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Abstract: This work presents a mathematical model to investigate the current outbreak of the
coronavirus disease 2019 (COVID-19) worldwide. The model presents the infection dynamics and
emphasizes the role of the immune system: both the humoral response as well as the adaptive
immune response. We built a mathematical model of delay differential equations describing a
simplified view of the mechanism between the COVID-19 virus infection and the immune system.
We conduct an analysis of the model exploring different scenarios, and our numerical results indicate
that some theoretical immunotherapies are successful in eradicating the COVID-19 virus.

Keywords: mathematical modeling COVID-19 virus; immune response; immunotherapies

1. Introduction

While the fight to find an effective and permanent cure for COVID-19 continues to
challenge scientists, great progress has been made in discovering new information and
successful treatments to end this disease.

An important number of mathematical modeling studies have been performed for
the COVID-19 epidemic, all of them mainly based on the classical epidemiological model
called the susceptible-exposed-infectious-recovered (SEIR) model in order to describe the
epidemiological aspects of the transmission dynamics [1–7]; however, none of these (and,
to our knowledge, none others) have attempted to describe the infection dynamics between
the immune system and the virus emphasizing the role of the immune system in the control
of the disease.

Usually, coronaviruses infect only the upper respiratory tract and cause simple symp-
toms. However, more complex coronaviruses (severe acute respiratory syndrome coro-
navirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and
SARS-CoV-2 also called COVID-19 virus) can reproduce in the lower respiratory tract,
causing pneumonia, which can cause death. For the case of SARS-CoV-2, the virus is trans-
mitted through respiratory droplets and the median incubation period is approximately
4–5 days [8–11] and before symptom onset is 6–9 days, with 97.5% of symptomatic patients
developing symptoms within 11.5 days [10]. Most patients with COVID-19 infection typi-
cally exhibit a fever and dry cough as some of the main symptoms. Some previous works
on SARS-CoV demonstrated that this virus mainly targets airway epithelial cells [12].

Once a COVID-19 infection begins, there is destruction of epithelial cells, trigger-
ing an immune response. The first line of defense is the recruitment of macrophages
responding to the damage; at the same time, the secretion of some pro-inflammatory cy-
tokines and chemokines IL-6 and IFNγ, among others [13], attracts immune cells, notably
T-lymphocytes and B-cells, but more specifically helper T-lymphocytes TH of class 1 [14].
Clinical evidence shows that these cytokine storms mediate lung inflammation, causing
septic shock and multi-organ failure, additionally higher levels of interleukines exhibit a
dysfunctional immune response [13].

It is remarkable then that much of the evidence points to a failure in the immune
system. B cell responses in patients with COVID-19 occur in accordance with helper T-
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lymphocytes responses, from around 1 week after symptom onset [12,15]. At the beginning
of infection, B-cell response in patients typically arises against the N-protein (nucleocapsid
protein); then, between day 4 and day 8, antibodies that respond to the S-protein are
found [16,17], the immune response continues, and it has been found that an antibody-
neutralizing reaction begins to develop by week 2, but most usually do it until week
3 [18,19]. Given that viral titres peak earlier for SARS-CoV-2 than for SARS-CoV16–19,
antibody responses may also arise earlier [12]. Thus, it seems that immunotherapy with
antibodies are likely to be effective against SARS-CoV-2: convalescent serum samples have
been infused in clinical trials with apparently good results [20] and were also previously
used successfully in clinics against SARS [12,21,22].

On the other hand, we found another response, one of the adaptive immune system.
Here it has been seen that T-cells, both T-lymphocytes, responsible for annihilating virus-
infected cells, and helper T-lymphocytes, responsible for cytokine production, which drives
immune cell recruitment, are detected around the first week of infection, normally in blood;
however, cytotoxic T-lymphocytes are responsible for annihilating virus-infected cells [12].
Reports of lymphopenia and reduced peripheral T cell levels in COVID-19 patients suggest
that T-lymphocytes migrate to the infected site in order to control the infection [8,23,24].
Additionally, it has been found that T cell exhaustion is increased and that functional
diversity is decreased, all together predicting a severe form of the disease [12,25].

Considering the above evidence, we cannot deny the important role of T-lymphocytes
in immune function; nevertheless, several vaccine protocols tested in animals with coron-
avirus infections showed signs of immunopatologhy associated with helper T-lymphocytes
of class 2 rather than protection [12,26], so it seems hard in this moment to use some type
of T cell-based immunotherapy to alleviate the effects of infection; however, coronavirus-
specific T lymphocytes are clearly important in eliminating the virus and controlling disease
development and should be considered as immunotherapy strategies [12].

In this paper, we attempt to model and simulate the novel coronavirus COVID-19
infection in a very simple way. We built a mathematical model of delay differential
equations describing a simplified view of the mechanism between the COVID-19 virus and
the immune system. The model shows the interactions of cellular and humoral immune
responses in terms of the main variables characteristic of the immune response, trying
to verify the damage caused by infection in the target organ. Additionally, we proposed
two different immunotherapies, one based on the increase in specific antibodies and the
other based on the increase in cytotoxic T-lymphocytes. Our numerical results indicate that
theorethical immunotherapies are successful in erradicating COVID-19 infections.

The paper is organized as follows: The first section presents an introduction to the
novel coronavirus, emphasizing parts of the immune system. The second section presents
the mathematical model. The third section presents some numerical results, and finally,
Section 4 presents some concluding remarks.

2. The Mathematical Model

The model that is studied provides a oversimplified view of the interplays between
the COVID-19 virus and the immune system, where we proposed that the disease could be
treated with immunotherapy. It is important to mention that the system of equations that
we propose is similar to that used by Marchuk et al. [27] for influenza A, although it has
been modified to study the infection by COVID-19.

Let us consider the biological meaning of the model’s variables in the context of
some processes happening inside the body. The infection processes, multiplication, and
annihilation of damaged epithelial cells are localized in the upper and middle parts of
respiratory tracts [27]. The processes of immune reaction occur in a compartment of
lymphoid tissue. Neutralization of viruses by antibodies and the annihilation of infected
cells by T-lymphocytes takes place in the middle of the respiratory tracts. Taking the latter
into account, the model’s variables for antiviral immune response to COVID-19 can be
defined as follows:
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• V(t), concentration of free viruses (particle/mL);
• Mv(t), concentration macrophages that have been stimulated and are localized in the

lymphoid tissue (cell/mL);
• TH1(t), concentration of helper T-lymphocytes class 1 that have been activated and

mediate the proliferation of cytotoxic T-lymphocytes in lymphoid tissue (cell/mL);
• TH2(t), concentration of class 2 helper T-lymphocytes that have been activated and

mediate the proliferation of B-lymphocytes (cell/mL);
• Te(t), concentration of cytotoxic T-lymphocytes that have been activated in lymphoid

tissue (cell/mL);
• B(t), concentration of B-lymphocytes in lymphoid tissue (cell/mL);
• P(t), concentration of plasma cells (cell/mL);
• A(t), concentration of IgG antibody molecules specific to COVID-19 viruses (molecule/mL);
• Cv(t), concentration cells infected by viruses (particularly, the epithelial ones)

(cell/mL); and
• m(t), concentration of damaged cells (cell/mL).

Then, in order to investigate the properties of the immune system and its dynamical
behavior against the COVID-19 virus, a set of mathematical delay differential equations
was formulated. Let us then consider the mathematical model proposed mainly based on
the work of Marchuk G. et al. [27].

2.1. Mathematical Equation for the Viruses Circulating Freely in an Organism V(T)

dV(t)
dt

= νCv(t)(1 −
Cv(t)

CT
) + nbceCv(t)Te(t)−

− gva A(t) ∗ V(t) ∗ (1 + µv(Cv(t)/CT))− gvm Msv(t)V(t)− gvcChivV(t) (1)

The term on the left-hand side of Equation (1) represents the rate of change in the
virus population V(t), and the first term on the right-hand side indicates the growth of the
virus population; a logistic growth law was considered when the viruses are reproduced in
the infected cells Cv. The constant ν depends on the rate of replication of viruses; Finally,
the parameter CT is the so-called carrying capacity (the limit of the maximum population
of cells that can be infected).

It is important to notice that Bartholdy et al. [28], Wodarz et al. [29], and Arnaout et
al. [30] found that the turnover of free viruses is much faster than that of infected cells,
which allowed them to make a quasi-steady-state assumption, that is, the amount of free
virus is simply proportional to the number of infected cells. Based on the latter, we consider
that free viruses follow similar population dynamics as the host cells. It is well documented
that COVID-19 viruses are characterized by a high rate of replication in epithelial cells (1 to
3 days) after the infection; their concentration increases up to 10−9 to 1014 (particle/mL),
conserved within this range.

It is important to notice that new viruses produced in infected cells return to the
plasma as “free viruses”.This stimulus transforms the antigen-presenting cells M into
activated macrophages Mv, in turn, producing the annihilation of viruses by antibodies.
The following term explains the viruses that abandon the infected cells Cv once the cytotoxic
lymphocytes annihilate them.

The third and the fourth terms represent the elimination of free viruses by the interac-
tion with cytotoxic T-lymphocytes Te(t) and antibodies, respectively. It is worthwhile to
mentioning that the variable Cv(t)/CT serves also as a characteristic of edema (build-up of
fluid in the body’s tissue that increases pulse rate and raises body temperature; it is thought
that it is a defense reaction to the infection by viruses), and the function (1+ µv(Cv(t)/CT))
describes the amplification of two processes: the neutralization and the destruction of V(t),
and Cv(t), respectively. This variable pretends to be related to the increase in the arterial
tension for this model.
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Additionally, the last two terms report a decrease in the number of viruses caused by
the interaction with macrophages MV and the influence of the invasion of free viruses into
healthy cells that became infected Chiv = CT − Cv(t)− m(t), respectively.

2.2. Mathematical Equation for the Stimulated (Antigen-Presenting Cells) Macrophages MSv(T)

dMsv(t)
dt

= gvm MTV(t)− am Msv(t) (2)

Equation (2) describes the population dynamics of antigen-presenting cells, i.e., the
dynamics of the number of macrophages bound to viruses (stimulated macrophages)
Msv(t). The first term represents the increase in the number of macrophages due to an
interaction with antigens (viruses). The second term takes into account natural decrease in
the number of macrophages.

2.3. Mathematical Equation for Helper TH1 Lymphocytes of Innate Immunity TH1(T)

dTH1(t)
dt

= bhMv(ρhMv Msv(t − τH1)TH1(t − τH1)− Msv(t)TH1(t))

+ ah(TH1T − TH1(t)) (3)

Equation (3) is a balanced equation for class 1 helper lymphocytes TH1; this specific
type of lymphocytes provides proliferation of the cytotoxic T-cells. The first term in this
equation represents the increment of helper T-lymphocytes due to their interaction with
the presenting cells; particularly for this case, the stimulated macrophages are the only
presented cells considered. The contact between the antigen-presenting cells Mv and the
helper T-lymphocytes TH1 class 1 expands the population of TH1 cells at a rate ρh. This
expansion is given after the interaction with the stimulated macrophages Msv, which
happens at time t − τH1 between the macrophages and the activated cytotoxic lymphocytes.
The second term expresses the death of the activated helper T-lymphocytes TH1 once the
division cycle starts after contact with stimulated macrophages; all of this happens at a rate
bh. Finally, the maintenance of TH1 cell homeostasis is described in the third term, which is
equal to TH1T , when the organism has no reaction to antigens; this happens at a constant
rate given by ah.

2.4. Mathematical Equation for Helper TH2 Lymphocytes of Innate Immunity TH2(T)

dTH2(t)
dt

= bhB(ρhB ∗ Msv(t − τH2) ∗ TH2(t − τH2)

− Msv(t)TH2(t)) + ahB(TH2T − TH2(t)) (4)

Equation (4) is a balanced equation for class 2 helper lymphocytes TH2, this specific
type of lymphocyte provides proliferation of the B-lymphocytes of innate immunity B(t).
The first term in this equation represents the increment of helper T-lymphocytes due to their
interaction with the macrophages stimulated by the virus. This expansion shows a rate of
ρbh, given for the contact between the macrophages and the TH2 helper lymphocytes cells.
The expansion is given after the interaction with the stimulated macrophages Msv and
occurs at a contact time of t − τH2. The second term expresses the death of the activated
helper T-lymphocytes TH2 once the division cycle starts after contact with stimulated
macrophages; all this happens at a rate bhB. Finally, the maintenance of TH2 cell homeostasis
is described in the third term, which is equal to TH2T , when the organism has no reaction
to antigens; this happens at a constant rate given by ahB.

2.5. Mathematical Equation for Cytotoxic T-Cells of Adaptive Immunity TE(T)

dTe(t)
dt

= bp(ρe Msv(t − τc)Th1(t − τc)Te(t − τc))
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− becCv(t)Te(t) + ae(TeT − Te(t)) (5)

The dynamic of activated cytotoxic T-limphocytes (CTLs), Te, is described in Equation (5).
The first term takes into account the expansion of CTLs and its activation. It is considered
that the double interaction between the antigen-presenting cells stimulated by virus and the
helper TH1 lymphocytes with the inactive cytotoxic lymphocytes begins their activation.
It is proposed that this increase happens at a rate bp. Additionally, it is considered that
the encounter between the inactivated cytotoxic cells and the macrophages and the TH1
cells occurs at a time t − τe. The second term in Equation (5) represents the decrease in
population of CTLs through the elimination of cells infected by virus Cv; all this happens
at a rate bec.

This term shows the well-studied phenomenon of the destruction of virus-infected
cells by means of cytotoxic CD8 lymphocytes that includes their adherence to these cells
until their lysis. More specifically, this interplay between the lymphocytes and the infected
cells can be divided into three well-identified phases: (i) the union of the lymphocyte to cell,
(ii) the generation of a lethal hit (preparation for its lysis), and (iii) the annihilation of the
cell Macken et al. [31]. In the laboratory, the first step is complex because the lymphocyte
has to identify the virus-infected cell followed by a recognition process so that finally the
lymphocyte adheres to the infected cell. In fact, motivated by the previous phenomenon
(the cytotoxicity of CTLs), Perelson et al. [32], Macken et al. [31], and Perelson et al. [33]
developed a quantitative model where cytotoxicity mediated by lymphocytes was studied.
In their study, they found (i) that cytotoxic lymphocytes annihilated infected cells by
transferring lethal hits to the uninjured cells, (ii) that the time used in this programming
for lysis is between 4 and 30 min, and (iii) that one cytotoxic lymphocyte can annihilate up
to ten injured cells.

The authors also found a very interesting fact: the mean time between a lymphocyte
finding an infected cell and its annihilation takes approximately 55 min. Moreover, if
the mean time is measured for greater conjugates (one infected cell and three cytotoxic
lymphocytes), it takes only around 30 min. Therefore, the term characterizes the shortening
of CTL life spans due to their cytolytic activity against virus-infected target cells displaying
class I MHC molecules (some biological evidence can be found in [34,35]). Finally, the last
term expresses the maintenance of Te cells homeostasis, which is equal to TeT when the
organism has no reaction to antigens; this happens at a constant rate given by ae.

2.6. Mathematical Equation for B-Lymphocytes of Innate Immunity B(T)

dB(t)
dt

= bpB(ρbTH2(t)Msv(t − τB)B(t − τB))

− bpB(TH2(t)Msv(t)B(t)) + ab(BT − B(t)) (6)

The dynamic of the B-lymphocytes of the compartment of lymphoid tissue draining
the lungs, B(t), is described in Equation (6). The first term takes into account the prolif-
eration of B cells. It is considered that this proliferation is due to the double interaction
between the macrophages stimulated by virus and the TH2 lymphocytes with the inac-
tive B cells producing their activation. It is proposed that this expansion is at a rate bpB.
Additionally, it is considered that the encounter between the inactivated cytotoxic cells,
the macrophages, and the TH2 cells occurs at the time, t − τB. The second term describes
the decrease in B cells as a result of the double interaction with stimulated macrophages
and the TH2 cells, where bpB is the decreasing rate. Finally, the maintenance of B cells
homeostasis is described in the third term, which is equal to BT , when the organism has no
reaction to the antigens; this happens at a constant rate given by ab.

2.7. Mathematical Equation for Plasma Cells P(T)

dP(t)
dt

= bpP(ρpTH2(t − τp)Msv(t − τP)B(t − τP))− adp(PT − P(t)) (7)
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Equation (7) is a balanced equation for the concentration of plasma cells P(t) in
lymphoid tissue draining the lungs. The first term takes into account the rate of creation of
plasma cells by the interaction with the stimulated B-cells and the macrophages stimulated
by virus Mv. The last term in Equation (6) accounts for the natural death of these plasma
cells at rate adp.

2.8. Mathematical Equation for Antibodies A(T)

dA(t)
dt

= bA A(t − τA)(1 −
A(t − τA)

AT
)− gavV(t)A(t) (8)

Equation (8) expresses a balanced equation for antibodies A(t). The first term on
the right-hand side considers the expansion of antibodies governed by a logistic delay
equation. The coefficient bA depends on the rate of reproduction of antibodies, and the
parameter AT is its carrying capacity (the limit of the maximum population of antibodies
that can be produced); the second term expresses the decrease in antibodies due to the
neutralization of viruses at a rate gav.

2.9. Mathematical Equation for Cells of a Target Organ Infected by Viruses CV(T)

dCv(t)
dt

= sV(t)Chiv − bceCv(t) ∗ Te(t)− bmCv(t) (9)

The dynamic of the cells infected by virus is described in Equation (9). The first term
takes into account the number of healthy cells (Chiv) that are transformed into infected cells
by the action of “free” viruses at a rate s, the second term represents the elimination of cells
infected by virus caused by the interaction with the activated cytotoxic T-lymphocytes, and
the natural death of the cells infected by virus is included in the last term of Equation (9).

2.10. Mathematical Equation for the Malfunctioning Part of a Target Organ Affected by Viruses M(T)

dm(t)
dt

= bceCv(t)Te(t) + bmCv(t)− αmm(t) (10)

The dynamic of the damaged mass of a tissue sensitive to virus, m(t), is presented
in Equation (10). The first two terms on the right-hand side describes the proliferation of
cells eliminated by cytotoxic T-lymphocytes and the proliferation of malfunctioning cells
affected by viruses at a rate bce, and the natural death of m(t) cells is included in the third
term of Equation (10).

2.11. Mathematical Equation for Body Temperature θ(t)

It has been noticed that viremia is correlated highly with temperature; a particular
case is observed for dengue patients (see, for example, Dengue fever in Tsai et al. [36]). The
results were in line with reports on the high correlation of body temperature with viral
load in samples collected from patients for COVID-19 (see Muhammad H. G. et al. [37]).

Usually, viremia kinetics are characterized by a downward trend, with a peak in the
plasma viral RNA levels [36]. Based on the latter, we suggest the following hypothesis
about the mechanism of temperature changes (modeling these changes as an ODE) in the
course of an infection disease: Based on clinical data, the initial presentation of the fever in
COVID-19 in the first week, during the viral phase of the illness, is a manifestation of the
body’s immune response to the viral replication.

Then, we assume that an increase in temperature is due to an increase in the viral
load. However, after this increase in temperature, it is observed that, when the immune
system acts and decreases the viral load, there is a decrease in temperature. This suggests
that the relationship is not linear. We then assume that body temperature depends on
the concentration of viruses in the organism. Then, the temperature does not rise if the
concentration of viruses is under some threshold V∗. If the concentration of these viruses



Mathematics 2021, 9, 1356 7 of 19

grows above the constant V∗, then we consider that the temperature is proportional to
V(t). The equation that describes this behavior during the illness can be written as follows:

dθ(t)
dt

= −r1V(t)ln(V(t)/r2)− r3(θ(t)− θ∗) (11)

with,

r1 =

{
0, if V(t) < V∗

const > 0. if V(t) ≥ V∗

Additionally, it is considered that the temperature of a body is normal when θ = θ∗ =
36.6 ◦C.

3. Numerical Results
3.1. Immunophysiological Response of COVID-19 Infection in Its “Normal” Form

To simulate the dynamics of COVID-19 that accounts for the immunophysiologi-
cal reaction during the coronavirus SARS COV-2 infection, we consider the system of
Equations (1)–(12) with initial conditions 13 and the set of coefficients in Table 1 as a basis
for the mathematical modelling of COVID-19 infection. At first, we can see the behavior for
the virus concentration V(t); see Figure 1a, which presents the dynamics of the disease in
its “not acute” form, for which there is some slight symptoms. It is characterized by rapid
growth between days 7 to 10 in very good agreement with the available data [10]; due to
the immune reaction, edema could manifest itself by causing the viral load to drop below a
certain level.

It is important to notice that all the parameters considered in the model, from Equa-
tions (1) to (11) have their own values given in Tables 2–4 respectively.

Immune response to viral antigens penetrating into an organism is determined by
two responses: the humoral response, which is activated by B-lymphocytes, which in turn
produces antibodies and the adaptive response, which activates the cytotoxic lymphocytes.
It is clear from Figure 1b,c that only after a certain amount of antibodies and cytotoxic
T-lymphocytes Te(t) is produced until the 5th to 14th days will a stable diminution of V(t)
begin down to zero concentrations of the viral load.

The development of disease leads to a significant increase in the temperature, which
reaches its maximum 10 days after the beginning of the infection; see Figure 1h. Finally,
Figure 1g presents m(t), the percentage of damaged cells in the compartments of the upper
respiratory tract epithelium (cell/mL). The pathological process affects some segments
of the lungs, which is equal to 60–65% of lung volume, and after day 30, the percentage
decreases until it reaches zero.

Table 1. Initial conditions.

Initial Condition Name Parameter Value

V(0) Initial viral load at time t = 0 1 ∗ 10−15 mL/mol*day
Mv(0) Initial concentration of macrphages at time t = 0 0
TH1(0) Is the initial concentration of Helper T-Lymphocytes C1 at time

t = 0
TH1T

TH2(0) Is the initial concentration of Helper T-Lymphocytes C2 at time
t = 0

TH2T

Te(0) Is the initial concentration of Cytotoxic T-Lymphocytes at time
t = 0

TeT

B(0) Initial B-cells at time t = 0 BT
P(0) Initial Plasma cells at time t = 0 PT
A(0) Initial Antibodies at time t = 0 AT
CV(0) Initial Damage cells at time t = 0 0
m(0) Damage in an organ t = 0 0
θ(0) Initial Temperature at time t = 0 36.6 ◦C
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Figure 1. Numerical results of the mathematical model for the case in which the immunophysiological response of COVID-19 infection
in its ”normal” form: (a) the viral load V(t), (b) the cytotoxic T-lymphocytes Te(t), (c) the B-lymphocytes B(t), (d) the class 1 helper
T-lymphocytes TH1(t), (e) the antibodies A(t), (f) the plasma cells P(t), (g) the malfunctioning part of a target organ affected by viruses
m(t), and (h) body temperature θ(t). In all cases, the numerical results are simulated for the “normal case”.
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Table 2. Parameters used in the model.

Parameter Name Parameter Value

MT Total Number of Macrophages 1 ∗ 10−18 mol/mL
TH1T Total Number of Helper T-lymphocytes Class 1 1 ∗ 10−18 mol/mL
TH2T Total Number of Helper T-lymphocytes Class 2 1 ∗ 10−18 mol/mL
TeT Total Number of Cytotoxic T-lymphocytes 1 ∗ 10−18 mol/mL
BT Total Number of B-Cells 1 ∗ 10−21 mol/mL
PT Tolat Number of Plasma Cells 1.83 ∗ 10−23 mol/mL
AT Total Number of Antiboidies 8.5 ∗ 10−16 mol/mL
CT Total Number of Cells 1.7 ∗ 10−14 mol/mL
am Rate constant for the loss by a macrophage of stimulated state 3.3 (day)−1

ah Rate constant for the loss by T -helpers for B-cells of stimulated state 1 (day)−1

ae Rate constant for natural natural death of CTLs 0.4002 (day)−1

ab Rate constant for natural death of B-Lymphocytes 0.1 (day)−1

adp Rate constant for natural death of plasma cells 4 (day)−1

τH1 Duration of the division cycle for TH1 cells 0.6 day
τH2 Duration of the division cycle for TH2 cells 0.6 day
τc Duration of the encounter between inactivated Tc cells and macrophages 3 day
τB Duration of the encounter between inactivated TH2 cells and macrophages 1 day
τp Duration of the encounter between B cells and macrophages 0.4 day

Table 3. Parameters used in the model (continuation).

Parameter Name Parameter Value

ρhB Number of TH1 cells created by single division cycle 4
ρe Number of Cytotoxic Tc Lymphocytes created by division 2
ρb Number of B cells created by division 3
ρp Number of plasma cells in a clone of B-cells created by division 1
bhMv Rate constant for the stimulation of TH1 cell 1 ∗ 1028 mL/(mol*day)
bhB Rate constant for the stimulation of TH2 cell 3.15 ∗ 1028 mL/(mol*day)
bp Rate constant for the stimulation of Tc cells 5.5 ∗ 1045 mL2/(mol2*day)
bpB Rate constant for the stimulation of B cells 5.4 ∗ 1046 mL2/(mol2*day)
bpP Rate constant for the stimulation of P cells 4.2 ∗ 1044 mL2/(mol2*day)
gvm Rate constant for the removal of antigen particles by macrophages 1.7 day−1

gmv Rate constant for antigenic stimulation of macrophages in a lymph node 1.6 ∗ 105 mL/mol*day
gav Rate constant for the binding of one antibodie molecule with viral particle 7.7. ∗ 107 mL/mol*day
gva Rate constant for the neutralization of viral particles by antibodies molecules 3.56 ∗ 108 mL/mol*day
s Rate constant for the infection of epithelial cells by influenza viruses 3.43 ∗ 1013 mL/mol*day
bce Rate constant for the destruction of epithelial cells by CTLs 1.9 ∗ 108 mL/mol*day

Table 4. Parameters used in the model (continuation).

Parameter Name Parameter Value

bec Rate constant for the death of CTLs due to the lytic interaction
with infected cells

1.2 ∗ 1013 mL/mol*day

bm Rate constant for the destruction of infected epithelial cells
due to the cytopacycity of viruses

12.92 day−1

αm Rate constant for the regeneration of epithelial cells 3.3 day−1

ν Rate constant for the secretion for COVID-19 viruses by one
infected epithelial cell

970.9 day−1

n Number of COVID-19 viruses that appear when epithelial cell
is destroyed by CTLs

0 day−1

ρhMv Number of TH1 cells created by single division cycle 4
gvc Rate constant for the adsorption of COVID-19 viruses by ep-

ithelial cells
5.39 ∗ 1013 mL/mol*day

ba Rate constant for the production of antibodies 0.39 mL/mol*day
r1 Rate of change in body temperature 4.5458 ∗ 109 mL/(mol*day)
r2 None 41 mL/(mol*day)
r3 None 0.6 ◦C mL/(mol*day)
θ∗ Normal temperature of the body 36.6 ◦C
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3.2. Immunophysiological Response of COVID-19 Infection with Immunodeficiency

Immunodeficiency, also known as immunocompromisation, is a state in which the
immune system’s ability to fight infectious diseases is compromised. Usually, it presents
alongside various clinical manifestations, for instance, the increase in frequency, severity,
and duration of the infection [27]. Many immunologists agree that there are two major
groups of immunodeficiencies: primary and secondary [27,38]. These form the basis of
the diagnosis reported by the World Health Organization (WHO). In the case of primary
immunodeficiencies, its genetic origin (loss or malfunction of the gene function) is well es-
tablished and is grouped basically into defects in humoral immunity and cellular immunity,
respectively, among other.

We can observe the behavior for the viral load V(t); see Figure 2a, which presents
the dynamics of the disease when an organism present an immunodeficiency based in
defects in humoral or cellular immunity. It is characterized by a slow growth of the viral
load V(t) during the disease compared with “normal” disease (see Figure 1a). Due to
immunodeficiency, the response of the organism is not as fast and complete as the "normal"
form, and although in the end it can be seen that the disease is eradicated, the symptoms
are more durable, which is observed in Figure 2a.

It is clear from Figure 2b,e that only certain quantities of antibodies A(t) and cytotoxic
T-lymphocytes Te(t) are produced until the 10th day, producing a delay in the immune
response, which translate to longer illness.

Many reactions noted in laboratory towards antigens, mitogens, or allogenic cells
are related to helper T-lymphocytes and their respective cytokines, which manage the
differentiation and division of B and T-lymphocytes. If we observe Figure 2d, we can see
that there is a delay in the production of class 1 helper T-lymphocytes TH1(t)as a result of
this immunodeficiency.

The development of disease leads to a significant increase in temperature, which
reaches its maximum 18 days after the beginning of infection; see Figure 2h.
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Figure 2. Numerical results of the mathematical model for the case with the immunophysiological response of COVID-19 infection in its
“immunodeficient” form: (a) the viral load V(t), (b) the cytotoxic T-lymphocytes Te(t), (c) the B-lymphocytes B(t), (d) the class 1 helper
T-lymphocytes TH1(t), (e) the antibodies A(t), (f) the plasma cells P(t), (g) the malfunctioning part of a target organ affected by viruses
m(t), and (h) body temperature θ(t). In all cases, the numerical results are simulated for the “immunodeficient” form.

3.3. Immunophysiological Response of COVID-19 Infection in Its “Acute” Form

We call the phase when an antigen that has penetrated into an organism begins to
increase its concentration due to proliferation and when this is accompanied by a weak
immune response, which has some delayed due to many possible causes so that some
pathological changes occurred in a specific organ under the influence of these antigens, the
acute form of the disease. In this form of the disease course, the organism experiences an
increase in body temperature, intoxication of the organism, and considerable pathological
changes in the affected organ, and finally, this acute form ends in a lethal outcome.

We now consider the serious form of disease for which there are severe symptoms.
In this case, the behavior of the virus concentration V(t) (see Figure 3a) is characterized
by rapid growth in the first 30 days (there is an abrupt fall in the curve which we suppose
is the infection being so severe that the patient dies). The development of an immune
response and edema is constant but very slow, and this means that the viral load does not
decrease. It is clear from Figure 3b,c that only certain quantities of antibodies and Cytotoxic
T-lymphocytes are produced until day 24.

The development of disease leads to a significant increase in the temperature, which
reaches its maximum 28 days after the beginning of the infection; see Figure 1h. Finally,
Figure 3g presents m(t), the percentage of damaged cells in the compartments of the upper
respiratory tract epithelium (cell/mL). The pathological process affects some segments of
the lungs, which after day 25, increases until it reaches 100% of the lung volume, where the
patient is supposed to die due to the acuteness of the infection.
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Figure 3. Numerical results of the mathematical model for the case in which the immunophysiological response of COVID-19 infection
in its “acute” form: (a) the viral load V(t), (b) the cytotoxic T-lymphocytes Te(t), (c) the B-lymphocytes B(t), (d) the class 1 helper
T-lymphocytes TH1(t), (e) the antibodies A(t), (f) the plasma cells P(t), (g) the malfunctioning part of a target organ affected by viruses
m(t), and (h) body temperature θ(t). In all cases, the numerical results are simulated for the “acute” form.
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3.4. Immunophysiological Response of COVID-19 Infection When Immunotheraphy Using
Antibodies Is Applied

COVID-19 is a challenging disease in many ways. In first place, it has a high potential
to spread throughout the world population very quickly. Likewise, its lethal and severe
forms occur more frequently in depressed immune systems, so it is plausible to try to use
therapy based on strengthening the immune response.

One of these treatments is immunotherapy with antibodies for COVID-19 infection,
which activates immune response and stimulates the mechanisms of defence against
the disease.

We can observe the behavior for the viral load V(t); see Figure 4a, which presents the
dynamics of the disease when, in an organism, we boost the immune system, increasing
the concentration of antibodies A(t). It is characterized by very rapid growth of the viral
load V(t) during the disease compared with the “normal” disease (see Figure 1a). It is
observed that the maximum is reached on the 3rd day; moreover, we noted that the viral
load is reduced only by increasing the concentration of antibodies.

Due to boosting of the response of the organism being very fast and complete in
comparison with the “normal” form, in the end, it can be seen that the disease is eradicated
in almost 10 days. The increase in the production of B cells and plasma cells in response to
immunotherapy is also remarkable; see Figure 4c,f.

The development of disease leads to a insignificant increase in the temperature, which
reaches a maximum 5 days after the beginning of the infection; see Figure 4h. Finally,
Figure 4g presents m(t), the percentage of damaged cells in the compartments of the upper
respiratory tract epithelium (cell/mL). The pathological process affects some segments of
the lungs, which from day 20 started to notably decrease as a consequence of the recovery
of the organism due to the immuntherapy and reached 0% of lungs damage.
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Figure 4. Numerical results of the mathematical model for the case in which the immunophysiological response of COVID-19 infection
when immunotherapy using antibodies is applied: (a) the viral load V(t), (b) the cytotoxic T-lymphocytes Te(t), (c) the B-lymphocytes B(t),
(d) the class 1 helper T-lymphocytes class 1 TH1(t), (e) the antibodies A(t), (f) the plasma cells P(t), (g) the malfunctioning part of a target
organ affected by viruses m(t), and (h) body temperature θ(t). In all cases, the numerical results are simulated when immunotherapy using
antibodies is applied.

3.5. Immunophysiological Response of COVID-19 Infection When Immunotheraphy of Cytotoxic
T-Lymphocytes Is Applied

The human body has two major viral threats: the viruses inside the cell and outside of
it, in the plasma. Within the cell, there are different ways in which the immune system can
eliminate these viruses; for example, adaptative immune response mediated by cytotoxic T-
lymphocytes Te(t), which eliminates the organism’s infected cells. Then, we can consider it
a fundamental mechanism since millions of viruses are capable of destroying an organism.

A second immunological treatment is immunotherapy for the COVID-19 infection,
which activates immune response. These activated CD8+ lymphocytes proliferate and
differentiate into the lymphoid organs where they were generated and migrate to eliminate
the virus antigens [5,10].

We can observe this behaviour for the viral load V(t); see Figure 4a, which presents the
dynamics of the disease when, in an organism, we boost the immune system, increasing the
concentration of cytotoxic T-lymphocytes Te(t). It is characterized by very rapid growth of
the viral load V(t) during the disease compared with the “normal” disease (see Figure 1a).
It is observed that the maximum is reached on the 5th day; moreover, we noted that the
viral load is reduced until it disappeared on the 30th day.

It is clear from Figure 5b,e that only certain quantities of antibodies A(t) and cytotoxic
T-lymphocytes Te(t) are produced in day 5, increasing the number of these cells significantly.
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Figure 5. Numerical results of the mathematical model for the case in which the immunophysiological response of COVID-19 infection
when immunotherapy using cytotoxic T-lymphocytes is applied: (a) the viral load V(t), (b) the cytotoxic T-lymphocytes Te(t), (c) the
B-lymphocytes B(t), (d) the helper T-lymphocytes class 1 TH1(t), (e) the antibodies A(t), (f) the plasma cells P(t), (g) the malfunctioning
part of a target organ affected by viruses m(t), and (h) body temperature θ(t). In all cases, the numerical results are simulated when
immunotherapy using antibodies is applied.
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Additionally, it has been observed that proliferative reactions of immune cells are con-
nected to the functional activity of T-helpers producing various lymphokines that control
the division and differentiation of T- and B-lymphocytes. If we observe Figure 5d, there is
an important production of helper T-lymphocytes TH1(t) as result of immunotheraphy.

The development of disease leads to an insignificant increase in temperature, which
reaches its maximum 7 days after the beginning of the infection; see Figure 5h. Finally,
Figure 5g presents m(t), the percentage of damaged cells in the compartments of the upper
respiratory tract epithelium (cell/mL). The pathological process affects some segments of
the lungs, which from day 30 started to notably decrease as a consequence of the recovery
of the organism due to immuntherapy and reached 0% of lungs damage.

4. Concluding Remarks

When a virus becomes the main enemy of our body, all resources must be directed
towards fighting this enemy and, more specifically, our own immune system. This is the
case for the novel coronavirus SARS-COV-2, commonly named COVID-19 virus, which
since January of 2020 has been affecting the health of millions of humans around the world.
In this battle, mathematical models could help us find a mechanism that helps an organism
escape from the fatality of this disease. For this purpose, we built a mathematical model
of eleven delayed differential equations describing the dynamics between the COVID-19
virus, and cellular and humoral immune responses.

We conducted an analysis of the model exploring different scenarios, and our numeri-
cal results indicate for the fist case that the model could reproduce the results available in
the literature in a very good agreement; for instance, see Figure 1a in which the symptom
onset is around 6–9 days, with 97.5% of symptomatic patients developing symptoms within
11.5 days [10,39,40].

In our second scenario, we present immunodefficiency based in defects in humoral
or cellular immunity; one possible example of this immuno-deficiency is the phenomena
called cytotoxic T-lymphocyte exhaustion, which usually reduces the functional diversity
of these cells [25]. We can observe from the behavior of the viral load V(t) (see Figure 3a)
that, due to immunodeficiency, the response of the organism is not as fast and complete as
the “normal” form, and although in the end it can be seen that the disease is eradicated,
the symptoms are more durable.

In our third scenario, a serious form of the disease was considered for which there are
severe symptoms; in this case, the behavior for the viral load V(t) (see Figure 2a) indicates
rapid growth in the first 30 days (there is an abrupt fall in the curve because the infection is
so severe that the patient dies), we notice that the development of immune response and
edema is constant but very slow, and this means that the viral load never decreases. From
Figure 2b,c, it is clear that only certain quantities of antibodies and cytotoxic T-lymphocytes
are produced until day 24, which are not enough to fight against the virus.

In our fourth scenario, this model demonstrates how important gradual stimulation of
the immune system is, particularly the levels of lymphocytes, macrophages, immunoglob-
ulins, and other vitally important components of the immune system. In this scenario, we
observed that, when we increase the concentration of antibodies A(t) in the organism, the
viral load V(t) did not increase and that the viral load decreases more quickly compared to
the first scenario. Then, it is advisable to use this immunotherapy based on the injection
of prepared immunoglobulins or donor (passive) antibodies, which may “tip the scale”
against the background of intensive antiviral therapy in favor of convalescence before the
process becomes fatal. Based on our results, we consider this immunotherapy to be more
important in the cases when acuteness of an inflammatory process continues growing and
turns into a serious clinical form.

In our last scenario, we proposed immunotherapy based on boosting humoral immune
response by augmenting the concentration of specific T-lymphocytes; we demonstrated
that an increment in the concentration of these lymphocytes produced a response that
reduces the viral load, reaching its maximum on day five, and that the reduction is a
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result of the therapy and causes faster recovery. Some authors have observed certain
immunopathologies associated with vaccines made of inmmue cells tested on animals [26],
which has produced some distrust in this therapy. Nevertheless, based on this model, we
consider that creating coronavirus-specific T lymphocytes is clearly important to eliminate
the virus in patients with COVID-19.

Finally, we also think that the paper opens the possibility for other diseases (hepatitis,
chronic bronquitis, acute pneumonia, dysentry, etc.). It is possible to develop quantitative
models of the dynamics for these infectious diseases in order to describe the course of the
pathology, the severity, and the possible outcomes. The use of some immunotherapies
provides researchers and clinicians with new tools for stimulation of the immune system;
the latter can be used to increase the efficiency in the struggle with this disease. Of course,
there are many open questions in mathematical modeling that still need to be addressed;
among others, is it possible to model some new effects such as the storm of cytokines
observed in patients with SARS-COV-2? Is it possible to incorporate other systems such as
complements in modeling, etc.? However, it is important to have a good data set in order
to calibrate the model. It is clear that not much data are available in this moment, but we
have to remember a maxim between modellers: “a mathematical model is as good as the
data it uses”.
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