective map ΦŨ : G × Ũ → RŨ (given as in
Equations (35) and (36)). If we prove the proposition for Ũ, since RU = RŨ ∩ (U ×M) and
ΦU = ΦŨ |G×U , then we would proved it for U.

Using that the space of orbits π(Ũ) = Ũ/G is a quotient smooth manifold and a
classical result (see, for instance, [27]), we deduce that RŨ ⊆ Ũ× Ũ is a closed submanifold
of Ũ × Ũ (and of Ũ ×M). As a consequence, since

(g, m) ∈ G× Ũ 7−→
(
m, ρg(m)

)
∈ Ũ × Ũ

is smooth, the same is true for the surjection ΦŨ : G× Ũ → RŨ . To find the dimension of
RŨ and show that ΦŨ is a submersion, it is enough to calculate the rank of ΦŨ and show
that it is constant (since ΦŨ is surjective). Let us do that.

From Equation (36) and the identity ρm ◦ Lg = ρg ◦ ρm, it follows that

(ΦŨ)∗,(g,m)(u, v) = (v, (ρg)∗,m(v + (ρm)∗,e((Lg−1)∗,g(u)))), ∀u ∈ TgG, v ∈ TmŨ, (37)

and in particular, for g = e,

(ΦŨ)∗,(e,m)(η, v) = (v, v + (ρm)∗,e(η)), ∀η ∈ g, v ∈ TmŨ. (38)

Then, from Equations (37) and (38), we have that

(ΦŨ)∗,(g,m) = (idTm M × (ρg)∗,m) ◦ (ΦŨ)∗,(e.m) ◦ ((Lg−1)∗,g × idTm M).

Consequently, for all (g, m) ∈ G× Ũ,

(rank ΦŨ)(g, m) = (rank ΦŨ)(e, m) = dim M + (dim G− dim Gm0),

which ends our proof.
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3.1.3. Symplectic Actions and Momentum Maps

Suppose that M is a symplectic manifold, with symplectic form ω, and ρ is a symplectic
action , i.e., (

ρg
)∗ ◦ω = ω, ∀g ∈ G,

or equivalently (
ρg
)
∗,m ◦ω]

m = ω]
ρg(m)

◦
(

ρg−1

)∗
ρg(m)

, ∀m ∈ M, g ∈ G. (39)

Proposition 4. Under the above conditions, for each admissible neighborhood U, we have that:

1. The manifold π(U) has a Poisson structure ΞU , characterized by the condition

ΞU(α, β) ◦ π = ω
(

ω](π∗α), ω](π∗β)
)

, ∀α, β ∈ Ω1(π(U)), (40)

with respect to which π|U is a Poisson morphism.
2. Let X be a G-invariant vector field, i.e.,(

ρg
)
∗ ◦ X = X ◦ ρg, ∀g ∈ G. (41)

Then there exists a unique vector field Y ∈ X(π(U)) such that(
π|U

)
∗
◦ X|U = Y ◦ π|U .

Proof. (1) This result is proven in [18] under the hypothesis that U is G-invariant and that
the G-action on U is free and proper. However, in that proof, the key point is that the space
of orbits π(U) is a quotient manifold, as in our case.

(2) It is also a well-known result (see, for instance [28]) that if U is a principal G-bundle
over U/G, then every G-invariant vector field over U is projectable over U/G. However,
as in (1), the key point in order to prove this fact is that U/G is a quotient manifold. So,
proceeding in a similar way as in [28], we deduce (2).

Suppose that ρ has a (global) momentum map, i.e., a function K : M→ g∗, such that〈
ω[
(
(ρm)∗,e(η)

)
, v
〉
= 〈K∗,m(v), η〉, ∀m ∈ M, v ∈ Tm M, η ∈ g. (42)

Proposition 5. For each admissible neighborhood U,

Ker
(

K|U
)
∗
=
(
Ker
(

π|U
)
∗

)⊥
. (43)

For proof of this result see, for instance, [9].
Suppose in addition that K can be chosen Ad∗-equivariant, i.e.,

K(ρ(g, m)) = Ad∗g(K(m)). (44)

where, as usual, Ad : G× g→ g : (g, η) 7→ Adgη denotes the adjoint action and

Ad∗ : G× g∗ → g∗ : (g, α) 7−→
(

Adg−1

)∗
(α)

the co-adjoint one.

Proposition 6. If K
(
Rρ

)
∩ RAd∗ 6= ∅, then there exists a G-invariant open subset U ⊆ Rρ,

such that
K(U) ⊆ RAd∗ .
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Proof. Let m1 ∈ Rρ be such that K(m1) ∈ RAd∗ ⊆ g∗, and let U1 be an admissible
neighborhood of m1. Given a G-invariant admissible neighborhood V ⊆ RAd∗ of K(m1)
(with respect to the co-adjoint action), define

U =
⋃

g∈G
ρg

(
U1 ∩ K−1(V)

)
.

It is clear that U is a G-invariant open subset and U ⊆ Rρ. Moreover, K(m) ∈ V for
all m ∈ U1 ∩ K−1(V). Then Ad∗gK(m) ∈ V for all g ∈ G, because of the G-invariance of V,
and consequently (see Equation (44))

K
(
ρg(m)

)
= Ad∗gK(m) ∈ V.

This completes our proof.

The previous result will be useful at the end of the paper.

3.2. The Horizontal Submersions

In this subsection, for each admissible neighborhood U, we shall construct submer-
sions Θ transverse to the restricted canonical projection π|U . In terms of such submersions
Θ, we shall present at the end of the section the complete solutions that we are looking for.

3.2.1. Trivializations and (Local) Flat Connections for Principal Bundles

Suppose that ρ : G×M→ M is free and proper and consider the associated principal
G-bundle π : M → M/G. Given a local section s : V → U of π, with U = π−1(V) ⊆ M
and V ⊆ M/G an open subset, we have a trivialization

Ψ = (π, ψ) : U → π(U)× G (45)

given by Ψ(ρ(g, s(λ))) = (λ, g), or equivalently

Ψ−1(λ, g) = ρ(g, s(λ)), ∀λ ∈ π(U), g ∈ G.

(Ψ is well-defined and invertible because ρ is free). Note that the map ψ : U → G satisfies

ρ(ψ(m), s(π(m))) = Ψ−1(π(m), ψ(m)) = m, ∀m ∈ U. (46)

Furthermore,

ψ(ρ(g, m)) = ψ(ρ(g, ρ(ψ(m), s(π(m))))) = ψ(ρ(g ψ(m), s(π(m)))) = g ψ(m),

and consequently
ψ ◦ ρg = Lg ◦ ψ and ψ ◦ ρm = Rψ(m). (47)

On the other hand, it is easy to show that the map A : TU → g given by

A(v) =
(

Rψ(m)

)−1

∗,e
ψ∗,m(v), for all v ∈ Tm M, (48)

is a local principal connection for π. In fact, for all m ∈ U, it follows from Equations (47)
and (48) that

A
(
(ρm)∗,e(η)

)
= η, ∀η ∈ g, (49)

and
A
((

ρg
)
∗,m(v)

)
= Adg(A(v)), ∀v ∈ TmU, ∀g ∈ G. (50)
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In addition, since KerA = Kerψ∗, the horizontal distribution is integrable, i.e., A is a
flat connection. In the next section, we shall construct an object similar to A, but related to
an arbitrary action and its regular points.

3.2.2. A Flat-Connection-Like Object for π|U
Now, suppose that ρ is a general Lie group action. For each ρ-regular point m0, we shall

construct a family of submersions transverse to π|U (being U an admissible neighborhood
of m0). To do that, we need the next results.

Lemma 1. Let G : P → Q be a submersion, p0 ∈ P and W ⊆ Tp0 P a linear complement of
KerG∗,p0 . Then, there exists a neighborhood V of G(p) ∈ Q and a local section S : V → P of G,
such that

S(G(p0)) = p0 and ImS∗,G(p0) =W .

Proof. Let ϕ = (x1, ..., xn) : U → ϕ(U) be a coordinate system of P around p0. Consider
the annihilatorW0 ⊆ T∗p0

P ofW and suppose that the co-vectors

ξi =
n

∑
j=1

wj
i dxj(p0), i = 1, ..., k,

give a basis forW0. Define F : U → Rk as

F
(

ϕ−1(x1, ..., xn)
)
=

(
n

∑
j=1

wj
1 xj, ...,

n

∑
j=1

wj
k xj

)
.

It is clear that KerF∗,p0 =W . Then, since KerG∗,p0 andW are complementary, (G, F) is
a diffeomorphism onto its image G(U)× F(U), shrinking U if needed. As a consequence,
the function S : G(U)→ P such that

S(q) = (G, F)−1(q, F(p0))

is a smooth local section of G and satisfies S(G(p0)) = p0. Furthermore, given w ∈ W ,
S∗,G(p0)

(
G∗,p0(w)

)
= w. In particular, since G∗,p0 is surjective, even restricted toW , then

ImS∗,G(p0) =W . So, the wanted result follows for V = G(U).

Note that the construction of the section S has been made just by using algebraic
manipulations and the inverse function theorem.

For the rest of the section, fix a ρ-regular point m0, an admissible neighborhood U and
a section s : π(U)→ U of π|U such that

s(π(m0)) = m0. (51)

Lemma 2. The function

F : G× π(U)→ M : (g, λ) 7→ ρ(g, s(λ))

is an open map around (e, π(m0)).

Proof. Note first that (according to Equation (34))

dim(π(U)) = dim M− (dim G− dim Gm0),

and consequently
dim(G× π(U)) = dim M + dim Gm0 .
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So, it is enough to show that dim
(
KerF∗,(e,π(m0))

)
= dim Gm0 . Given X ∈ g and

Y ∈ Tπ(m0)π(U), if

0 = F∗,(e,π(m0))(X, Y) = ρ∗,(e,m0)

(
X, s∗,π(m0)(Y)

)
= (ρm0)∗,e(X) + (ρe)∗,m0

(
s∗,π(m0)(Y)

)
(where we have used Equation (51)), then, applying

(
π|U

)
∗,m0

above,

0 =
(

π|U
)
∗,m0
◦ (ρm0)∗,e(X) +

(
π|U

)
∗,m0
◦ (ρe)∗,m0

◦
(

s∗,π(m0)(Y)
)

.

On the other hand, from Equation (30), we have that(
π|U

)
∗,m0
◦ (ρm0)∗,e = 0 and

(
π|U

)
∗,m0
◦ (ρe)∗,m0

=
(

π|U
)
∗,m0

. (52)

Since in addition
(

π|U
)
∗,m0
◦ s∗,π(m0) is the identity, then Y = 0. Hence, KerF∗,(e,m0)

is given by the vectors (X, 0), such that (ρm0)∗,e(X) = 0, i.e., X ∈ gm0 (recall Equation (28)).
This ends our proof.

Now, the main result of the section.

Theorem 2. Given an admissible neighborhood U of m0 ∈ Rρ and a section s : π(U) → U of
π|U satisfying Equation (51), we can construct, shrinking U if necessary, a surjective submersion
Θ : U → Θ(U) ⊆ G transverse to π|U (see Equation (12)) such that Θ(m0) = e and

ρ(Θ(m), s(π(m))) = m, ∀m ∈ U. (53)

We shall call s-horizontal, or simply horizontal, to such submersions Θ.

Proof. First, let us make some observations about the submersion ΦU of Proposition 3.

• We have that ΦU(e, m) = (m, m) and from Equation (38), it follows that

Ker(ΦU)∗,(e,m) = gm × {0}. (54)

• Then, using Lemma 1, we can construct a local section S of the submersion ΦU , such
that S(m0, m0) = (e, m0) and

Im
(

S∗,(m0,m0)

)
= gc

m0
× Tm0 M, (55)

being gc
m0
⊆ g some complement of gm0 (because Equations (54) and (55)

are complementary).

For simplicity, let us restrict ΦU to a subset W ×U′ ⊆ G×U, with W ⊆ G an open
neighborhood of e and U′ ⊆ U ⊆ M an open neighborhood of m0, such that the above
mentioned section S becomes a global section S : ΦU(W ×U′)→ W ×U′. Moreover, take
U′ such that

s
(
π
(
U′
))
⊆ U′, (56)

which can be done because of Equation (51). Let us write

S(m1, m2) = (gS(m1, m2), m1).

Notice that, since

(m1, m2) = ΦU(S(m1, m2)) = ΦU(gS(m1, m2), m1) = (m1, ρ(gS(m1, m2), m1)),
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then
ρ(gS(m1, m2), m1) = m2. (57)

On the other hand, since S(m0, m0) = (e, m0), then

gS(m0, m0) = e. (58)

Moreover, from Equation (55), it follows that Im(gS)∗,(m0,m0)
⊆ gc

m0
, and consequently

(recall Equation (28))

(ρm0)∗,e ◦ (gS)∗,(m0,m0)
(x, y) = 0 ⇐⇒ (gS)∗,(m0,m0)

(x, y) = 0. (59)

Now, consider the subset

U′′ = U′ ∩
(
ρ
(
W, s

(
π
(
U′
))))

.

According to Lemma 2, U′′ is open (shrinking W and U′ if needed) and, since m0 is
there (see Equation (51)), it is nonempty. Finally, define Θ : U′′ → G as

Θ(m) = gS(s(π(m)), m).

Let us see that Θ is well defined. If m ∈ U′′, then m ∈ U′ and

m = ρ
(

g, s
(
π
(
m′
)))

, with g ∈W and m′ ∈ U′.

Then, applying π on both members of above equality, it follows that π(m) = π(m′),
and consequently

m = ρ(g, s(π(m))), with g ∈W.

In addition, since m ∈ U′, then s(π(m)) ∈ U′ (see Equation (56)). Thus, given m ∈ U′′

we have that

(s(π(m)), m) = (s(π(m)), ρ(g, s(π(m)))) ∈ ΦU
(
W ×U′

)
,

i.e., (s(π(m)), m) belongs to the domain of S. From Equation (58), it is clear that Θ(m0) = e
and, using Equation (57), the identity Equation (53) follows. A direct consequence of the
latter is that, for all m ∈ U′′,

(idM)∗,m =
(

ρΘ(m)

)
∗,s(π(m))

◦ s∗,π(m) ◦
(

π|U
)
∗,m

+
(

ρs(π(m))

)
∗,Θ(m)

◦Θ∗,m, (60)

which, in turn, implies that

Ker
(

π|U
)
∗,m
∩KerΘ∗,m = {0}, ∀m ∈ U′′. (61)

Also, it implies that

v ∈ Ker
(

π|U
)
∗,m

⇐⇒ v =
(

ρs(π(m))

)
∗,Θ(m)

◦Θ∗,m(w), (62)

for some w. Let us show it. The first implication is immediate by applying both sides of
Equation (60) to v, and it is fulfilled for w = v. For the converse, it is enough to note that,
from Equation (30), (

π|U
)
∗,m
◦
(

ρs(π(m))

)
∗,Θ(m)

= 0.



Mathematics 2021, 9, 1357 16 of 34

Something similar to Equation (62) can be said about KerΘ∗,m for m = m0. Let us see
that. Equation (60) for m = m0 decreases to

(idM)∗,m0 = s∗,π(m0) ◦
(

π|U
)
∗,m0

+ (ρm0)∗,e ◦Θ∗,m0 , (63)

since s(π(m0)) = m0 and Θ(m0) = e.
Then

v ∈ KerΘ∗,m0 ⇐⇒ v = s∗,π(m0) ◦
(

π|U
)
∗,m0

(w), (64)

for some w. The first implication follows by applying both sides of Equation (63) to v, and
it is fulfilled for w = v. For the converse, note first that, using Equation (63),

s∗,π(m0) ◦
(

π|U
)
∗,m0

(w) = v = s∗,π(m0) ◦
(

π|U
)
∗,m0

(v) + (ρm0)∗,e ◦Θ∗,m0(v).

Then, applying
(

π|U
)
∗,m0

to the first and the last members and using the first part of

Equation (52) and the fact that s is a section of π|U , we have that(
π|U

)
∗,m0

(w) =
(

π|U
)
∗,m0

(v),

and consequently v = s∗,π(m0) ◦
(

π|U
)
∗,m0

(v). Finally, combining Equations (59) and (63),

the converse of Equation (64) follows. So, from Equation (62) at m0 and Equation (64),

Ker
(

π|U
)
∗,m0

+KerΘ∗,m0 = Tm0 M. (65)

As a consequence (from Equations (61) and (65)), there exists an admissible neighborhood
Û ⊆ U′′ of m0, such that

Ker
(

π|Û
)
∗,m
⊕KerΘ∗,m = Tm M, ∀m ∈ Û, (66)

which tells us that the rank of Θ is constant and given by k = dim G − dim Gm0 (see
Equation (34)). In resume, using the constant rank theorem, we can say that, shrinking the
original admissible neighborhood U (if necessary), Θ(U) ⊆ G is a closed k-dimensional
submanifold and Θ : U → Θ(U) is a surjective submersion transverse to π|U , as we
wanted to show.

Remark 4. It is worth mentioning that, combining Equations (60), (62) and (66), it follows for all
m ∈ U that

v ∈ KerΘ∗,m ⇐⇒ v =
(

ρΘ(m)

)
∗,s(π(m))

◦ s∗,π(m) ◦
(

π|U
)
∗,m

(v). (67)

Let us study some properties of Θ.

Proposition 7. For any s-horizontal submersion Θ : U → Θ(U), we have that

Θ(s(λ)) = e, ∀λ ∈ π(U). (68)

Proof. First, recall that U is connected (ipso facto path connected) and consequently, the
same is true for π(U). On the one hand, given λ ∈ Π(U), it follows from Equation (53) for
m = s(λ) that

ρ(Θ(s(λ)), s(λ)) = s(λ),
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which implies that Θ(s(λ)) ∈ Gs(λ). On the other hand, it is easy to see that, for all g ∈ G
and m ∈ M,

TgGm = Ker(ρm)∗,g.

Then, for every vector w ∈ Tλπ(U),

Θ∗,s(λ)(s∗,λ(w)) ∈ Ker
(

ρs(λ)

)
∗,Θ(s(λ))

.

As a consequence, applying Equation (60) to v = s∗,λ(w) and using Equation (67), we
have that

s∗,λ(w) ∈ KerΘ∗,s(λ).

So, given a curve t ∈ (−ε, ε) 7→ λ(t) ∈ π(U) such that λ(0) = π(m0), we have that

Θ(s(λ(0))) = Θ(s(π(m0))) = Θ(m0) = e

and
d
dt

Θ(s(λ(t))) = 0, ∀t ∈ (−ε, ε),

from which, and the fact that π(U) is connected, the proposition follows.

Furthermore, given m ∈ U and g ∈ G, such that ρ(g, m) ∈ U, it can be shown from
Equation (53) that

Θ(ρ(g, m)) = g ·Θ(m) · h (69)

for a unique h ∈ Gs(π(m)). Moreover, in infinitesimal terms around g = e,

Θ∗,m ◦ (ρm)∗,e(η) =
(

RΘ(m)

)
∗,e
(η) +

(
LΘ(m)

)
∗,e
(ξ),

for some ξ ∈ gs(π(m)). In particular, if m = s(λ) (see Equation (68)),

Θ∗,s(λ) ◦
(

ρs(λ)

)
∗,e
(η) = η + ξ. (70)

As we anticipate at the end of the last subsection, the submersions Θ above defined
play a role similar to that of ψ in a trivialization of a principal bundle (see Equation (45)).
This follows, for instance, by comparing Equations (46) and (53). In particular, we can see
the map

A : v ∈ TmU 7−→
(

RΘ(m)

)−1

∗,e
Θ∗,m(v) ∈ g

as some kind of flat connection for the submersion π|U . Nevertheless, Equations (49) and (50)
are not satisfied in general. In fact, we have from Equation (69) that (for g ∈ G and m ∈ U
such that ρ(g, m) ∈ U)

A
(
(ρm)∗,e(η)

)
= η + AdΘ(m)ξ, for some ξ ∈ gm,

and
A
((

ρg
)
∗,m(v)

)
= Adg

(
A(v) + AdΘ(m)ξ

)
, for some ξ ∈ gm.

3.3. Vertical and Horizontal Vector Fields

Fix again a point m0 ∈ Rρ.

Definition 2. We shall say that X ∈ X(M) is vertical around m0 if

X(m) ∈ Ker
(

π|U
)
∗,m

, ∀m ∈ U,
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and that X is horizontal at m0 if

X(m0) /∈ Ker
(

π|U
)
∗,m0

,

for some admissible neighborhood U of m0. Finally, we shall say that X is Θ-horizontal if ImX|U ⊆
KerΘ∗ for some horizontal submersion Θ : U → Θ(U) and some admissible neighborhood U
of m0.

From Equation (33), it is clear that if there exists a function η : U → g such that
X(m) = (ρm)∗,e(η(m)), for all m ∈ U,, then X is vertical along U. We are interested in
vertical fields which are in addition G-invariant (see Equation (41)). For them, we have the
next result.

Proposition 8. Consider X ∈ X(M) such that, for some function η : M→ g,

X(m) = (ρm)∗,e(η(m)), ∀m ∈ M. (71)

Then X is G-invariant if, and only if,

η
(
ρg(m)

)
= Adg(η(m)) + ξg,m, (72)

for some ξg,m ∈ gρg(m). We shall say that η is Ad-equivariant if ξg,m = 0 for all g, m.

Proof. Since ρρg(m) = ρm ◦ Rg and ρg ◦ ρm = ρm ◦ Lg, then

(
ρg
)−1
∗,m ◦ X

(
ρg(m)

)
= (ρm)∗,e ◦

(
Lg−1

)
∗,g
◦
(

Rg
)
∗,e
(
η
(
ρg(m)

))
= (ρm)∗,e ◦ Adg−1

(
η
(
ρg(m)

))
.

Hence, Equation (41) is fulfilled if, and only if,

Adg−1
(
η
(
ρg(m)

))
− η(m) ∈ Ker

(
(ρm)∗,e

)
= gm,

and the proposition follows from the fact that Adg(gm) = gρg(m).

Regarding horizontal fields, note that if X is Θ-horizontal and X(m0) 6= 0, then X is
horizontal at m0. Reciprocally, we have the next result.

Proposition 9. If X is horizontal at m0 and G-invariant, then there exist an admissible neighbor-
hood U of m0, a section s : π(U)→ U of π|U satisfying Equation (51) and a horizontal submersion
Θ : U → Θ(U) such that X is Θ-horizontal.

Proof. According to Proposition 4.13 of [11], if X(m0) /∈ Ker
(

π|U
)
∗,m0

for some admissible

neighborhood U of m0, then, shrinking U if necessary, there exists a submersion F : U→ F(U)
transverse to π|U such that

X(m) ∈ KerF∗,m, ∀m ∈ U. (73)

On the one hand, shrinking U again, this gives rise to a diffeomorphism

D =
(

π|U , F
)

: U → π(U)× F(U).

In terms of the latter, we have the section s : π(U)→ U of π|U given by

s(π(m)) = D−1(π(m), F(m0)),
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which satisfies s(π(m0)) = m0. So, we have a section of π|U satisfying Equation (51) and,
according to Theorem 2, this enables us to construct a horizontal submersion Θ : U →
Θ(U). On the other hand, writing s(π(m)) = m̃, Equation (73) says that

D∗,m̃(X(m̃)) =

((
π|U

)
∗,m̃

(X(m̃)), 0
)

,

or equivalently

X(m̃) =
(
D−1

)
∗,(π(m),F(m0))

((
π|U

)
∗,m̃

(X(m̃)), 0
)
= s∗,π(m) ◦

(
π|U

)
∗,m̃

(X(m̃)). (74)

In addition, the fact that X is G-invariant ensures that (combine Equations (41)
and (53)) (

ρΘ(m)

)
∗,m̃

X(m̃) = X(m),

and consequently (see Equation (30))(
π|U

)
∗,m

(X(m)) =
(

π|U
)
∗,m
◦
(

ρΘ(m)

)
∗,m̃

X(m̃) =
(

π|U
)
∗,m̃

(X(m̃))

and (applying
(

ρΘ(m)

)
∗,m̃

to Equation (74))

X(m) =
(

ρΘ(m)

)
∗,m̃
◦ s∗,π(m) ◦

(
π|U

)
∗,m

(X(m)).

Finally, using Equation (67), it follows that ImX|U ⊆ KerΘ∗, as wanted.

3.4. Local Complete Solutions from General Group Actions

From the above results and the duality between complete solutions and first integrals,
the theorem below easily follows.

Theorem 3. Fix m0 ∈ Rρ.

1. If X is vertical around m0, then there exists an admissible neighborhood U of m0 such that,
for every section s : π(U) → U of π|U satisfying Equation (51) and every s-horizontal
submersion Θ : U → Θ(U), the map

Σ =
(

Θ, π|U
)−1

= ρ ◦
(

idΘ(U) × s
)

: Θ(U)× π(U)→ U

is a complete solution of the Θ-HJE for X|U .
2. If X is horizontal at m0 and G-invariant, then there exist an admissible neighborhood U of

m0, a section s : π(U)→ U of π|U satisfying Equation (51) and a s-horizontal submersion
Θ : U → Θ(U) such that (by τ we are denoting the flipping map τ(x, y) = (y, x))

Σ =
(

π|U , Θ
)−1

= ρ ◦ τ ◦
(

s× idΘ(U)

)
: π(U)×Θ(U)→ U

is a complete solution of the π|U -HJE for X|U .

Proof. In the first case, we have that ImX|U ⊆ Ker
(

π|U
)
∗

and that π|U and Θ are trans-

verse. Using the results of Section 2.2, it follows that, shrinking U if needed, Σ =
(

Θ, π|U
)−1
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is a complete solution of the Θ-HJE for X|U . We only need to show that
(

Θ, π|U
)−1

=

ρ ◦
(

idΘ(U) × s
)

. However, from Equation (53), we have for all m ∈ U that

ρ ◦
(

idΘ(U) × s
)
◦
(

Θ, π|U
)
(m) = ρ(Θ(m), s(π(m))) = m.

The second case can be proven in the same way, but used in addition to Proposition 9
in order to ensure the existence of the section s and the submersion Θ, such that ImX|U ∈
KerΘ∗.

Remark 5. Regarding the objects described in Section 3.2.1, it is clear that the complete solutions Σ
given in the last theorem, or more precisely, their inverses Σ−1, define the analogue of a trivialization
Ψ : U → π(U)× G of a principal bundle.

In summary, given a vertical vector field X around m0 ∈ Rρ, an admissible neigh-
borhood U of m0 and a smooth section s : π(U) → U of π|U ,, we have shown that a
submersion Θ : U → Θ(U) and a complete solution of the Θ-HJE for X|U can be con-
structed up to quadratures. Moreover, given a horizontal vector field X at m0, if X is
G-invariant, then there exists a complete solution of the π|U -HJE for X|U . However, the
latter has not been constructed up to quadratures (the proof of Proposition 4.13 of [11],
which is used in Proposition 9, is based on the rectification of the field X).

4. Horizontal Dynamical Systems and Reconstruction

Consider again a manifold M, a vector field X ∈ X(M) and a group action
ρ : G×M→ M. Assume by now that ρ is free and proper, which implies that π : M→ M/G
defines a principal fiber bundle. Assume also that X is G-invariant, and consequently
π-related with a unique vector field Y ∈ X(M/G), i.e., π∗ ◦ X = Y ◦ π. In many cases, the
integral curves of Y are known, and one is interested in constructing the integral curves of
X from those of Y. Any procedure that enables us to do that is usually called reconstruc-
tion. The purpose of this section is to show that there exists a deep connection between
reconstruction procedures and the complete solutions of a horizontal vector field presented
in Theorem 3, even though the action ρ is neither free nor proper.

4.1. The Usual Reconstruction Process

Assume that we are in the setting of the beginning of this section and we want to find
the integral curve Γ of X such that Γ(0) = p0. Then, we can (see, for instance, [29]):

1. consider the integral curve γ(t) of Y such that γ(0) = π(p0);
2. fix a principal connection A : TM→ g;
3. find a curve d(t) such that

A
(
d′(t)

)
= 0 and π(d(t)) = γ(t), (75)

i.e., d(t) is the horizontal lift of γ(t);
4. find g(t), such that

g′(t) =
(

Lg(t)

)
∗,e
(ξ(t)) and g(0) = g0, (76)

with ξ(t) = A(X(d(t))) and g0 such that p0 = ρ(g0, d(0)).

It is easy to show that Γ(t) = ρ(g(t), d(t)) is the integral curve that we are looking for.
The four steps above constitute the usual reconstruction process , and Equations (75) and
(76) the related reconstruction problem.

If X is vertical along all of M (in the usual sense), i.e., ImX ⊆ Kerπ∗, then, Y = 0 and
consequently the curves d(t) and ξ(t) are constant. In this case, we only have to solve
Equation (76), whose solutions are given by the exponential curves. We shall consider
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this situation in the next section. So, suppose that X(m) /∈ Kerπ∗,m, for all m ∈ M. In
that case, we can consider a connection A such that X ∈ KerA, i.e., X is horizontal with
respect to A (in the usual sense). Then, ξ(t) = 0 and g(t) = g0 for all t. Consequently,
the reconstruction problem decreases to solve Equation (75). In other words, we have the
following alternative (three steps) reconstruction process:

1. consider the integral curve γ(t) of Y such that γ(0) = π(p0);
2. find a principal connection A : TM→ g such that X is horizontal;
3. find a curve d(t) satisfying Equation (75).

Then, the curve Γ(t) = ρ(g0, d(t)), with g0 such that p0 = ρ(g0, d(0)), is the integral
curve of X through p0. In the next subsection, we shall extend this procedure to Lie group
actions which are not necessarily free and proper.

4.2. Reconstruction from Complete Solutions

Let us go back to the general setting: a manifold M, a vector field X ∈ X(M) and a
general Lie group action ρ : G×M→ M. Assume that X is G-invariant and horizontal at
every m0 ∈ Rρ (see Definition 2). According to the second part of Theorem 3, there exist an
admissible neighborhood U of m0, a section s : π(U)→ U of π|U satisfying Equation (51)
and a s-horizontal submersion Θ : U → Θ(U) such that

Σ = ρ ◦ τ ◦
(

s× idΘ(U)

)
: π(U)×Θ(U)→ U

is a complete solution of the π|U -HJE for X|U . The related partial solutions are functions

σg : π(U)→ U, g ∈ Θ(U),

such that σg(λ) = ρ(g, s(λ)) for all λ ∈ π(U) (see (6)). In other words,

σg = ρg ◦ s, g ∈ Θ(U). (77)

Theorem 4. Each vector field Xσg ∈ X(π(U)) (see (5)) is equal, for all g ∈ Θ(U), to the unique
vector field Y ∈ X(π(U)) such that(

π|U
)
∗
◦ X|U = Y ◦ π|U . (78)

Proof. The Proposition 4 ensures the existence of a unique vector field Y ∈ X(π(U))
satisfying Equation (78). So, we only must prove that Y = Xσg for all g ∈ Θ(U). However,
from Equations (5), (77) and (78),

Xσg =
(

π|U
)
∗
◦ X|U ◦ σg =

(
π|U

)
∗
◦ X|U ◦ ρg ◦ s

= Y ◦ π|U ◦ ρg ◦ s = Y ◦ π|U ◦ s = Y,

as we wanted to show.

According to Equation (10), the integral curves Γ of X are given by

Γ(t) = σg(γ(t)) = ρ(g, s(γ(t))),

where γ is an integral curve of Y = Xσg . In other words, the above formula enables us to
construct the integral curves of X from those of a vector field in the quotient. Note that
π(Γ(t)) = γ(t) and Θ(Γ(t)) = g for all t. Then, given p0 ∈ U, in order to find the integral
curve Γ of X|U such that Γ(0) = p0, we have the following (two steps) reconstruction process:

1. consider the integral curve γ(t) of Y such that γ(0) = π(p0);
2. find a submersion Θ : U → Θ(U) such that X is Θ-horizontal.
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The curve

Γ(t) = Σ(γ(t), g0) = ρ(g0, s(γ(t))), with g0 = Θ(p0),

is the one we are looking for. So, the complete solution Σ solves the reconstruction problem
(around m0).

5. Vertical Dynamical Systems and Integrability by Quadratures

In this section, using the integrability result of Section 2 (see Theorem 1), we show that
the exponential curves t 7→ exp(ξ t) of a Lie group G, for some points ξ of its Lie algebra g,
can be explicitly constructed up to quadratures. Moreover, we show that, for compact and
for semisimple Lie groups, such a construction works for all ξ inside a dense open subset
of g. Then, we state sufficient conditions under which a vertical (and invariant) vector field
is integrable up to quadratures.

5.1. Invariant and Vertical Vector Fields

Consider again a manifold M, a vector field X ∈ X(M) and a Lie group action ρ :
G×M→ M. Assume that X is vertical around every ρ-regular point m0 (see Definition 2)
and consider a complete solution

Σ = ρ ◦
(

idΘ(U) × s
)

: Θ(U)× π(U)→ U (79)

as those given in the first part of Theorem 3. The related partial solutions are

σλ : Θ(U) ⊆ G → U, λ ∈ π(U),

with σλ(g) = ρ(g, s(λ)) for all g ∈ Θ(U) (see Equation (6)). In other words,

σλ = ρs(λ), λ ∈ π(U).

Theorem 5. If X is G-invariant, then the vector field Xσλ ∈ X(Θ(U)) (see Equation (5)) is
given by

Xσλ(g) =
(

Lg
)
∗,e(ηλ) (80)

for a unique vector (recall Equation (68))

ηλ = Θ∗,s(λ) ◦ X(s(λ)) ∈ TeΘ(U) ⊆ g. (81)

In particular, if X is given by Equations (71) and (72), then

ηλ = η(s(λ)) + ξλ (82)

for some ξλ ∈ gs(λ). In any case, the integral curve of X passing through p0 ∈ U at t = 0 can
be written

Γ(t) = ρ(g0 exp((ηλ + χλ) t), s(λ)), (83)

with (g0, λ) = (Θ(p0), π(p0)) and χλ ∈ gs(λ) arbitrary.

Proof. We know that (see Equation (4))

X ◦ σλ = (σλ)∗ ◦ Xσλ , (84)

and consequently Im(X ◦ σλ) ⊆ Im(σλ)∗. Since σλ is a diffeomorphism onto its image, then

(σλ)∗,e : TeΘ(U)→ Ts(λ)Imσλ = Im(σλ)∗,e
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is a linear isomorphism. So, for X ◦ σλ(e) = X(s(λ)) ∈ Im(σλ)∗,e, there exists a unique
vector ηλ ∈ g, such that

(σλ)∗,e(ηλ) = X(s(λ)).

Let us apply
(
ρg
)
∗,s(λ) on both members of above equation. For the first member, we

have that (
ρg
)
∗,s(λ) ◦ (σλ)∗,e(ηλ) = (σλ)∗,g ◦

(
Lg
)
∗,e(ηλ),

where we have used that σλ = ρs(λ) and the identity

ρg ◦ ρs(λ) = ρs(λ) ◦ Lg.

For the second member, using the G-invariance of X (recall Equation (41)), we have
that (

ρg
)
∗,s(λ)(X(s(λ))) = X

(
ρg(s(λ))

)
= X(σλ(g)).

Then
(σλ)∗,g ◦

(
Lg
)
∗,e(ηλ) = X(σλ(g))

and, consequently, Equation (80) follows from Equation (84) and the injectivity of σλ.
Finally, using Equation (80) and the fact that Xσλ = Θ∗ ◦ X ◦ σλ (see Equation (5)),

ηλ = Xσλ(e) = Θ∗ ◦ X ◦ σλ(e) = Θ∗,s(λ) ◦ X(s(λ)),

which gives precisely Equation (81). In particular, if X is given by Equations (71) and (72),
using Equation (70), we easily obtain Equation (82).

Now, let us prove Equation (83). Given a curve

Γ(t) = ρ(γ(t), s(λ)) = ρs(λ)(γ(t)) = σλ(γ(t)),

with γ(t) = g0 exp((ηλ + χλ) t), since γ′(t) =
(

Lγ(t)

)
∗,e
(ηλ + χλ), then

Γ′(t) = (σλ)∗,γ(t) ◦
(

Lγ(t)

)
∗,e
(ηλ) + (σλ)∗,γ(t) ◦

(
Lγ(t)

)
∗,e
(χλ).

On the other hand, given a curve h(x) on Gs(λ) such that h(0) = e and h′(0) = χλ,
since

σλ

(
Lg(h(x))

)
= ρ(g h(x), s(λ)) = ρ(g, s(λ)), ∀g ∈ G,

then (σλ)∗,γ(t) ◦
(

Lγ(t)

)
∗,e
(χλ) = 0 for all t. Accordingly, using Equations (80) and (84),

Γ′(t) = (σλ)∗,γ(t) ◦
(

Lγ(t)

)
∗,e
(ηλ) = (σλ)∗,γ(t) ◦ Xσλ(γ(t)) = X(σλ(γ(t))) = X(Γ(t)),

i.e., Γ is an integral curve of X. If Γ(0) = p0, then (see Equation (79))

p0 = σλ(g0) = Σ(g0, λ) =
(

Θ, π|U
)−1

(g0, λ),

which ends our proof.

In order to consider concrete examples of vertical and G-invariant fields, suppose that
M is a symplectic manifold, with symplectic form ω, and ρ is a symplectic action with an
Ad∗-equivariant momentum map K.

Proposition 10. If φ : g∗ → g is equivariant, i.e.,

Adgφ(α) = φ
(

Ad∗gα
)

, ∀α ∈ g∗, g ∈ G, (85)
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then
X = ω] ◦ K∗φ

is vertical and G-invariant. Furthermore, given an admissible neighborhood U and a complete
solution Equation (79), the related vector ηλ ∈ g (see Equation (81)), for each λ ∈ π(U), is given
by

ηλ = φ(K(s(λ))) + ξλ, (86)

for some ξλ ∈ gs(λ). In particular, the integral curve of X passing through p0 ∈ U at t = 0 can
be written

Γ(t) = ρ(g0 exp(φ(K(s(λ))) t), s(λ)), (87)

with (g0, λ) = (Θ(p0), π(p0)).

Proof. The form of X ensures that X(m) ∈ (KerK∗,m)
⊥, for all m ∈ M. Then, for every

admissible neighborhood U, we have from Equation (43) that

X(m) ∈
(
Ker
(

π|U
)
∗,m

)
, ∀m ∈ U,

i.e., X is vertical. To show G-invariance, note first that Equation (44) implies the equality

K∗,ρg(m) ◦
(
ρg
)
∗,m = Ad∗g ◦ K∗,m,

and in dual form (changing g by g−1 and m by ρg(m))(
ρg−1

)∗
ρg(m)

◦ K∗m = K∗ρg(m) ◦ Adg.

Combining the equation above, Equations (39), (44) and (85), we obtain(
ρg
)
∗,m(X(m)) =

(
ρg
)
∗,m

(
ω]

m ◦ K∗m(φ(K(m)))
)
= X

(
ρg(m)

)
,

as desired. Now, we will show Equation (86). From the very definition of K (see Equation (42)),
we have that ω[

m ◦ (ρm)∗,e = K∗m, so

ηλ = Θ∗,s(λ) ◦ X(s(λ)) = Θ∗,s(λ) ◦
(

ρs(λ)

)
∗,e
(φ(K(s(λ)))).

Thus, Equation (86) follows from Equation (70). Finally, Equation (87) is a direct
consequence of the previous theorem.

5.2. The Cotangent Bundle and the Left Multiplication
5.2.1. A Class of Invariant Vertical Vectors

Given a Lie group G, consider its cotangent bundle T∗G with its canonical symplectic
structure ωG = −dθG. Consider also the action

ρ : G× T∗G → T∗G

such that, for all g ∈ G and αh ∈ T∗h G,

ρ(g, αh) =
[(

Lg
)∗

h

]−1
(αh) ∈ T∗ghG.

Note that ρ is symplectic (see Equation (39)) and has an Ad∗-equivariant momentum
map J : T∗G → g∗ given by

J
(
αg
)
=
(

Rg
)∗

e

(
αg
)
.
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Furthermore, ρ is a free and proper action, the quotient T∗G
/

G is a manifold diffeo-
morphic to g∗ and the canonical projection π can be seen as the submersion

π : T∗G → g∗ : αg 7−→
(

Lg
)∗

e

(
αg
)
.

In other words, every point of T∗G is ρ-regular and the whole of T∗G is an admissible
neighborhood. Then, according to Proposition 4 (see Equation (40)),

Ξ](η) = π∗,α ◦ω]
G ◦ π∗α(η), η ∈ T∗α g

∗, (88)

defines a Poisson bracket on g∗ and π is a Poisson morphism between (T∗G, ωG) (with
its related Poisson structure) and (g∗, Ξ). Moreover, it can be shown that Ξ is the Kirillov–
Kostant bracket on g∗ (see [18]), i.e.,

Ξ](η) = ad∗ηα, η ∈ T∗α g
∗ ∼= g. (89)

On the other hand, the map s : g∗ → T∗G, such that s(α) = α ∈ T∗e G = g∗ is a global
section of π and satisfies s(π(α)) = α for all α ∈ g∗. A related horizontal submersion
is the map Θ : T∗G → G such that Θ

(
αg
)
= g, i.e., the canonical cotangent projection

πG : T∗G → G. In fact,

ρ
(
πG
(
αg
)
, s
(
π
(
αg
)))

= ρ
(

g,
(

Lg
)∗

e

(
αg
))

=
[(

Lg
)∗

e

]−1((
Lg
)∗

e

(
αg
))

= αg,

for all αg ∈ T∗g G.

Remark 6. Note that (πG, π) : T∗G → G × g∗ is the left trivialization of T∗G. Thus, T∗G
may be identified with G× g and, under this identification, the projections πG : T∗G → G and
π : T∗G → g∗ are just the canonical projections

pr1 : G× g∗ → G and pr2 : G× g∗ → g∗

on the first and second factor, respectively. Moreover, the canonical symplectic structure ωG on
T∗G is the 2-form on G× g∗ given by

ωG(g, α)((vg, β), (v′g, β′)) = β′((Lg−1)∗g(vg))− β((Lg−1)∗g(v′g)) + (ad∗(Lg−1 )∗g(vg)
α)((Lg−1)∗g(v′g)), (90)

for (g, α) ∈ G× g∗ and (vg, β), (v′g, β′) ∈ TgG× g∗ ∼= TgG× Tαg
∗ (see [9]). In addition, the

action ρ : G× (G× g∗)→ G× g∗ is just the left translation on the first factor, that is,

ρ
(

g,
(

g′, α
))

=
(

gg′, α
)

for g, g′ ∈ G and α ∈ g∗,

and the momentum map J : G× g→ g∗ is just the co-adjoint action of G on g∗

J(g, α) = Ad∗g−1 α

(for more details, see [9]).

According to Theorem 3 (part 1), for every vertical vector field X ∈ X(T∗G) along all
of T∗G,

Σ = (πG, π)−1 = ρ ◦ (idG × s) : G× g∗ → T∗G (91)

is a (global) complete solution of the πG-HJE for X. If, in addition, X is G-invariant, then its
integral curve with initial condition Γ(0) = (πG, π)−1(g0, α) is (recall Equations (81) and (83))

Γ(t) = ρ(g0 exp(ηα t), s(α)) =
[(

Lg0 exp(ηα t)

)∗
e

]−1
(α),
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with
ηα = (πG)∗,α(X(α)). (92)

We have used above that s(α) = α. This is the case, for instance, of a vector field X of
the form

Xφ = ω]
G ◦ π∗φ, (93)

with φ ∈ Ω1(g∗) such that
Ξ](φ(α)) = ad∗φ(α)α = 0, (94)

i.e., φ is a Casimir 1-form with respect to the Poisson bracket Equation (89). The G-
invariance of Xφ is immediate from Equations (39) and (41), and the verticality is ensured
by Equations (88) and (94). On the other hand, it can be shown that ηα = φ(α). In fact,
using the left trivialization of T∗G,, we can identify T∗G with G × g∗ (see Remark 6).
Under this identification, Xφ may be considered as a vector field on G × g∗ and, from
Equations (90) and (93), it follows that

Xφ(g, α) =
((

Lg
)
∗,e(φ(α)), ad∗φ(α)α

)
=
((

Lg
)
∗,e(φ(α)), 0

)
,

for all (g, α) ∈ G× g∗. Thus, using Equation (92) and Remark 6, we deduce that

ηα = (πG)∗,α
(

Xφ

(e,α)

)
= φ(α), for all α ∈ g∗.

So, in terms of Σ, the trajectories of Xφ can be written

Γ(t) = Σ(g0 exp(φ(α) t), α) = ρ(g0 exp(φ(α) t), α)).

5.2.2. Construction of the Exponential Curves up to Quadratures

In this subsection, we are going to show that Xφ (see Equation (93)) is integrable
up to quadratures (on a dense subset of T∗G) and, consequently, the exponential curves
exp(φ(α) t) can be explicitly obtained, also up to quadratures. The proof will be based on
Theorem 1.

Proposition 11. Consider the co-adjoint action Ad∗ : G × g∗ → g∗ and the related isotropy
subgroups Gα, with α ∈ g∗. Then, for every Ad∗-regular point α0 and any admissible neighborhood
V ⊆ g∗ of α0, the function

F = (J, π)|U : U = J−1(V) ⊆ T∗G → g∗ × g∗ (95)

is a submersion onto the closed submanifold

F(U) =
{(

α, Ad∗gα
)

: α ∈ V, g ∈ G
}
⊆ g∗ × g∗.

Moreover,
KerF∗ = Ker

(
J|U
)
∗
∩Ker

(
π|U

)
∗

(96)

and
KerF∗ ⊆ (KerF∗)

⊥. (97)

Proof. It is easy to see that the composition of (J, π) : T∗G → g∗ × g∗ and

R−1 : G× g∗ → T∗G : (g, α)→
((

Rg
)∗

e

)−1
(α)

(the inverse of the right trivialization) gives

(J, π) ◦R−1(g, α) =
(

α, Ad∗gα
)

.
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Then, given an Ad∗-regular point α0 and an admissible neighborhood V ⊆ g∗ of α0,
we have from Proposition 3 (applied to the action Ad∗) that (J, π) ◦R−1 restricted to G×V
is a submersion onto the closed submanifold F(U) ⊆ V × g∗. As a consequence, since R−1

is a diffeomorphism, the first affirmation of the proposition follows. On the other hand,
Equation (96) follows straightforwardly and Equation (97) is a direct consequence of the
identity KerJ∗ = (Kerπ∗)

⊥ and the inclusion

(KerJ∗ ∩Kerπ∗)
⊥ = (KerJ∗)

⊥ + (Kerπ∗)
⊥

= Kerπ∗ +KerJ∗ ⊇ KerJ∗ ∩Kerπ∗.

Remark 7. A similar result was proved in [20] (see Theorem 4.1 there), but in terms of Poisson
sub-algebras (see Remark 2).

Because of the form of Xφ, it is clear that ImXφ ⊆ (Kerπ∗)
⊥. As a consequence, (recall

Equation (43))
ImXφ ⊆ KerJ∗ ∩Kerπ∗. (98)

So, using the last proposition and combining Equations (96)–(98), it follows that, for
each Ad∗-regular point α0, we can construct a neighborhood U of α0 and a submersion
F : U → F(U) (given by Equation (95)), such that

ImXφ

|U ⊆ KerF∗ and KerF∗ ⊆ (KerF∗)
⊥.

Remark 8. It can be shown that (KerF∗)
⊥ is an integrable distribution. Then, if φ is an exact

1-form, Xφ

|U and F define a NCI system on U (see Section 2.4).

In addition, since KerF∗ ⊆ Ker
(

π|U
)
∗
, we have that

LXφ βφ = 0, with βφ = π∗φ,

as we saw at the end of Section 2.3 (recall Equations (25) and (26)). This enables us to apply
Theorem 1 to Xφ

|U .

Remark 9. For each n ∈ Π(U), the map β
φ
n ∈ Ω1(F(U)) related to βφ and defined by Equation (17),

is given by
β

φ
n = pr∗1φ, (99)

with pr1 : g∗ × g∗ → g∗ the projection onto the first factor.

According to the proof of Theorem 1, we can construct up to quadratures, a submersion
Π : U → Π(U) transverse to F, a complete solution Σ̂ = (Π, F)−1 and a family of
immersions (see Equation (21))

ϕλ : Π(U)→ T∗λ F(U), λ ∈ F(U),

such that the integral curves of Xφ

|U are given by Γ(t) = Σ̂(γ(t), λ), with γ satisfying (see
Equations (22) and (99))

ϕλ(γ(t)) = ϕλ(γ(0)) + t φ(pr1(λ)). (100)
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On the other hand, we know that Γ(t) = Σ(g0 exp(φ(α) t), α) for some g0 and α, with
Σ given by Equation (91). So, for an integral curve passing through

Γ(0) = Σ(e, α) = α = Σ̂(γ(0), λ), (101)

since
λ = F ◦ Σ̂(γ(0), λ) = F(α) = (J, π)(α) = (α, α),

we have that Σ(exp(φ(α) t), α) = Σ̂(γ(t), (α, α)). Consequently

exp(φ(α) t) = πG ◦ Σ̂(γ(t), (α, α)),

with γ satisfying (see Equation (100))

ϕ(α,α)(γ(t)) = ϕ(α,α)(Π(α)) + t φ(α),

and where we have used that (see Equation (101))

γ(0) = Π ◦ Σ̂(γ(0), λ) = Π ◦ Σ(e, α) = Π(α).

Hence, we have shown the next result.

Proposition 12. Given a Casimir 1-form φ : g∗ → g and a point α ∈ RAd∗ , the exponential curve
exp(φ(α) t) can be constructed up to quadratures. More explicitly, it is given by the formula

exp(φ(α) t) = πG

(
(Π, F)−1

(
ϕ−1
(α,α)

[
ϕ(α,α)(Π(α)) + t φ(α)

]
, (α, α)

))
, (102)

being ϕ−1
(α,α) a local lateral inverse of the immersion ϕ(α,α).

It is natural to ask, given ξ ∈ g, if we can construct exp(ξ t) up to quadratures. In the
following subsection, we shall give a partial answer to that question.

5.2.3. The Case of Semisimple and Compact Lie Groups

Let G be a Lie group with Lie algebra g.

Theorem 6. Consider ξ ∈ g such that

adξ(g)
0 ∩RAd∗ 6= ∅,

where adξ(g)
0 is the annihilator in g∗ of the subspace adξ(g) ⊆ g.

1. If α0 ∈ adξ(g)
0 ∩ RAd∗ , then, we can construct a Casimir 1-form φ : g∗ → g such that

φ(α0) = ξ.
2. The curve t 7→ exp(ξ t) can be obtained by quadratures.

Proof. Take α0 ∈ adξ(g)
0 ∩ RAd∗ . Then, α0([ξ, η]) = 0, for all η ∈ g or, in other words,

ξ ∈ gα0 with gα0 the isotropy algebra of α0 with respect to the co-adjoint representation of G
on g∗. Let V ⊆ g∗ be an admissible neighborhood of α0. Then (see Remark 3) the assigning

α ∈ V 7−→ gα ⊆ g

defines a vector subbundle W = äα∈V gα → V of the trivial vector bundle pr1 : V× g→ V.
By using the Inverse Function Theorem, we can construct an open subset Ṽ ⊆ V containing
α0 and a section φ̃ : Ṽ ⊆ g∗ →W (of such a bundle) satisfying φ̃(α0) = ξ. Note that, since
φ̃(α) ∈ gα, then adφ̃(α)α = 0, for all α ∈ Ṽ. Moreover, consider another open subsets V1,2

such that α0 ∈ V1 ⊆ V̄1 ⊆ V2 ⊆ V̄2 ⊆ Ṽ and the bump function χ : g∗ → R related to V1,2,
i.e., χ is equal to 1 inside V̄1 and equal to 0 outside V2. It is clear that φ : g∗ → g given by
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φ(α) =

{
φ̃(α) χ(α), α ∈ Ṽ,
0, α /∈ Ṽ,

satisfies the point 1. The point 2 follows from 1 and Proposition 12 for α = α0.

For an important subclass of Lie groups, we have the following result.

Theorem 7. Let G be a connected Lie group with Lie algebra g andRAd the open dense subset of
g, which consists of the regular points in g with respect to the adjoint action of G on g. Suppose that
there exists a non-degenerate ad-invariant symmetric bilinear form B : g× g→ R. Then,

1. The linear map B[ : g→ g∗ given by
〈

B[(ξ), η
〉
= B(ξ, η), for all ξ, η ∈ g, is a isomorphism

satisfying B[(RAd) = RAd∗ , and its inverse B] : g∗ → g is a Casimir 1-form.
2. For every ξ ∈ RAd, the curve t 7→ exp(ξ t) can be obtained by quadratures.

Proof. We have that (non-degeneracy)

B(ξ, η) = 0, for all η ∈ g =⇒ ξ = 0, (103)

and (ad-invariance)

B([ξ, η], ν) + B(η, [ξ, ν]) = 0, for all ξ, η, ν ∈ g. (104)

From Equation (103), we deduce that B[ is an isomorphism of vector spaces. Moreover,
using Equation (104), it follows that the following diagram

g
B[

- g∗

adξ

6
ad∗ξ

6

g
B[

- g∗

is commutative, for every ξ ∈ g. So, since G is a connected Lie group, we also have that
the diagram

g
B[

- g∗

Adg
6

Ad∗g = (Adg−1)∗
6

g
B[

- g∗

is commutative for every g ∈ G. Thus, if Gξ (resp. GB[(ξ)) is the isotropy group of ξ ∈ g

(resp. B[(ξ) ∈ g∗) with respect to the adjoint (resp. co-adjoint) action of G on g (resp. g∗),
we deduce that

Gξ = GB[(ξ).

This implies that
B[(RAd) = RAd∗ . (105)

On the other hand, from Equation (104), we have that

B([ξ, η], ξ) = 0, for all ξ, η ∈ g.
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Therefore, given α ∈ g∗, if we write α = B[(ξ) for some ξ ∈ g, we have for

B] =
(

B[
)−1

: g∗ → g that〈
ad∗B](α)

α, η
〉
=
〈

α,
[

B](α), η
]〉

=
〈

B[(ξ), [ξ, η]
〉
= B([ξ, η], ξ) = 0,

for all η ∈ g. Then, B] is a Casimir 1-form. This proves the first point. To prove the second
point, note that, according to Equation (105), for every ξ ∈ RAd, there exists α ∈ RAd∗ such
that ξ = B](α). Then, it is enough to use Proposition 12 for φ = B].

Remark 10. It can be show that, under the conditions of the theorem above,

adξ(g)
0 ∩RAd∗ 6= ∅, ∀ξ ∈ RAd.

So, the point 2 of Theorem 7 can also be proven by combining the equation above and Theorem 6.

Under the conditions of the last theorem, we can use Equation (102) for φ = B] and
for all ξ ∈ RAd, which gives

exp(ξ t) = πG

(
(Π, F)−1(aξ(t), bξ

))
,

with

aξ(t) = ϕ−1
bξ

[
ϕbξ

(
Π
(

B[(ξ)
))

+ t ξ
]

and bξ = F
(

B[(ξ)
)
=
(

B[(ξ), B[(ξ)
)

.

Remark 11. In particular, for ξ ∈ RAd and close to 0 (in order for aξ(t) to be defined when t = 1),
we have the following expression of the exponential map:

exp(ξ) = πG

(
(Π, F)−1

(
ϕ−1

bξ

[
ϕbξ

(
Π
(

B[(ξ)
))

+ ξ
]
, bξ

))
.

Remark 12. It is worth mentioning that B] is an exact 1-form, i.e., B] = dh with h : g∗ → R
given by

h(α) =
1
2

〈
α, B](α)

〉
.

Then, according to Remark 8, the related vector field XB]

|U and the submersion F define a NCI
Hamiltonian system on U.

For a semisimple Lie group G with Lie algebra g, the killing form on g satisfies the
conditions in Theorem 7 (see for example [30]). On the other hand, a Lie algebra g is the
Lie algebra of a compact Lie group if and only if g admits an ad-invariant scalar product
(see, for instance, [31]). So, using Theorem 7, we have the next corollary.

Corollary 1. Let G be a connected Lie group with Lie algebra g and ξ ∈ RAd ⊆ g. If G is
semisimple or compact, then t 7→ exp(ξ t) can be obtained by quadratures.

The last two results tell us that the exponential curve exp(ξ t) can be constructed by
quadratures for ξ living in an open dense subset of g. Unfortunately, we cannot ensure the
same for every Lie group.

Remark 13. If g is an arbitrary Lie algebra, then the subset{
ξ ∈ g : adξ(g)

0 ∩RAd∗ 6= ∅
}
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is not, in general, dense in g. In fact, let h(1, 1) be the nilpotent Lie algebra of the Heisenberg group
H(1, 1) of dimension 3. Then, we can consider a basis {ξ1, ξ2, ξ3} of h(1, 1), such that

[ξ1, ξ2] = −[ξ2, ξ1] = ξ3

and the rest of the basic Lie brackets are zero. So, if (α1, α2, α3) ∈ R3 ∼= h(1, 1)∗, we have that

g(α1,α2,α3)
= h(1, 1), if α3 = 0,

and
g(α1,α2,α3)

= 〈ξ3〉, if α3 6= 0.

Thus, we deduce that
RAd∗ =

{
(α1, α2, α3) ∈ R3 : α3 6= 0

}
,

which implies for ξ = a1ξ1 + a2ξ2 + a3ξ3 ∈ g that

adξh(1, 1)0 ∩RAd∗ = RAd∗ if a1 = a2,

and
adξh(1, 1)0 ∩RAd∗ = ∅ if a1 6= a2.

5.3. Integrability Conditions for Invariant Vertical Fields

Let us go back to Section 5.1. Consider a manifold M, a vector field X ∈ X(M) and a
Lie group action ρ : G×M→ M. Assume that X is vertical around every point m0 ∈ Rρ

and G-invariant. Consider a covering ofRρ given by admissible neighborhoods U, each

one of them with an associated complete solution ΣU = ρ ◦
(

idΘ(U) × s
)

, as those given in
Theorem 3, and the map

ηU : π(U)→ g : λ 7→ Θ∗,s(λ) ◦ X(s(λ))

given by Equation (81) in Theorem 5. From now on, we shall denote gρ,m the isotropy
sub-algebra related to the point m and the action ρ.

Theorem 8. If for each U and λ ∈ π(U), we have that

adηU(λ)+ςλ
(g)0 ∩RAd∗ 6= ∅,

for some ςλ ∈ gρ,s(λ), then X is integrable up to quadratures alongRρ.

Proof. For a given U and λ ∈ π(U), we know that the integral curves of X, with initial
conditions inside U, are given by the formula (see Equation (83))

Γ(t) = ρ(g0 exp((ηU(λ) + χλ) t), s(λ)),

with λ ∈ π(U) and χλ ∈ gρ,s(λ) arbitrary. On the other hand, using Theorem 6, given

α ∈ adηU(λ)+ςλ
(g)0 ∩RAd∗ ,

we can construct a Casimir 1-form φλ : g∗ → g such that φλ(α) = ηU(λ) + ςλ. Thus, taking
χλ = ςλ, we have that

Γ(t) = ρ(g0 exp(φλ(α) t), s(λ))

and, using Proposition 12 for φ = φλ, it follows that Γ can be constructed up to quadratures.

Now, let us suppose that M is a symplectic manifold, with symplectic structure ω, and
ρ : G×M→ M is a symplectic action with Ad∗-equivariant momentum map K : M→ g∗.
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Theorem 9. Consider an equivariant function φ : g∗ → g and the vector field X = ω] ◦ K∗φ. If

K
(
Rρ

)
∩RAd∗ 6= ∅

and φ is also a Casimir 1-form, then there exists a G-invariant open subset of V ⊆ Rρ where X is
integrable up to quadratures.

Proof. Under above condition, according to Proposition 10, X = ω] ◦ K∗φ is vertical and
G-invariant. On the other hand, if K

(
Rρ

)
∩RAd∗ 6= ∅, according to Proposition 6, there

exists a G-invariant open subset V ⊆ Rρ such that K(V) ⊆ RAd∗ . Consider a covering of
V as above and the related maps ηU . Using Proposition 10 again,

ηU(λ) = φ(K(s(λ))) + ξλ,

for some ξλ ∈ gρ,s(λ), and the integral curves of X by points of U are of the form

Γ(t) = ρ(g exp(φ(K(s(λ))) t), s(λ)), with λ ∈ Π(U) and g ∈ Θ(U). (106)

Then, since s(λ) ∈ U ⊆ V, it follows that K(s(λ)) ∈ RAd∗ , and consequently, using
Equation (106) and Proposition 12 for α = K(s(λ)), we deduce the result.

More interesting examples can be constructed by using the next lemma.

Lemma 3. If h : g∗ → R is a G-invariant function with respect to Ad∗, then dh : g∗ → g is
equivariant and a Casimir 1-form.

For a proof, see [32], Lemma 2.9.

Theorem 10. Consider G-invariant functions hi : g∗ → R (resp. fi : M→ R), i = 1, ..., k, with
respect to Ad∗ (resp. ρ). Suppose that K

(
Rρ

)
∩RAd∗ 6= ∅ and define

X(m) =
k

∑
i=1

fi(m)
(

ω] ◦ K∗dhi

)
(m), ∀m ∈ M. (107)

Then, there exists a G-invariant open subset V ⊆ Rρ where the vector field X is integrable up
to quadratures.

Proof. Since each field ω] ◦ K∗dhi is G-invariant and vertical, the same is true for X. On
the other hand, given (as in the proof of Theorem Equation (9)) a G-invariant open subset
of V ⊆ Rρ such that K(V) ⊆ RAd∗ , a covering of V by admissible neighborhoods U and
the related maps ηU , for each λ ∈ π(U), we have that

ηU(λ) =
k

∑
i=1

fi(s(λ)) dhi(K(s(λ))) + ξλ,

for some ξλ ∈ gρ,s(λ). Then, defining φλ : g∗ → g by

φλ(α) =
k

∑
i=1

fi(s(λ)) dhi(α),

which is a Casimir 1-form, we have that

ηU(λ) = φλ(K(s(λ))) + ξλ.

Finally, since K(s(λ)) ∈ RAd∗ (as we saw in the previous theorem), the theorem follows
from Proposition 12 for φ = φλ and α = K(s(λ)).
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It is worth mentioning that the vector field X given by Equation (107) is not, in general,
a Hamiltonian vector field.
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