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Abstract: Three-term conjugate gradient methods have attracted much attention for large-scale
unconstrained problems in recent years, since they have attractive practical factors such as simple
computation, low memory requirement, better descent property and strong global convergence
property. In this paper, a hybrid three-term conjugate gradient algorithm is proposed and it owns a
sufficient descent property, independent of any line search technique. Under some mild conditions,
the proposed method is globally convergent for uniformly convex objective functions. Meanwhile,
by using the modified secant equation, the proposed method is also global convergence without
convexity assumption on the objective function. Numerical results also indicate that the proposed
algorithm is more efficient and reliable than the other methods for the testing problems.

Keywords: three-term conjugate gradient method; sufficient descent property; secant equation;
conjugate condition; global convergence; acceleration strategy

1. Introduction

In this paper, we consider the following unconstrained problem:

min
x∈Rn

f (x), (1)

where function f : Rn → R is continuously differentiable and bounded below. There are
many methods for solving (1). such as the Levenberg–Marquardt methods [1], Newton
methods [2] and quasi-Newton methods [3,4]. However, these methods are efficient for
small and medium-sized problems and are not suitable for large scale problems in terms of
the storage of a matrix for second order information or its approximation. Conjugate gradi-
ent (CG) methods [4–12] are much more effective for unconstrained problems, especially for
large-scale cases by low memory requirements and strong convergence properties [6,8–11],
etc. Meanwhile, CG methods have been applied to image restoration problems, optimal
control problems and optimal problems in machine learning [13–15], etc. In this paper, we
design a CG method for (1).

The nonlinear CG method was first proposed by Hestenes and Stiefel [16] for linear
equations Ax = b. In 1964, Fletcher and Reeves [17] extended the CG method in [16] to
unconstrained optimization problems. After that, many researchers proposed various CG
methods [6–10,12,18]. In CG methods, a sequence of iterative point {xk} is generated by an
initial point x0 and:

xk+1 = xk + αkdk, ∀ k ≥ 0, (2)

where αk is the step size which is determined by some line search technique and dk is the
search direction. In a traditional CG method, the direction is usually defined by
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dk =

{
−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1.

(3)

Different conjugate parameter βk generates a different CG method which may be signif-
icantly different in theoretical properties and numerical performance. The Hestenes–Stiefel
(HS) method [16] and Polak–Ribière–Polyak (PRP) method [19,20] have nice numerical
performance and their conjugate parameters are:

βHS
k+1 =

gT
k+1yk

dT
k yk

, βPRP
k+1 =

gT
k+1yk

‖gk‖2 ,

where gk = ∇ f (xk), gk+1 = ∇ f (xk+1) and yk = gk+1 − gk. Note that the HS method
automatically satisfies the conjugate condition dT

k+1yk = 0, independently of any line
search technique. Dai and Liao [18] extended the above conjugate condition to:

dT
k+1yk = −tgT

k+1sk, ∀ k ≥ 1. (4)

where t ≥ 0 and sk = xk+1− xk. The new condition (4) gives a more accurate approximation
for the Hessian matrix of the original objective function. Based on the condition (4), Dai
and Liao [18] presented a new conjugate parameter:

βDL
k+1(t) =

gT
k+1(yk − tsk)

yT
k dk

=
gT

k+1yk

yT
k dk

− t
gT

k+1sk

yT
k dk

. (5)

In order to have global convergence, they selected the non-negative conjugate param-
eter, meaning that:

βDL+
k+1 (t) = max{0, βDL

k+1(t)}.

Under some mild conditions, the global convergence was established. However, the
selection of the parameter t strongly affects the numerical performance, thus many scholars
have focused on the choices for the parameter t, as can be seen in [21–26] etc.

Compared with the traditional two-term CG method, three-term CG methods [27–31]
always have good numerical performance and nice theoretical properties, such as the
sufficient descent property, independently of the accuracy of line search, i.e., it is always
holds that:

gT
k dk ≤ −c‖gk‖2,

where c > 0. Specifically, Zhang et al. [29] proposed a descent three-term PRP CG method
in which the direction has the form:

d0 = −g0, dk+1 = −gk+1 + βPRP
k+1 dk + δPRP

k+1 yk, δPRP
k+1 = −

gT
k+1dk

‖gk‖2 , k ≥ 0. (6)

and Zhang et al. [28] presented a descent three-term HS CG method in which the direction is:

d0 = −g0, dk+1 = −gk+1 + βHS
k+1dk + δHS

k+1yk, δHS
k+1 = −

gT
k+1dk

dT
k yk

, k ≥ 0. (7)

and Babaie-Kafaki and Ghanbari [31] gave a modified three-term HS/DL method in which
the direction owns the form:

d0 = −g0, dk+1 = −gk+1 + βHS
k+1dk − t

gT
k+1sk

|yT
k dk|

dk + δHS
k+1yk, δHS

k+1 = −
gT

k+1dk

dT
k yk

, k ≥ 0. (8)
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For the above three directions, the sufficient descent property is always satisfied, i.e.,
gT

k dk ≤ −‖gk‖2. Note that the sufficient descent property is stronger that the descent prop-
erty and may greatly improve the numerical performance of the corresponding methods.

Motivated by the above discussions, in this paper, we propose a new descent hybrid
three-term CG algorithm. Under some mild conditions, the direction in this descent
hybrid three-term CG algorithm may reduce the directions in [28,29,31], respectively, and
another new three-term direction which also satisfies the sufficient descent property with
c = 1 (which is why we call our method as the hybrid three-term CG method). The
new method owns the sufficient descent property independent of the accuracy of the line
search technique. Under some mild conditions, the global convergence is established for
uniformly convex objective functions. For general functions without convexity assumption,
the global convergence is also established by using the modified secant condition in [32].
Numerical results indicate that the proposed algorithm is effective and reliable.

The paper is organized as follows. In Section 2, we firstly present the motivation for
the hybrid three-term CG method and then propose the new hybrid three-term direction
and prove some properties of the new direction and give the global convergence for
uniformly convex objective functions at last. In Section 3, the global convergence for the
general nonlinear functions is established with the help of the modified secant condition.
Numerical tests are given in Section 4 to show the efficient and reliable nature of the
proposed algorithm. Finally, the conclusions are presented in Section 5.

2. Motivation and Algorithm

In this section, we firstly present the motivation and give the form of the new direction.
It should be noted that if the exact line search technique is adopted, which implies

gT
k+1dk = 0, then it holds that:

βHS
k+1 = βPRP

k+1 = βDL
k+1(t).

If the inexact line search technique is adopted, these three methods may be different
in theoretical property and numerical performance and the HS method and DL method
may be not well defined (the denominator yT

k dk may be 0). Zhang [33] present a hybrid

conjugate parameter β
hybrid
k+1 for the traditional two-term Dai–Liao CG method:

β
hybrid
k+1 =

gT
k+1(yk − tsk)

max{yT
k dk, ‖gk‖2}

.

The numerical results for general nonlinear equations show that the hybrid two-term
conjugate residual method is effective and reliable.

Motivated by the above discussions and the nice properties of three-term CG methods,
in the following, we propose a new hybrid descent three-term direction which has the
following form: d0 = −g0 and:

dN
k+1 = −gk+1 + βN

k+1sk − δN
k+1yk, (9)

where:

βN
k+1 =

gT
k+1(yk − tsk)

max{yT
k sk, ‖gk‖2}

, δN
k+1 =

gT
k+1sk

max{yT
k sk, ‖gk‖2}

.

Note that the direction dN
k+1 is well defined. In fact, if yT

k sk = ‖gk‖2 = 0 holds, the
condition ‖gk‖2 = 0 indicates that the method stops and the optimal solution (xk) is
obtained.

In the following, we give some remarks for the above direction. Note that if t = 0 and
yT

k sk ≥ ‖gk‖2 hold, the direction dN
k+1 reduces the direction dTTHS

k+1 in [28], and t = 0 and
yT

k sk ≤ ‖gk‖2 hold, the direction dN
k+1 reduces to the direction dTTPRP

k+1 in [29]. Note also
that if yT

k sk ≥ ‖gk‖2 holds, then the parameter βN
k+1 reduces to the conjugate parameter
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βDL
k+1 and the direction dN

k+1 reduces to a modified vision of the direction dTTDL
k+1 in [31]. If

yT
k sk < ‖gk‖2 holds, the direction dN

k+1 reduces to a new three-term direction which also
satisfies the sufficient descent property with c = 1. Overall, we regard the direction dN

k+1 as
the hybrid direction of the HS direction, the Dai–Liao direction and the PRP direction.

2.1. Algorithm for Uniformly Convex Functions

Now, based on the above analyses, we state the steps of our algorithm as follows:

Algorithm 1: New hybrid three-term conjugate gradient method (HTTCG).

1 Step 0. Select the initial point x0 ∈ Rn. Compute g(x0) and set d0 = −g0.
Let k := 0.

2 Step 1. If ‖gk‖ ≤ ε, then stop, otherwise go to next step;
3 Step 2. Compute the step size αk along the direction dk by the line search strategy

technique;
4 Step 3. Let xk+1 = xk + αkdk;
5 Step 4. Compute the search direction dk+1 by (9);
6 Step 5. Set k := k + 1 and go to Step 1.

Remark 1. Note that in Algorithm 1, the line search technique is not explicitly given. In fact, any
line search technique is accepted.

In the following, we show that Algorithm 1 owns the sufficient descent property
independent of any line search technique.

Lemma 1. For any line search technique, the sequence {dN
k } is generated by Algorithm 1, and it

always holds that:
gT

k dN
k ≤ −‖gk‖2, ∀ k ≥ 0. (10)

Proof. If k = 0, we have d0 = −g0, then it holds gT
0 d0 = −‖g0‖2. For k ≥ 0, by the

definition of dN
k+1, we have the following inequality:

gT
k+1dN

k+1 = −‖gk+1‖2 +
gT

k+1(yk−tsk)

max{yT
k sk ,‖gk‖2} gT

k+1sk −
gT

k+1sk

max{yT
k sk ,‖gk‖2} gT

k+1yk

= −‖gk+1‖2 +
gT

k+1sk gT
k+1yk

max{yT
k sk ,‖gk‖2} −

t(gT
k+1sk)

2

max{yT
k sk ,‖gk‖2} −

gT
k+1sk gT

k+1yk

max{yT
k sk ,‖gk‖2}

= −‖gk+1‖2 − t(gT
k+1sk)

2

max{yT
k sk ,‖gk‖2}

≤ −‖gk+1‖2,

(11)

where the last inequality holds by t ≥ 0. Then, (10) holds. This completes the proof.

Lemma 1 means that the new direction satisfies the sufficient descent property in-
dependent of the line search technique. A conjugate condition also plays an important
role in numerical performance. In the HS method, it automatically satisfies the condition
dT

k+1yk = 0; in Dai–Liao method, the modified condition dT
k+1yk = −tgT

k+1sk is always
satisfied. In our part, by the design of the direction dN

k+1, we have:

(dN
k+1)

Tyk = −gT
k+1yk +

gT
k+1(yk−tsk)

max{yT
k sk ,‖gk‖2}yT

k sk −
gT

k+1sk

max{yT
k sk ,‖gk‖2}‖yk‖2

= −gT
k+1yk +

yT
k sk

max{yT
k sk ,‖gk‖2} gT

k+1yk −
yT

k sk(tgT
k+1sk)

max{yT
k sk ,‖gk‖2} −

‖yk‖2(gT
k+1sk)

max{yT
k sk ,‖gk‖2}

≤ − tyT
k sk+‖yk‖2

max{yT
k sk ,‖gk‖2} gT

k+1sk.

(12)

From (12), it holds that the new direction dN
k+1 also satisfies the DL conjugate con-

dition (4) in an extent form, i.e., (dN
k+1)

Tyk ≤ −t1gT
k+1sk where t1 =

tyT
k sk+‖yk‖2

max{yT
k sk ,‖gk‖2} . In
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fact, if we adopt the line search technique which results in yT
k sk ≥ 0, then it holds that

t1 =
tyT

k sk+‖yk‖2

max{yT
k sk ,‖gk‖2} > 0.

2.2. Convergence for Uniformly Convex Functions

In the following, we present the global convergence analysis of the HTTCG method
under the following assumptions.

Assumption 1. The level set T := {x ∈ Rn : f (x) ≤ f (x0)} is bounded where x0 is the starting
point, namely, there exists a constant X > 0 such that:

‖x‖ ≤ X, ∀ x ∈ T. (13)

Assumption 2. In some neighborhood N of T, the gradient of function f (x), g(x), is Lipschitz
continuous, which means there exists a constant L > 0 such that:

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ N. (14)

Note that based on Assumptions 1 and 2, there exists a positive constant G such that:

‖g(x)‖ ≤ G, ∀ x ∈ T. (15)

In the following, we show that the sequence {dN
k } generated by Algorithm 1 is bounded.

Lemma 2. Assume 0 < t ≤ T and Assumptions 1 and 2 hold. For any line search technique, the
sequence {dN

k } is generated by Algorithm 1. If the objective function f is uniformly convex on the
set N, then {dN

k } is bounded.

Proof. Since function f is uniformly convex on the set N, then for any x, y ∈ N, we have

(∇ f (x)−∇ f (y))T(x− y) ≥ µ‖x− y‖2,

where µ > 0 is the uniformly convex parameter. Especially, if we take x = xk+1 and y = xk,
then it holds that:

yT
k sk ≥ µ‖sk‖2 > 0. (16)

In the following, we prove the boundedness of parameters βN
k+1 and δN

k+1. In fact, by
their definitions, we have:

|βN
k+1| =

∣∣∣∣ gT
k+1(yk−tsk)

max{yT
k sk ,‖gk‖2}

∣∣∣∣ ≤ ‖gk+1‖(‖yk‖+t‖sk‖)
|max{yT

k sk ,‖gk‖2}| ≤
‖gk+1‖(‖yk‖+t‖sk‖)

yT
k sk

≤ (L+T)‖sk‖
µ‖sk‖2 ‖gk+1‖ = L+T

µ
‖gk+1‖
‖sk‖

,
(17)

|δN
k+1| =

∣∣∣∣ gT
k+1sk

max{yT
k sk ,‖gk‖2}

∣∣∣∣ ≤ ‖gk+1‖ ‖sk‖
|max{yT

k sk ,‖gk‖2}| ≤
‖gk+1‖ ‖sk‖

yT
k sk

≤ ‖gk+1‖‖sk‖
µ‖sk‖2 = 1

µ
‖gk+1‖
‖sk‖

,
(18)

By the definition of dN
k+1, we have:

‖dN
k+1‖ ≤ ‖gk+1‖+ |βN

k+1|‖sk‖+ |δN
k+1|‖yk‖

≤ ‖gk+1‖+ L+T
µ
‖gk+1‖
‖sk‖
‖sk‖+ 1

µ
‖gk+1‖
‖sk‖
‖yk‖

≤ ‖gk+1‖+ L+T
µ ‖gk+1‖+ L

µ‖gk+1‖
=

(
1 + 2L+T

µ

)
‖gk+1‖ ≤

(
1 + 2L+T

µ

)
G,

(19)

where the last inequality holds by (15). This completes the proof.
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The standard Wolfe line search technique is often referred to in CG methods (see [6,7,11]
etc.). It has the following form:{

f (xk + αkdk) ≤ f (xk) + σ1αkgT
k dk,

g(xk + αkdk)
Tdk ≥ σ2gT

k dk,
(20)

where 0 < σ1 < σ2 < 1.
The following lemma plays an essential role for the global convergence theorem of

our method. It can be seen in Lemma 3.1 in [34]. Hence, we only state it here and omit
its proof.

Lemma 3. Suppose that Assumptions 1 and 2 hold. Consider any iterative method with the
form (2) where dk satisfies the sufficient descent property and αk is computed by Wolfe line search
technique (20). If the following relationship holds:

∑
k≥0

1
‖dk‖2 = +∞, (21)

then the method globally converges in the sense that:

lim inf
k→+∞

‖gk‖ = 0. (22)

Now, we establish the global convergence of Algorithm 1 for the uniformly convex
objective functions.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Consider Algorithm 1 in which step size αk
is computed by the line search technique (20). If the objective function f is uniformly convex on set
N, then Algorithm 1 globally converges in the sense that:

lim
k→+∞

‖gk‖ = 0. (23)

Proof. From Lemma 1, we have that the direction dN
k+1 satisfies the sufficient descent

property with c = 1. By the first inequality in the line search technique (20), we have the
sequence { f (xk)}k≥0 is non-increasing and {xk}k≥0 ⊆ N. By the boundedness of {dN

k } in
Lemma 2, we have that (21) holds. Then, (22) holds. Since f is uniformly convex, then we
have (23). This completes the proof.

3. Convergence for General Nonlinear Functions

In order to achieve the global convergence without convexity assumption for the
general function, we adopt the modified secant condition in [32] (similar modified secant
conditions can also be founded in [35,36] etc.). Concretely, the modified secant condition is:

∇2 f (xk+1)sk = zk,

where p > 0 and C > 0 and:

zk = yk + hk‖gk‖psk, hk = C + max

{
0,−

yT
k sk

‖sk‖2

}
‖gk‖−p. (24)

Based on the modified secant condition, we present the direction: d0 = −g0 and:

dNN
k+1 = −gk+1 + βNN

k+1sk − δNN
k+1zk, (25)
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where:

βNN
k+1 =

gT
k+1(zk − tsk)

max{zT
k sk, ‖gk‖2}

, δNN
k+1 =

gT
k+1sk

max{zT
k sk, ‖gk‖2}

.

Now, based on the above discussions, we state our algorithm as follows:

Algorithm 2: Hybrid three-term CG method using modified secant condition
(HTTCGSC).
1 Step 0. Select x0 ∈ Rn, constants C > 0 and r > 0. Compute g(x0) and set

d0 = −g0. Let k := 0.
2 Step 1. If ‖gk‖ ≤ ε, then stop, otherwise go to next step;
3 Step 2. Compute the step size αk along the direction dk by the line search

technique;
4 Step 3. Let xk+1 = xk + αkdk;
5 Step 4. Compute the search direction dk+1 by (25);
6 Step 5. Set k := k + 1 and go to Step 1.

Note also that in Algorithm 2, the line search technique is not explicitly given. Similar
to Lemma 1, we also have the following lemma. Here, we omit its proof.

Lemma 4. For any line search technique, the sequence {dNN
k } is generated by Algorithm 2, then it

always holds that:
gT

k dNN
k ≤ −‖gk‖2, ∀ k ≥ 0. (26)

Lemma 5. The sequences {zk} and {sk} are generated by Algorithm 2, then for any line search
technique, we have:

zT
k sk ≥ C‖gk‖p ‖sk‖2, (27)

and:
‖zk‖ ≤ (2L + CGp)‖sk‖. (28)

Proof. In fact, for any line search technique, we consider two cases:
Case (i) yT

k sk ≥ 0 holds. In this case, we have hk = C and zk = yk + C‖gk‖psk. Then,
we have:

zT
k sk = yT

k sk + C‖gk‖p‖sk‖2 ≥ C‖gk‖p‖sk‖2. (29)

Case (ii) yT
k sk < 0 holds. In this case, it holds that hk = C − yT

k sk
‖sk‖2 ‖gk‖−p and

zk = yk + C‖gk‖psk −
yT

k sk
‖sk‖2 sk. Then, we have:

zT
k sk = yT

k sk + C‖gk‖p‖sk‖2 − yT
k sk ≥ C‖gk‖p‖sk‖2. (30)

Based on the above discussions, we have that for any line search technique, (27)
always holds.

By the definition of zk, we have:

‖zk‖ ≤ ‖yk‖+ |hk| ‖gk‖p‖sk‖ ≤ L‖sk‖+
(

C +
|yT

k sk|
‖sk‖2 ‖gk‖−p

)
‖gk‖p‖sk‖ ≤ (2L + CGp)‖sk‖,

where the last inequality holds by ‖gk‖ ≤ G. Then, (28) holds. This completes the proof.

In the following, we assume that the limit (22) does not hold, otherwise Algorithm 2
converges. This means that there exists a positive constant η such that:

‖gk‖ ≥ η, ∀ k ≥ 0. (31)
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Now, we give the global convergence of Algorithm 2 for general nonlinear problems
without convex assumption.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Consider Algorithm 2 in which step size αk
is computed by line search technique (20). Then, Algorithm 2 globally converges in the sense that
(22) holds.

Proof. We proceed by contradiction. Suppose that (22) is not true. Then, the inequality
(31) holds.

In the following, we firstly prove that the sequence {dNN
k }k≥0 is bounded. Similarly,

due to the analyses in (17) and (18), we have that:

|βNN
k+1| =

∣∣∣∣ gT
k+1(zk−tsk)

max{zT
k sk ,‖gk‖2}

∣∣∣∣ ≤ ‖gk+1‖(‖zk‖+t‖sk‖)
zT

k sk

≤ (2L+CGp+T)‖sk‖
C‖gk‖p‖sk‖2 ‖gk+1‖ ≤ 2L+CGp+T

Cηp
‖gk+1‖
‖sk‖

,
(32)

where the third inequality holds by Assumption 1 and (28), the last inequality holds by
‖gk‖ ≥ η.

|δNN
k+1| =

∣∣∣∣ gT
k+1sk

max{zT
k sk ,‖gk‖2}

∣∣∣∣ ≤ ‖gk+1‖ ‖sk‖
|max{zT

k sk ,‖gk‖2}| ≤
‖gk+1‖ ‖sk‖

zT
k sk

≤ ‖gk+1‖ ‖sk‖
C‖gk‖p‖sk‖2 ≤ 1

Cηp
‖gk+1‖
‖sk‖

,
(33)

where the last inequality holds by ‖gk‖ ≥ η. Then, by (25), it holds that:

‖dNN
k+1‖ ≤ ‖gk+1‖+ |βNN

k+1| ‖sk‖+ |δNN
k+1| ‖zk‖

≤ ‖gk+1‖+ 2L+CGp+T
Cηp

‖gk+1‖
‖sk‖
‖sk‖+ 1

Cηp
‖gk+1‖
‖sk‖
‖zk‖

≤ ‖gk+1‖+ 2L+CGp+T
Cηp ‖gk+1‖+ 2L+CGp

Cηp ‖gk+1‖
=

(
1 + 4L+2CGp+T

Cηp

)
‖gk+1‖ ≤

(
1 + 4L+2CGp+T

Cηp

)
G.

(34)

That means the sequence {dNN
k }k≥0 is bounded. Hence, (21) holds. From Lemmas 3

and 4, we have lim infk→+∞ ‖gk‖ = 0, which contradicts (31). Then, (22) holds. This
completes the proof.

4. Numerical Results

In this section, we firstly present the numerical performance of Algorithm 2 and
compare it with other methods in [28,31]. Then, an accelerated technique is applied in
our method.

4.1. Numerical Performance of Algorithm 2

In this subsection, we focus on the numerical performance of Algorithm 2 and com-
pare it with the MTTDLCG method in [31] and the MTTHSCG method in [28]. For the
MTTDLCG method and the MTTHSCG method, we take their settings for parameters. For

the value of parameter t, authors in [37] point out that t = ‖yk‖2

yT
k sk

is a good choice for the

Dai–Liao method and the authors in [18] suggest t = 0.1 is a good choice. In this paper, we

take t = max{0.1, ‖zk‖2

max{zT
k sk ,‖gk‖2}}.

We execute the tests on a personal computer with the Windows 10 operating system,
AMD CPU with @2.1 GHz, 16.00 GB of RAM. Meanwhile, the corresponding codes are writ-
ten in MATLAB R2016b. The parameters referred are that: σ1 = 0.20, σ2 = 0.85, C = 0.1,
r = 1 if ‖sk‖2 < 1, r = 3 otherwise. In the following, we present the stopping rules:

Stopping rules (Himmeblau rule): During the testing, if | f (xk)| > ε1, set ∆ =
| f (xk)− f (xk+1)|

| f (xk)|
, or let ∆ = | f (xk)− f (xk+1)|. Testing stops if ‖g(x)‖ < ε or Tem< ε2 holds.
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The values of these parameters are ε1 = ε2 = 10−5 and ε = 10−6. Meanwhile, the testing
also stops if the total iteration number is larger than 10,000.

For the step size, αk will be chosen when the search number of the WWP line search is
more than 6. Testing problems with initial points considered here are from [38], which are
listed in Table 1. Meanwhile, for each problem, ten large-scale dimensions with 1500, 3000,
6000, 7500, 9000, 15,000, 30,000, 60,000, 75,000 and 90,000 variables are considered.

Table 1. The testing problems.

N0 Problem N0 Problem

1 Extended Trigonometric Function 26 BDQRTIC (CUTE)
2 Extended Rosenbrock Function 27 ARWHEAD (CUTE)
3 Extended White and Holst Function 28 NONDIA (Shanno-78) (CUTE)
4 Extended Beale Function U63 (MatrixRom) 29 DQDRTIC (CUTE)
5 Extended Penalty Function 30 EG2 (CUTE)
6 Raydan 1 Function 31 DIXMAANA (CUTE)
7 Raydan 2 Function 32 DIXMAANB (CUTE)
8 Diagonal 3 Function 33 DIXMAANC (CUTE)
9 Generalized Tridiagonal-1 Function 34 DIXMAANE (CUTE)
10 Extended Tridiagonal-1 Function 35 Broyden Tridiagonal
11 Extended Three Exponential Terms 36 EDENSCH Function (CUTE)
12 Generalized Tridiagonal-2 Function 37 VARDIM Function (CUTE)
13 Diagonal 4 Function 38 DIAGONAL 6
14 Diagonal 5 Function (MatrixRom) 39 DIXMAANF (CUTE)
15 Extended Himmelblau Function 40 DIXMAANG (CUTE)
16 Generalized PSC1 Function 41 DIXMAANH (CUTE)
17 Extended PSC1 Function 42 DIXMAANI (CUTE)
18 Extended Maratos Function 43 DIXMAANJ (CUTE)
19 Extended Cliff Function 44 DIXMAANK (CUTE)
20 Extended Wood Function 45 DIXMAANL (CUTE)
21 Extended Quadratic Penalty QP1 Function 46 DIXMAAND (CUTE)
22 Extended Quadratic Penalty QP2 Function 47 ENGVAL1 (CUTE)
23 A Quadratic Function QF2 48 COSINE (CUTE)
24 Extended EP1 Function 49 Extended DENSCHNB (CUTE)
25 Extended Tridiagonal-2 Function 50 Extended DENSCHNF (CUTE)

To approximately assess the corresponding numerical performances, the performance
profile introduced by Dolan and Moré in [39] is adopted. That is, for each method, we
plot the fraction P of the testing problems for which the method is within a factor τ of the
best time. The left side of the figure presents the percentage of the test problems for which
a method is the fastest; the right side gives the percentage of the test problems that are
successfully solved by each of the methods. Figure 1 presents the performance profile of
the three methods in iterations.

From Figure 1, we have that Algorithm 2 (the HTTCG method) in 53%, the MTTDLCG
method in 35% and the MTTHSCG method in 41% solve the test problems with the least
iteration number. This indicates that Algorithm 2 performs best. Figure 2 presents the
performance profile of the three methods in the function-gradient number case:

From Figure 2, we have that Algorithm 2 at 69%, the MTTDLCG method at 14% and
the MTTHSCG method at 22% solve the test problems with the least number of computing
functions and gradients. This also indicates that Algorithm 2 performs best. Figure 3
presents the performance profile of the three methods in CPU time consumed.

From Figure 3, we have that Algorithm 2 at 12%, the MTTDLCG method at 31% and the
MTTHSCG method at 46% solve the test problems with the least CPU time consumed. This
indicates that the MTTHSCG method performs best in terms of CPU time consumed. From
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Figures 1–3, we have that Algorithm 2 is effective and comparable with the MTTDLCG
method and the MTTHSCG method for the test problems in Table 1.
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Figure 1. Performance profiles of the numerical results for these methods in number of iterations case.
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Figure 2. Performance profiles of the numerical results for these methods in a number of function
and gradient evaluations.
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Figure 3. Performance profiles of the numerical results for these methods in CPU time
consumed case.

4.2. Accelerated Strategy for Algorithm 2

In order to improve the numerical performances of Algorithm 2, in this subsection, we
utilize the acceleration strategy in [40], which modifies the step in a multiplicative manner
along iterations. Concretely, the iterative form (2) reduces to:

xk+1 = xk + ρkαkdk, (35)
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where θk = αkgT
k dk and ξk = αk[g(xk + αkdk)− gk]

Tdk and if ξk < 0, ρk = θk
ξk

, otherwise,
ρk = 1.

We also test the problems in Table 1 and compare Algorithm 2 with the accelera-
tion strategy with Algorithm 2. The corresponding parameters remain unchanged. The
performance profiles can be founded in Figures 4–6.
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Figure 4. Performance profiles of Algorithm 2 and the acceleration form in NI case.
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Figure 5. Performance profiles of Algorithm 2 and the acceleration form in NFG case.
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Figure 6. Performance profiles of Algorithm 2 and the acceleration form in CPU Time case.

From Figure 4, we find that the Algorithm 2 with the acceleration strategy (HTTCG-A
method) in 73% and HTTCG method in 36% solve the testing problems with the least
iteration number. From Figure 5, we see that the HTTCG-A method in 72% and HTTCG
method in 35% solve the testing problems with the least number of computing functions
and gradient. From Figure 6, we see that the HTTCG-A method in 59% and HTTCG
method in 28% solve the testing problems with the least CPU time consumed. These all
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indicate that the acceleration strategy works and can reduce the number of iterations, the
number of computing functions and gradients and the time consumed.

5. Conclusions

Unconstrained smooth optimization problems can be found in many problems such as
optimal control problems and machine learning problems, etc. In this paper, a hybrid three-
term descent conjugate gradient algorithm is proposed. This hybrid three-term conjugate
gradient algorithm owns the sufficient descent property independent of any line search
technique. Meanwhile, it also satisfies the extent Dai–Liao conjugate condition. Under
some mild conditions, this algorithm is globally convergent for the uniformly convex
functions. For general nonlinear function, the hybrid method is also globally convergent by
using some modified secant conditions. Numerical results indicate that the hybrid method
is effective and reliable. Meanwhile, an acceleration strategy is adopted to improve the
numerical performances. In the future, we will apply our conjugate gradient methods
to some non-smooth problems by smoothing strategy and Moreau–Yosida regularization
technique and to image restoration problems.
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