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Abstract: We consider a family of explicit Runge–Kutta pairs of orders six and five without any
additional property (reduced truncation errors, Hamiltonian preservation, symplecticness, etc.). This
family offers five parameters that someone chooses freely. Then, we train them in order for the
presented method to furnish the best results on a couple of Kepler orbits, a certain interval and
tolerance. Consequently, we observe an efficient performance on a wide range of orbital problems
(i.e., Kepler for a variety of eccentricities, perturbed Kepler with various disturbances, Arenstorf and
Pleiades). About 1.8 digits of accuracy is gained on average over conventional pairs, which is truly
remarkable for methods coming from the same family and order.

Keywords: initial value problem; Kepler-type orbits; Runge–Kutta; differential evolution
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1. Introduction

The initial value problem (IVP) is

y′ = f (x, y), y(x0) = y0 (1)

with x0 ∈ R, y, y′ ∈ Rm and f : R×Rm → Rm.
Runge–Kutta (RK) pairs are amongst the most popular numerical methods for ad-

dressing (1). They are characterized by the following Butcher tableau [1,2]:

c A

b
b̂

with bT , b̂T , c ∈ Rsand A ∈ Rs×s. Then, the method shares s stages, and when c1 = 0 and
A is strictly lower triangular, it is evaluated explicitly. The approximated solution steps
from (xn, yn) to xn+1 = xn + hn by producing two estimations for y(xn+1). Namely, yn+1
and ŷn+1, given by
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yn+1 = yn + hn

s

∑
i=1

bi fi

and

yn+1 = yn + hn

s

∑
i=1

b̂i fi

with

fi = f (xn + cihn, yn + hn

i−1

∑
j=1

aij f j),

for i = 1, 2, · · · , s. These two approximations yn+1 and yn+1 are of algebraic orders p and
q < p respectively. Thus, a local error estimation

εn = hp−q−1
n · ‖yn+1 − ŷn+1‖

is formed in every step and is combined in an algorithm for changing the step size:

hn+1 = 0.9 · hn · (
t

εn
)1/p,

where t is a tolerance given by the user. When εn < t, the above formula is used for the
new step forward. In reverse, we also use it, but the solution is not advanced and hn+1 is
a new version of hn. Details can be found in [3]. As an abbreviation, these methods are
named RKp(q) pairs.

Runge–Kutta methods were introduced back in the late 19th century [4,5]. After 1960,
RK pairs appeared. Fehlberg gave the first celebrated such pairs of orders 5(4), 6(5) and
8(7) [6,7]. Dormand and Prince followed in the early 1980s [8,9]. Our group has also
presented a series of successful RK pairs [10–13].

Runge—Kutta pairs are suited for efficiently solving almost every non-stiff problem
of the form (1). The variety of pairs is explained by the accuracy required. Thus, when less
accuracy is required, the lowest RK pairs are more efficient. In contract, for stringent
accuracies at quadruple precision, a high-order pair should be chosen [14].

Here we focus on RK6(5) pairs, which are preferred for moderate to higher accuracies.
We are especially interested in problems (1) that resemble Kepler-like orbits. Thus, we will
propose a particular RK6(5) pair for addressing this type of problem.

2. Producing Runge–Kutta Pairs of Orders 6(5) and Training Their Coefficients

Runge–Kutta pairs of orders six and five are amongst the most frequently used.
The coefficients have to satisfy 54 order conditions. Thus, families of solutions have been
discovered over the years. Here we chose the Verner-DLMP [15,16] family, which has the
advantage of being solved linearly. Then, we freely chose the coefficients c2, c4, c5, c6, c7
and b̂9. Pairs from this family have been proven to perform most efficiently in various
classes of problems [17].

We proceed by explicitly evaluating the remaining coefficients. The algorithm is
discussed in [10] and is given as a Mathematica [18] package in the Appendix A.

Although s = 9, the family spends only eight stages per step since the ninth stage is
used as the first stage of the next step. This property is called FSAL (first stage as last).

The next question to be answered is regarding how to select the free parameters.
Traditionally we try to minimize the norm of the principal term of the local truncation error.
That is, the coefficients of h7 in the residual of Taylor error expansions corresponding to
the sixth-order method of the underlying RK pair.



Mathematics 2021, 9, 1342 3 of 9

We intend to derive a particular RK6(5) pair belonging to the family of interest here.
The resulting pair has to perform best on Kepler orbits and other problems of this nature.
Thus, we concentrate on the particular orbit

1y′ = 3y,
2y′ = 4y,

3y′ = −
1y(√

1y2 + 2y2
)3 ,

4y′ = −
2y(√

1y2 + 2y2
)3 ,

with x ∈ [0, 10π], y(0) =
[
1− ecc, 0, 0,

√
1+ecc
1−ecc

]T
and the theoretical solution

1y(x) = cos(v)− ecc, 2y(x) = sin(v)
√

1− ecc2.

In the above, v = ecc · sin(u) + x, ecc is the eccentricity, and the components
of y are denoted by the left superscript. They should not be confused with y1 =[1y1,2 y1,3 y1,4 y1

]T , y2 =
[1y2,2 y2,3 y2,4 y2

]T , y3, · · · , which represent the vectors approx-
imating the solution at x1, x2, x3, · · · .

This problem can be solved with an RK6(5) pair from the family we are interested
in here. After a certain run, we recorded the number f ev of function evaluations (stages)
needed and the global error ge observed over the mesh (grid) in the interval of integration.
Then, we formed the efficiency measure

u = f ev · ge1/6. (2)

Running DLMP6(5) twice for Kepler we obtained the efficiency measures û1 and û2
as reported in Table 1. For example, we needed 1121 stages in order to achieve a global
error of 2.14 · 10−6 when running Kepler for ecc = 0, xend = 10π and tol = 10−7. Thus, we
obtained û1 = 1123 · 2.14 · 10−6 ≈ 127.22, as reported in Table 1. Analogously, for a second
run with ecc = 0.6, xend = 20π and tol = 10−11 we observed û2 = 833.27.

Let us suppose that any new pair NEW6(5) furnishes corresponding efficiency mea-
sures ũ1 and ũ2 for the same runs. Then, as a fitness function we form the sum

u =
û1

ũ1
+

û2

ũ2
,

and try to maximize it. That is, the fitness function is actually two whole runs of initial
value problems. The value u changes according to the selection of the free parameters c2, c4,
c5, c6, c7 and b̂9.

The original idea is based on [19]. For the minimization of u we used the differential
evolution technique [20]. We have already tried this approach and obtained some interest-
ing results in producing Numerov-type methods for integrating orbits [21]. In this latter
work we trained the coefficients of a Numerov-type method on a Kepler orbit. We observed
very pleasant results over a set of Kepler orbits as well as other known orbital problems.

Table 1. Efficiency measures for both runs and pairs.

ecc xend tol DLMP6(5) NEW6(5) Ratio û/ũ

First run 0 10π 10−7 û1 = 127.22 ũ1 = 50.64 2.51
Second run 0.6 20π 10−11 û2 = 833.27 ũ2 = 386.64 2.16
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The optimization furnished six values for the free parameters. They are included with
the rest of the coefficients in the resulting pair NEW6(5) presented in Table 2.

Table 2. Coefficients of the proposed NEW6(5) pair, accurate for double precision computations.

c2 = 0.173146279530013, c3 = 0.163620769891761, c4 = 0.245431154837642,
c5 = 0.452502877641229, c6 = 0.902924768667267, c7 = 0.8101151362080617,

c1 = 0, c8 = c9 = 1, b1 = 0.0794169052387116, b2 = b3 = 0,
b4 = 0.320063598496390, b5 = 0.179217292937057, b6 = −0.2872484367615202,
b7 = 0.573172758378662, b8 = 0.135377881710699, b9 = 0
b̂1 = 0.148854176113754, b̂2 = b̂3 = 0, b̂4 = 0.291009331941132,
b̂5 = 0.229278395578701, b̂6 = −0.1155397766857130, b̂7 = 0.429687174664803,

b̂8 = 0.0167106983873234, b̂9 = 0.064345053530889,
a21 = 0.173146279530013, a31 = 0.0863111204651556, a32 = 0.077309649426606,
a41 = 0.061357788709411, a42 = 0, a43 = 0.184073366128232,
a51 = 0.178735636864969, a52 = 0, a53 = −0.430121641642955,
a54 = 0.703888882419215, a61 = −0.3492563988707026, a62 = 0,

a63 = 4.2286674995349015, a64 = −5.131590895887595, a65 = 2.155104563890663,
a71 = −0.004184382566843, a72 = 0, a73 = 1.062724280290705,
a74 = −1.188530484293243, a75 = 0.8944565948851806, a76 = 0.045649127892262,
a81 = −0.518393300452978, a82 = 0, a83 = 4.607278279969559,
a84 = −5.004120306973807, a85 = 1.510536380616834, a86 = −0.399249451366671,
a87 = 0.803948398207063, a9j = bj, j = 1, 2, · · · , 8.

Interpreting Table 1, we observe that DLMP6(5) was 151% and 116% more expen-
sive than NEW6(5) for the first and second run, respectively. The norm of the principal
truncation error coefficients was ‖T(7)‖2 ≈ 2.64 · 10−4, which is much larger than the
corresponding value ‖T(7)‖2 ≈ 4.37 · 10−5 for DLMP6(5). The interval of absolute stability
for the new pair was (−4.24, 0] while for for DLMP6(5) it was (−4.21, 0].

In conclusion, no extra property seemed to hold. The pair given in Table 2 does not
possess any interesting properties. It is difficult to believe a special performance could be
obtained after seeing its traditional characteristics.

3. Numerical Tests

We tested the following pairs chosen from the family studied above.

1. The DLMP6(5) pair, given in [15].
2. NEW6(5), presented here.

DLMP6(5) is the best representative of conventional RK pairs. Everything else pre-
sented until now is hardly more efficient [10]. Both pairs were run for tolerances of
10−5, 10−6, · · · , 10−11, and the efficiency measures (2) were recorded for each one. We set
NEW6(5) as the reference pair. Then we divided each efficiency measure of DLMP6(5)
with the corresponding efficiency measure of NEW6(5). Numbers greater than 1 indicate
that NEW6(5) is more efficient. Thus, we can interpret the number 1.1 as DLMP6(5) being
0.1 = 10% more expensive than NEW6(5) while an entry of 2 means that DLMP6(5) is 100%
more expensive (i.e., has twice the cost for achieving the same accuracy).

The problems we tested were as follows.

1. The Kepler problem

This problem is explained above. We ran it for five different eccentricities (i.e., ecc =
0, 0.2, 0.4, 0.6, 0.8), while we recorded the efficiency measures using the endpoint errors for
xend = 10π and xend = 20π.

The efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Kepler are presented in
Tables 3 and 4.
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Table 3. Efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Kepler in [0, 10π].

tol−>
ecc︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0 1.90 2.36 3.66 3.06 2.46 3.18 3.59 2.89
0.2 1.15 1.11 1.14 1.01 1.07 1.46 2.07 1.29
0.4 1.09 1.10 1.11 1.51 0.80 1.27 1.71 1.23
0.6 1.49 1.49 1.86 1.27 1.18 1.43 1.73 1.49
0.8 1.13 1.17 1.32 1.21 1.36 1.08 2.73 1.43

Table 4. Efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Kepler in [0, 20π].

tol−>
ecc︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0 1.87 2.34 2.59 2.35 2.67 3.36 3.36 2.65
0.2 1.22 1.27 1.33 1.24 1.29 1.67 2.39 1.49
0.4 1.31 1.55 1.21 0.96 1.08 2.36 2.27 1.54
0.6 1.38 1.32 1.17 1.10 0.98 1.14 1.99 1.30
0.8 1.16 1.24 1.85 1.25 1.08 0.94 1.61 1.30

2. The perturbed Kepler

This problem describes the motion of a planet according to Einstein’s general relativity
theory and the Schwarzschild potential is applied. The equations are:

1y′′ = −
1y√

1y2 + 2y23 − (2 + δ)δ
1y√

1y2 + 2y25 ,

2y′′ = −
2y√

1y2 + 2y23 − (2 + δ)δ
2y√

1y2 + 2y25 ,

and the analytical solution is

1y = cos(x + δx), 2y = sin(x + δx).

We transformed this problem into a system of four first-order equations and solved
for xend = 10π and xend = 20π. After recording the endpoint errors and the costs, we
present the efficiency measures ratios of DLMP6(5) vs. NEW6(5) for perturbed Kepler in
Tables 5 and 6.

Table 5. Efficiency measures ratios of DLMP6(5) vs. NEW6(5) for perturbed Kepler in [0, 10π].

tol−>
δ︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0.01 1.90 2.48 2.39 2.33 3.04 3.64 3.49 2.75
0.02 1.93 2.69 2.19 2.11 2.58 3.65 3.45 2.66
0.03 1.91 2.76 2.14 2.07 2.50 3.45 3.47 2.61
0.04 1.87 2.63 2.18 2.12 2.53 3.28 3.57 2.60
0.05 1.87 2.40 2.32 2.30 2.47 3.24 3.72 2.62
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Table 6. Efficiency measures ratios of DLMP6(5) vs. NEW6(5) for perturbed Kepler in [0, 20π].

tol−>
δ︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0.01 1.88 2.44 2.35 2.18 2.43 3.11 3.34 2.53
0.02 1.86 2.49 2.29 2.14 2.38 3.09 3.36 2.52
0.03 1.85 2.44 2.33 2.17 2.43 3.17 3.39 2.54
0.04 1.83 2.38 2.36 2.17 2.44 3.21 3.43 2.55
0.05 1.82 2.32 2.37 2.16 2.43 3.19 3.44 2.53

3. The Arenstorf orbit

Another interesting orbit describes the stable movement of a spacecraft around Earth
and Moon ([22], pg. 129).

1y′′ = 1y + 2 · 2y
′ − ζ ′ ·

1y + ζ

P1
− ζ ·

1y− ζ ′

P2
,

2y′′ = 2y + 2 · 1y
′ − ζ ′ ·

2y
P1
− ζ ·

2y
P2

,

with

P1 =

√
(1y + ζ)

2
+ 2y2

3
, P2 =

√
(1y− ζ ′)2

+ 2y2
3
,

ζ = 0.012277471, ζ ′ = 0.987722529,

initial values

1y(0) = 0.994, 1y
′
(0) = 0, 2y(0) = 0, 2y

′
(0) = −2.00158510637908252,

and with xA = 17.0652165601579625589 the solution is periodic.
We also transformed this problem to a system of four first-order equations and solved

it to xA and 2xA. After recording the endpoint errors and the costs we present the efficiency
measures ratios of DLMP6(5) vs. NEW6(5) for Arenstorf in Table 7.

Table 7. Efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Arenstorf.

tol−>
xend︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

xA 1.13 1.42 1.89 1.34 0.90 1.51 1.71 1.41
2xA 0.96 1.82 1.64 1.07 1.09 1.62 1.58 1.40

4. The Pleiades

Finally, we considered the problem “Pleiades” as given in ([22], pg. 245).

iy′′ = ∑
i 6=j

µj
(jy− iy

)
ρij

, iz
′′
= ∑

i 6=j

µj
(jz−i z

)
ρij

,

with

ρij =

√(
iy− jy

)2
+
(

iz− jz
)2

3
, i, j = 1, · · · , 7.

The initial values are

1y(0) = 3, 2y(0) = 3, 3y(0) = −1, 4y(0) = −3, 5y(0) = 2, 6y(0) = −2, 7y(0) = 2,

1z(0) = 3, 2z(0) = −3, 3z(0) = 2, 4z(0) = 0, 5z(0) = 0, 6z(0) = −4, 7z(0) = 4,
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1y′(0) = 0, 2y′(0) = 0, 3y′(0) = 0, 4y′(0) = 0, 5y′(0) = 0, 6y′(0) = 1.75, 7y′(0) = −1.5,
1z′(0) = 0, 2z′(0) = 0, 3z′(0) = 0, 4z′(0) = −1.25, 5z′(0) = 1, 6z′(0) = 0, 7z′(0) = 0,

We again transformed this problem to a system of fourteen first-order equations
and solved it to xend = 3 and 4. We recorded the endpoint errors after we estimated the
solution there by a very accurate integration using Mathematica and quadruple precision.
The efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Pleiades can be found in
Table 8.

Table 8. Efficiency measures ratios of DLMP6(5) vs. NEW6(5) for Pleiades.

tol−>
xend︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

3 1.12 1.02 0.97 1.03 0.89 1.10 1.63 1.11
4 1.13 1.03 0.97 0.96 0.94 1.15 1.64 1.12

We estimated 168 (i.e., 12 problems times 7 tolerances times two end points) efficiency
measures for each pair. In average we observed a ratio of 1.98, meaning that DLMP6(5) is
about 98% more expensive! This is quite remarkable since a great deal of effort has been
put over the years towards achieving 10–20% efficiency [23,24]. In reverse, this means that
about log10 1.986 ≈ 1.8 digits were gained on average at the same costs.

4. Conclusions

This paper is concerned with training the coefficients of a Runge–Kutta pair for
addressing a certain kind of problem. We concentrated on problems with Kepler-type
orbits and an extensively studied family of Runge–Kutta pairs of orders six and five.
After optimizing the free parameters (coefficients) in a couple of runs on Kepler orbits, we
concluded to a certain pair. This pair was found to outperform other representatives from
this family in a wide range of relevant problems.
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Appendix A

The following Mathematica package implements the algorithm producing the coeffi-
cients of the method for double precision. In the input we provide the free coefficients c2,
c4, c5, c6, c7 and b̂9. In the output we get four vectors, namely b, b̂, c and the matrix A.

NEW65[cc2_, cc4_, cc5_, cc6_, cc7_, bbb9_] :=
Module[{b, a, c, bb, vandh, vandl, ac, ac2, cc, ii, ba, cond, soh, b1, b4, b5, b6,
b7, b8, bb1, bb4, bb5, bb6, bb7, bb8, bb9, c2, c3, c4, c5, c6, c7, a21, a31,
a32, a41, a43, a51, a53, a54, a61, a63, a64, a65, a71, a73, a74, a75, a76,
a81, a83, a84, a85, a86, a87, so3, so5, sol, so6, so7, so8},
c2 = Rationalize[cc2, 10^-16]; c4 = Rationalize[cc4, 10^-16];
c5 = Rationalize[cc5, 10^-16]; c6 = Rationalize[cc6, 10^-16];
c7 = Rationalize[cc7, 10^-16]; bb9 = Rationalize[bbb9, 10^-16];
b={b1,0,0,b4,b5,b6,b7,b8,0};
a={{0,0,0,0,0,0,0,0,0},
{a21,0,0,0,0,0,0,0,0},
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{a31,a32,0,0,0,0,0,0,0},
{a41,0,a43,0,0,0,0,0,0},
{a51,0,a53,a54,0,0,0,0,0},
{a61,0,a63,a64,a65,0,0,0,0},
{a71,0,a73,a74,a75,a76,0,0,0},
{a81,0,a83,a84,a85,a86,a87,0,0},
{b1,0,0,b4,b5,b6,b7,b8,0}};
c={0,c2,c3,c4,c5,c6,c7,1,1};
bb={bb1,0,0,bb4,bb5,bb6,bb7,bb8,bb9};
vandh={b.c==1/2,b.c^2==1/3,b.c^3==1/4,b.c^4==1/5,b.c^5==1/6};
vandl={bb.c==1/2,bb.c^2==1/3,bb.c^3==1/4,bb.c^4==1/5};
ac=a.c-c^2/2;
ac2=a.c^2-c^3/3; cc=DiagonalMatrix[c]; ii=IdentityMatrix[9];
ba=b.(a+cc-1*ii);
cond=
{b.(cc-1*ii).a.(cc-c4*ii).(cc-c5*ii).c-Integrate[(x-1)*Integrate[(x-c5)*(x-c4)*x,
{x,0,x}],{x,0,1}],
b.(cc-ii).a.(cc-c4*ii).(cc-c5*ii).c-Integrate[(x-1)*Integrate[(x-c4)*(x-c5)*x,
{x,0,x}],{x,0,1}] /.{a43->0,a53->0,a63->0,a73->0},
bb.a.(cc-c5*ii).(cc-c4*ii).c-Integrate[Integrate[(x-c5)*(x-c4)*x,{x,0,x}],
{x,0,1}]};
(* start procedure *)
soh=Solve[vandh,{b4,b5,b6,b7,b8}];
b4=Together[soh[[1,1,2]]];
b5=Together[soh[[1,2,2]]];
b6=Together[soh[[1,3,2]]];
b7=Together[soh[[1,4,2]]];
b8=Together[soh[[1,5,2]]]; (* OK b *)
sol=Solve[Join[{(bb.a)[[3]]==0},vandl],{bb4,bb5,bb6,bb7,bb8}];
bb4=Together[sol[[1,1,2]]];
bb5=Together[sol[[1,2,2]]];
bb6=Together[sol[[1,3,2]]];
bb7=Together[sol[[1,4,2]]];
bb8=Together[sol[[1,5,2]]]; (* OK bb *)
c3=2/3*c4; a43=c4^2/(2*c3); a32=c3^2/(2*c2);
so5=Solve[{ac[[5]]==0,ac2[[5]]==0},{a53,a54}];
a53=Together[so5[[1,1,2]]];a54=Together[so5[[1,2,2]]]; (* after upper left *)
a87=Together[Solve[{ba[[7]]==0},{a87}][[1,1,2]]];
a76=Together[Solve[{cond[[2]]==0},{a76}][[1,1,2]]];
a86=Together[Solve[{ba[[6]]==0},{a86}][[1,1,2]]];
ac=Together[ac]; ac2=Together[ac2];
ba=Together[ba]; cond=Together[cond]; (* OK down right *)
so3=Solve[{ba[[3]]==0,cond[[1]]==0,cond[[3]]==0},{a63,a73,a83}];
a63=Together[so3[[1,1,2]]];
a73=Together[so3[[1,2,2]]];
a83=Together[so3[[1,3,2]]]; (* OK 3nd column *)
so6=Solve[{ac[[6]]==0,ac2[[6]]==0},{a64,a65}];
a64=Together[so6[[1,1,2]]];a65=Together[so6[[1,2,2]]];
so7=Solve[{ac[[7]]==0,ac2[[7]]==0},{a74,a75}];
a74=Together[so7[[1,1,2]]];a75=Together[so7[[1,2,2]]];
so8=Solve[{ac[[8]]==0,ac2[[8]]==0},{a84,a85}];
a84=Together[so8[[1,1,2]]];a85=Together[so8[[1,2,2]]]; (* OK ai4, ai5 *)
b1=1-b4-b5-b6-b7-b8;
bb1=1-bb4-bb5-bb6-bb7-bb8;
a21=c2;
a31=c3-a32;
a41=c4-a43;
a51=c5-a53-a54;
a61=c6-a63-a64-a65;
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a71=c7-a73-a74-a75-a76;
a81=1-a83-a84-a85-a86-a87;
Return[SetAccuracy[{b, bb, c, a}, 16] // Chop]]

References
1. Butcher, J.C. On Runge-Kutta processes of high order. J. Austral. Math. Soc. 1964, 4, 179–194. [CrossRef]
2. Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley & Sons: Chichester, UK, 2003.
3. Tsitouras, C.; Papakostas, S.N. Cheap Error Estimation for Runge-Kutta pairs. SIAM J. Sci. Comput. 1999, 20, 2067–2088. [CrossRef]
4. Runge, C. Ueber die numerische Auflöung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178. [CrossRef]
5. Kutta, W. Beitrag zur naherungsweisen Integration von Differentialgleichungen. Z. Math. Phys. 1901, 46, 435–453.
6. Fehlberg, E. Klassische Runge-Kutta-Formeln fiinfter und siebenter 0rdnung mit Schrittweiten-Kontrolle. Computing 1969, 4,

93–106. [CrossRef]
7. Fehlberg, E. Klassische Runge-Kutta-Formeln vierter und niedrigererrdnung mit Schrittweiten-Kontrolle und ihre Anwendung

auf Warmeleitungsprobleme. Computing 1970, 6, 61–71. [CrossRef]
8. Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [CrossRef]
9. Prince, P.J.; Dormand, J.R. High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1981, 7, 67–75. [CrossRef]
10. Tsitouras, C. A parameter study of explicit Runge-Kutta pairs of orders 6(5). Appl. Math. Lett. 1998, 11, 65–69. [CrossRef]
11. Famelis, I.T.; Papakostas, S.N.; Tsitouras, C. Symbolic derivation of Runge-Kutta order conditions. J. Symbolic Comput. 2004, 37,

311–327. [CrossRef]
12. Tsitouras, C. Runge-Kutta pairs of orders 5(4) satisfying only the first column simplifying assumption. Comput. Math. Appl. 2011,

62, 770–775. [CrossRef]
13. Medvedev, M.A.; Simos, T.E.; Tsitouras, C. Fitted modifications of Runge-Kutta pairs of orders 6(5). Math. Meth. Appl. Sci. 2018,

41, 6184–6194. [CrossRef]
14. Tsitouras, C. Optimized explicit Runge-Kutta pair of orders 9(8). Appl. Numer. Math. 2001, 38, 121–134. [CrossRef]
15. Dormand, J.R.; Lockyer, M.A.; McGorrigan, N.E.; Prince, P.J. Global error estimation with Runge-Kutta triples. Comput. Math.

Appl. 1989, 18, 835–846. [CrossRef]
16. Verner, J.H. Some Runge-Kutta formula pairs. SIAM J. Numer. Anal. 1991, 28, 496–511. [CrossRef]
17. Simos, T.E.; Tsitouras, C. Evolutionary derivation of Runge-Kutta pairs for addressing inhomogeneous linear problems. Numer.

Algor. 2020. [CrossRef]
18. Wolfram Research, Inc. Mathematica, Version 11.1; Wolfram Research, Inc.: Champaign, IL, USA, 2017.
19. Tsitouras, C. Neural Networks With Multidimensional Transfer Functions. IEEE Trans. Neural Netw. 2002, 13, 222–228. [CrossRef]
20. Storn, R.; Price, K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
21. Liu, C.; Hsu, C.W.; Tsitouras, C.; Simos, T.E. Hybrid Numerov-type methods with coefficients trained to perform better on

classical orbits. Bull. Malays. Math. Sci. Soc. 2019, 42, 2119–2134. [CrossRef]
22. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd ed.; Springer: Berlin, Ger-

many, 1993.
23. Papageorgiou, G.; Papakostas, S.N.; Tsitouras, C. A general family of explicit Runge-Kutta pairs of orders 6(5). SIAM J. Numer.

Anal. 1996, 33, 917–936.
24. Papakostas, S.N.; Tsitouras, C. High phase-lag order Runge-Kutta and Nyström pairs. SIAM J. Sci. Comput. 1999, 21, 747–763.

[CrossRef]

http://doi.org/10.1017/S1446788700023387
http://dx.doi.org/10.1137/S1064827596302230
http://dx.doi.org/10.1007/BF01446807
http://dx.doi.org/10.1007/BF02234758
http://dx.doi.org/10.1007/BF02241732
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(81)90010-3
http://dx.doi.org/10.1016/S0893-9659(97)00135-3
http://dx.doi.org/10.1016/j.jsc.2003.07.001
http://dx.doi.org/10.1016/j.camwa.2011.06.002
http://dx.doi.org/10.1002/mma.5128
http://dx.doi.org/10.1016/S0168-9274(01)00025-3
http://dx.doi.org/10.1016/0898-1221(89)90181-8
http://dx.doi.org/10.1137/0728027
http://dx.doi.org/10.1007/s11075-020-00976-9
http://dx.doi.org/10.1109/72.977309
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s40840-019-00775-z
http://dx.doi.org/10.1137/S1064827597315509

	Introduction
	Producing Runge–Kutta Pairs of Orders 6(5) and Training Their Coefficients
	Numerical Tests
	Conclusions
	
	References

