
mathematics

Article

k-Version of Finite Element Method for BVPs and IVPs

Karan S. Surana *, Celso H. Carranza and Sri Sai Charan Mathi

����������
�������

Citation: Surana, K.S.; Carranza,

C.H.; Mathi, S.S.C. k-Version of Finite

Element Method for BVPs and IVPs.

Mathematics 2021, 9, 1333. https://

doi.org/10.3390/math9121333

Academic Editors:

Krzysztof Kamil Żur, Jinseok Kim
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Abstract: The paper presents k-version of the finite element method for boundary value problems
(BVPs) and initial value problems (IVPs) in which global differentiability of approximations is always
the result of the union of local approximations. The higher order global differentiability approxima-
tions (HGDA/DG) are always p-version hierarchical that permit use of any desired p-level without
effecting global differentiability. HGDA/DG are true Ci, Cij, Cijk, hence the dofs at the nonhierarchical
nodes of the elements are transformable between natural and physical coordinate spaces using calcu-
lus. This is not the case with tensor product higher order continuity elements discussed in this paper,
thus confirming that the tensor product approximations are not true Ci, Cijk, Cijk approximations. It is
shown that isogeometric analysis for a domain with more than one patch can only yield solutions
of class C0. This method has no concept of finite elements and local approximations, just patches. It
is shown that compariso of this method with k-version of the finite element method is meaningless.
Model problem studies in R2 establish accuracy and superior convergence characteristics of true Cij p-
version hierarchical local approximations presented in this paper over tensor product approximations.
Convergence characteristics of p-convergence, k-convergence and pk-convergence are illustrated for
self adjoint, non-self adjoint and non-linear differential operators in BVPs. It is demonstrated that
h, p and k are three independent parameters in all finite element computations. Tensor product local
approximations and other published works on k-version and their limitations are discussed in the
paper and are compared with present work.

Keywords: k-version; finite element method; higher order spaces; higher order global differentiability;
tensor product; isogeometric; variational consistency; BVPs; IVPs

1. Introduction

In physical sciences, the mathematical descriptions of the deformation of continuous
media (solid or fluent continua) derived using conservation and balance laws of thermody-
namics and associated constitutive theories lead to initial value problems (IVPs) or boundary
values problems (BVPs). Initial value problems describe evolution, hence the dependent
variables in their mathematical description exhibit simultaneous dependence on spatial
coordinates and time. In case of boundary value problems that are stationary states of
evolutions described by IVPs, the dependent variables only exhibit dependence on spatial
coordinates. In the absence of permanent damage to the continuum during deformation, the
solutions for the BVPs and IVPs related to deformation of the continua must be continuous
and must possess continuous derivatives up to certain order which depends upon the
differential operator describing the IVP or the BVP and their theoretical solutions. Physical
processes do not admit being discontinuous unless there is damage to the continuum. In
many cases what is viewed as discontinuous behavior is often an issue of scale. For example,
the shocks in compressible flow, if viewed at a bigger scale, may appear as a discontinuous
phenomenon, but on closer examination at a finer scale these are indeed continuous and
differentiable. This basic assumption that solution of all BVPs and IVPs in physical sciences
are generally analytic is the foundation of the work presented in this paper.
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1.1. Boundary Value Problems (BVPs)

Consider the following BVP

Aφ(x)− f (x) = 0 ∀ x ∈ Ωx (1)

in which a A is differentiable operator, the variable φ is unknown and depends on f , and x
is an independent variable that could be x or x, y or x, y, z, but for the sake of simplicity
we continue with x only and Ωx is the domain of definition. Let the differential operator
contain derivatives of φ up to orders 2m. A theoretical solution φ of (1) must be at least of
class C2m(Ω̄x) if derivatives of φ of up to orders 2m are continuous and differentiable. This is
due to the fact that the continuity and differentiability aspects of the physics used to derive
BVP (1) necessitate this feature of the theoretical solution of (1). A theoretical solution φ of
(1) can be of class higher than C2m(Ω̄x), this of course depends upon the non-homogeneous
function f (x). Thus, a solution of (1) must belong to subspace V such that

φ ∈ V ⊂ Hk(Ω̄x); k ≥ 2m + 1 (2)

V is a subspace of scalar product space Hk(Ω̄x). k is the order of the scalar product space.
A scalar product space of order k contains functions that have continuous derivatives up to
orders k− 1 and the derivative of order k can have isolated discontinuities for some x ∈ Ω̄x,
but are square integrable. For the BVP (1), k must at least be 2m + 1 (functions φ of class
C2m), but k > 2m + 1 or k → ∞ (if for example φ consists of trigonometric functions) are
admissible as well. When k = 2m + 1, V is called minimally conforming space, i.e., a solution
of (1) cannot be of a class lower than C2m(Ω̄x).

When seeking finite element solutions for (1) we discretize the spatial domain Ω̄x into
Ω̄T

x =
⋃
e

Ω̄e
x in which Ω̄e

x is a finite element. Ω̄T
x is called discretization of Ω̄x or a finite

element mesh. We consider φe
h to be local approximation of φ over Ω̄e

x, the domain of an
element e and φh to be the approximation of φ over Ω̄T

x , global approximation of φ for the
discretization Ω̄T

x such that

φh(x) =
⋃
e

φe
h(x) ∀ x ∈ Ω̄T

x (3)

and φe
h(x) =

n

∑
i

Ni(x)δe
i ∀ x ∈ Ω̄e

x (4)

In (4), Ni(x) are approximation functions and δe
i are nodal dofs. The approximation

functions Ni(x) are generally obtained using linear combination of algebraic monomials
(interpolation theory) up to degree p. This is convenient as well as prudent. Thus, φe

h of
class Cp(Ω̄e

x) is always ensured. However, the differentiability φh(x) ∀ x ∈ Ω̄T
x (global

differentiability) depends upon (3), i.e., the union of local approximations (φe
h’s) controls

the global differentiability of φh over the discretization Ω̄T
x . It is obvious that φh over each

Ωe
x is of class Cp(Ωe

x), hence the differentiability of φh∀ x ∈ Ω̄T
x is controlled by the differ-

entiability of φh over the inter-element boundaries of elements Ω̄e
x. Thus, we could design

local approximations φe
h (in (4)) of some polynomial degree p such that (3) gives us the

desired global differentiability of φh at the inter-element boundaries, always less than the
differentiability of order p of φh over Ωe

x, interior of each element. The local approxima-
tion φe

h over Ω̄e
x of polynomial order p that yield global differentiability of order q at the

inter-element boundaries (q < p) are called local approximations of class Cq(Ω̄e
x). Thus,

the global differentiability of φh is of order q due to the local approximation φe
h yielding

global differentiability of order q at the inter-element boundaries. Thus, to achieve global
differentiability of φh of certain order we must design local approximations such that (3) in
fact gives us the desired global differentiability of φh at the inter-element boundaries.



Mathematics 2021, 9, 1333 3 of 43

1.2. k-Version of Finite Element Method

We note that (Surana et al. [1–3]) order of the space k in Hk,p(Ω̄x) giving global
differentiability of order k− 1 is an independent parameter in addition to h and p in all finite
element processes, thus all finite element computations are dependent on three independent
parameters h, p, and k. Just as h and p must be incorporated in local approximations, k
also needs to be considered in designing local approximations φe

h so that (3) would yield
desired global differentiability of φh at the inter-element boundaries. h, p refinement cannot
change or alter k as it is independent of h and p. Thus, we have k-version of finite element
method in addition to h- and p-versions. Derivation of higher order global differentiability
local approximations for BVPs, their accuracy, convergence behavior and comparisons
with published works is the thrust of the work presented in this paper.

1.3. Initial Value Problems (IVPs) and k-Version

Consider an initial value problem

Aφ(x, t)− f (x, t) = 0 ∀ (x, t) ∈ Ωxt = Ωx ×Ωt (5)

in which A is a space-time differential operator. Let 2m1 and 2m2 be the highest orders of
derivations of φ in space x and time t in the (5), then for a solution of φ we have

φ ∈ V ⊂ H(k1,k2)(Ω̄xt) (6)

The scalar product space H(k1,k2)(Ω̄xt) contains functions that are admissible in (5). k1,
k2 are orders of the space in space and time and we have

k1 ≥ 2m1 + 1; k2 ≥ 2m2 + 1 (7)

in which k1 = 2m1 + 1 and k2 = 2m2 + 1 correspond to minimally conforming space in
space and time. If we consider space-time coupled finite element processes for obtain-
ing approximation solutions for (5), then we discretize the space-time domain Ω̄xt into
Ω̄T

xt = ∪
e

Ω̄e
xt. Ω̄T

xt is the discretization of the space-time domain Ω̄xt in which Ω̄e
xt is a

space-time element. Let φe
h(x, t) be local approximation of φ(x, t) over Ω̄e

xt and φh(x, t) be
approximation of φ(x, t) over the discretization Ω̄T

xt such that

φh(x, t) =
⋃
e

φe
h(x, t) (8)

and φe
h(x, t) =

n

∑
i=1

Ni(x, t)δe
i (9)

Ni(x, t) are space-time local approximation functions and δe
i are nodal dofs for a space-time

element e with domain Ω̄e
xt. For the IVP with highest orders of derivatives of orders 2m1

and 2m2 in space and time require φh(x, t) over Ω̄T
xt to be at least of class 2m1 in space and of

class 2m2 in time, i.e., k1 = 2m1 + 1 and k2 = 2m2 + 1 correspond to minimally conforming
space in space and time. In general we must have k1 ≥ 2m1 + 1 and k2 ≥ 2m1 + 1 and
k1 → ∞ and k2 → ∞ are admissible. In general we can write φh(x, t) must be of class
Cqr(Ω̄T

xt), in which q and r are orders of global differentiability of φh(x, t) in space and
time. Hence φh(x, t) over Ω̄e

xt must be such that φh =
⋃
e

φe
h yields global differentiability of

orders q and r in space and time at the inter-element boundaries. Only then φh(x, t) of class
Cqr(Ω̄T

xt) is possible. Thus, we see that regardless of BVP or IVP, the local approximation
must be designed in such a way that their union yields desired global differentiability at
the inter-element boundaries.

2. Literature Review

The importance of the higher order global differentiability of the finite element solu-
tions for BVPs and IVPs have been recognized for quite some time [4–10]. More recently,
Surana and coworkers [11–16] pointed out applications in BVPs and IVPs in which higher
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order global differentiability approximations were shown to be highly meritorious. First
formal presentation and introduction of k-version of finite element for BVPs in which k is
the order of the approximation space is due to Surana et al., in the three basic papers [1–3]
devoted to self adjoint, non-selfadjoint and nonlinear differential operators. In these
works, variationally consistent (VC) as well as variationally inconsistent (VIC) integral
forms [17,18] were used in the model problem studies. In references [19–21] Surana et al.,
presented 2D HGDA/TP as well as HGDA/DG finite element formulations.

Since the publication of the works by Surana et al., on k-version, there have been many
attempts with different techniques to address the higher order global differentiability issues
primarily in context with the BVPs. In the following we discuss four typical publications
that appeared in 2010–2020 that are typical of higher order global differentiability published
works. We regret to point out that none of these works acknowledge or reference the large
number of published works and two textbooks by Surana et al., that address systematic and
general methodologies for deriving HGDA/DG or HGDA/TP inR2 andR3 including model
problem studies, applications, error estimation and convergence rates. In reference [22], the
authors claim to extend tensor product concepts of 1D approximation to derive what they
call as C1-Qk family of finite elements. In reference [23] C1 basis functions are presented,
that contain same dofs at the corner nodes that arise due to tensor product of 1D C1

functions in natural coordinate space. These cannot be transformed to physical coordinate
space [17,18], authors in the paper do this incorrectly. Reference [24] claims the QH8-C1 as
new innovation in higher order continuity. No reference is made to any of the published
works, the work has no mathematical foundation. In reference [25], the choices of the dofs
and the geometrical approach used has no mathematical foundation either. There are many
other works of similar type in which some approach (mostly without mathematical basis) is
used to achieve C1 continuity. Isogeometric analysis [26,27] also claims the method to be
k-version. In subsequent sections we clearly demonstrate that this is indeed not the case.
Unfortunately we also find the motivation of k-version as presented by Surana et al. [1–3] and
discussed in this paper is misrepresented in many of the published works on isogeometric
analysis as well as other works. We point out this subsequently so that the readers of
this paper have better understanding of the motivation for k-version of FEM initiated by
Surana et al. First, we make some remarks.

Remark 1.

1. In all publications only C1 global differentiability is addressed for a fixed degree of polynomials
of the functions in the local approximation.

2. No published work on Cq, Cqr, Cqrs (in R1, R2 and R3) with q, r, s > 1 higher order global
differentiability local approximations is available.

3. The published C1 works are not higher degree, hierarchical, i.e., degree of local approximations
cannot be increased to any arbitrary value p while maintaining C1 nature of approximation,
hence hierarchical nature of approximations is naturally not possible.

4. In summary there is no unified and sound mathematical framework that exists at present for
constructing Cq, Cqr and Cqrs ; q, r, s ≥ 1 local approximation with global differentiability in
R1, R2 and R3 that allow the use of arbitrarily higher order degree polynomials and in which
the local approximations are hierarchical.

3. Scope and Approach Used in the Present Work

The scope of work published in this paper is summarized in the following.

1. The paper presents a unified methodology and mathematical infrastructure for de-
riving higher order global differentiability approximations of class Cq, Cqr, Cqrs;
p, q, r ≥ 0 for BVPs and IVPs in R1, R2 and R3.

2. Since the global differentiability of approximation φh for discretization Ω̄T
x or Ω̄T

xt is
due to local approximation φe

h over Ω̄e
x or Ω̄e

xt, i.e.,
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φh =
⋃
e

φe
h

Thus, the local approximation φe
h over Ω̄e

x or Ω̄e
xt must be designed in such a way that

desired globally differentiability of φh (i.e., of orders q or qr or qrs) is achievable at the
inter-element boundaries of the discretizations. This approach is essential in all finite
element processes. This is due to the fact the union of element approximation must
always establish the global approximation φh over the discretization Ω̄T

x or Ω̄T
xt.

3. The approximations in R1, R2 and R3 of type Cq, Cqr and Cqrs must be p-version
hierarchical, i.e., for chosen q, r, s, we must be able to increase p-levels to whatever
value we desire without affecting order of global differentiability q, r, s. If possible,
lower p-levels must be embedded (complete subset) in the higher p-levels (hierarchical
property or embedding property) so that the computations performed at lower p-
levels can be used when doing computations at higher p-level.

4. The derivation of the local approximations must always be in natural coordinate
space with transparent transformations to physical coordinate space to achieve the
desired global differentiability in the physical coordinate space.

5. In all derivations of the type Cq, Cqr, Cqrs in R1, R2 and R3 the nodal configuration
for geometry and for the dofs must remain the same regardless of the choices of q, r, s
and p-levels. This permits use of a single discretization for all studies if h-refinement
is not used.

6. All derivations must initialize with C0, C00 and C000 p-version hierarchical local
approximation of arbitrary p-level in the derivations of Cq, Cqr, Cqrs HGDA/DG.
The derivations must retain the hierarchical structure of increasing p-level beyond the
minimum polynomial degree needed for q, qr, qrs orders of global differentiability.

4. Cq(Ω̄e
x) Local Approximation in R1

Consider a three node 1D element e with domain Ω̄e
x of length he in the physical

coordinate space x, mapped in the natural coordinate space ξ in a two unit length (Figure 1).
Let 1, 2, 3 be local node numbers then

x = x(ξ) =
3

∑
i=1

N̂i(ξ)xi (10)

describes mapping of a point in ξ- and x-spaces. N̂i(ξ) are standard quadratic Lagrange
functions. Figure 2 shows a typical inter-element boundary between element e− 1 and e.

non−hierarchical node

hierarchical node

2ey

ξx
x1 x2 x3 ξ = −1 ξ = 1

he

(a) Ω̄e
x

(b) Ω̄ξ

31 2 3 1 2

Figure 1. A three node p-version 1D element and its map in ξ space.

Inter−element boundary

e e
dof:

diφ

dxi ; i = 0, 1, . . . , q
e-1 e-1

di

dxi ; i = 0, 1, . . . , q

Figure 2. Dofs and nodal variable operators for nonhierarchical nodes: Ci(Ω̄e
x).

For the global approximation φh =
⋃
e

φe
h to be of class Cq(Ω̄T

x ), the local approximation

φe
h over Ω̄e

x must be of class Cq(Ω̄e
x), i.e., the union of local approximations φe

h must yield
global differentiability of order Cq at the inter-element boundaries. This requires that we
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construct local approximation φe
h for an element e such that φ, diφ

dxi ; i = 1, 2, . . . , q are the
dofs at the nonhierarchical nodes (boundary nodes) so that at the inter-element boundaries

continuity of φ, diφ

dxi ; i = 1, 2, . . . , q will be enforced. We shall see that in the interior (Ωe
x)

of each element φe
h, φh is always of class higher than Cq. We begin with a C0 p-version

hierarchical local approximation that is 1D local approximation in natural coordinate space
ξ. Using the three node configuration of Figure 1b we can write the following. The p-
version hierarchical local approximation (using φ instead of φe

h) of class C0 and of p-level p
is given by

φ(ξ) =

(
1− ξ

2

)
φ1 +

(
1 + ξ

2

)
φ3 +

pξ

∑
i=2

(
ξ i − a

i!

)
diφ

dξ i

∣∣∣∣
ξ=0

a = 1 when i is even; a = ξ when i is odd.

(11)

Here φ1 and φ3 are nodal dofs at nonhierarchical nodes 1 and 3. This local approxima-
tion ensures continuity of φ (only) at the inter-element boundaries (nodes 1 and 3), hence
φe

h is class C0(Ω̄e
x) and therefore would yield φh (over Ω̄T

x ) of class C0(Ω̄T
x ).

4.1. C1(Ω̄e
x) Local Approximation

A C1(Ω̄e
x) local approximation will require φ and dφ

dx as dofs at non hierarchical nodes
1 and 3 (Figure 1). Thus, if we begin with (11), then φ is already a nodal dof at nodes 1 and
3 and dφ

dx at nodes 1 and 3 can be established by borrowing two terms from the sum in (11)

and converting them to dφ
dx at nodes 1 and 3. First, we write (11) as (borrowing two terms

form the sum in (11)).

φ(ξ) =

(
1− ξ

2

)
φ1 +

(
1 + ξ

2

)
φ3 +

(
ξ2 − 1

2!

)
d2φ

dξ2

∣∣∣∣
2
+

(
ξ3 − ξ

3!

)
d3φ

dξ3

∣∣∣∣
2

+
pξ

∑
i=4

(
ξ i − a

i!

)
diφ

dξ i

∣∣∣∣
2

(12)

Using (12) we can obtain expressions for dφ
dξ

∣∣∣
ξ=−1

= dφ
dξ

∣∣∣
1

and dφ
dξ

∣∣∣
ξ=1

= dφ
dξ

∣∣∣
3

(at

nodes 1 and 3). From these two equations we can solve for d2φ

dξ2

∣∣∣
2
, d3φ

dξ3

∣∣∣
2

and then substitute
them back in (12) to obtain

φ(ξ) = N1
0 (ξ)φ1 + N˜ 1

1
dφ

dξ

∣∣∣∣
1
+ N0

3 φ3 + N˜ 1
3

dφ

dξ

∣∣∣∣
3
+

pξ

∑
i=4

Ni
2(ξ)

diφ

dξ i

∣∣∣∣
2(or ξ=0)

(13)

in which

N0
1 (ξ) =

( (1− ξ)

2
+

(ξ3 − ξ)

4

)
N1

1 (ξ) =
( (ξ3 − ξ)

4
− (ξ2 − 1)

4

)
J

N0
2 (ξ) =

( (1 + ξ)

2
− (ξ3 − ξ)

4

)
N1

2 (ξ) =
( (ξ3 − ξ)

4
+

(ξ2 − 1)
4

)
J

Ni
3(ξ) =


(
(ξ i−1)− 1

2 (ξ
2−1)

i!

)
i is even(

(ξ i−ξ)− i−1
2 (ξ3−ξ)

i!

)
i is odd

(i = 4, 5, . . . , p)

(14)

we note that
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diφ

dξ i = (J)i diφ

dxi ; i = 1, 2, . . .

J =
dx
dξ

=
he
2
(for equally spaced nodes in x space)

(15)

using (15), dφ
dξ

∣∣∣
1

and dφ
dξ

∣∣∣
3

can be replaced by J dφ
dx

∣∣∣
1

and J dφ
dx

∣∣∣
3

and we have

N0
1 (ξ)φ1 + N1

1
dφ

dx

∣∣∣∣
1
+ N0

3 φ3 + N1
3

dφ

dx

∣∣∣∣
3
+

pξ

∑
i=4

Ni
2(ξ)

diφ

dξ i

∣∣∣∣
2(or ξ=0)

(16)

in which N1
1 = JN˜ 1

1 and n1
3 = JN˜ 1

3. φ(ξ) in (16) is the desired p-version local approximation
of class C1(Ω̄e

x) in which if we choose pξ = 3 then there are no dofs at the hierarchical node
2. Each p-level increase beyond p-level of 3 adds one dof at the hierarchical node 2.

4.2. C2(Ω̄e
x) Local Approximation

In this case we need φ, dφ
dx , d2φ

dx2 as dofs at node 1 and 3 of the element of Figure 1. Thus,
compared to C0(Ω̄e

x) local approximation of (11), we need additional two dofs at nodes 1
and 3. We borrow four terms from the sum in (11).

φ(ξ) =
(1− ξ

2

)
φ1 +

(1 + ξ

2

)
φ2 +

( ξ2 − 1
2!

) d2φ

dξ2

∣∣∣∣
ξ=0

+
( ξ3 − ξ

3!

) d3φ

dξ3

∣∣∣∣
ξ=0

+
( ξ4 − 1

4!

) d4φ

dξ4

∣∣∣∣
ξ=0

+
( ξ5 − ξ

5!

) d5φ

dξ5

∣∣∣∣
ξ=0

+
p

∑
i=6

Ni
3(ξ)

diφ

dξ i

∣∣∣∣
ξ=0

(17)

Using (17) we obtain expression for dφ
dξ

∣∣∣
ξ=−1

, d2φ

dξ2

∣∣∣
ξ=−1

(at node one) and dφ
dξ

∣∣∣
ξ=1

,

d2φ

dξ2

∣∣∣
ξ=−1

(at node 3). Using these four equations we solve for diφ

dξ i

∣∣∣
ξ=0

; i = 2, 3, . . . , 5 and

substitute these back into (17) and use the relationship diφ

dξ i = (J)i diφ

dξ i to obtain [17,18] (and
noting that ξ = −1 and ξ = 1 are locations of nodes 1 and 3).

φ(ξ) = N̂0
1 (ξ)φ1 + N̂1

1 (ξ)
dφ

dx

∣∣∣∣
1
+ N̂2

1
d2φ

dx2

∣∣∣∣
1
+ N̂0

3 φ3 + N̂1
3

dφ

dx

∣∣∣∣
3
+ Ñ2

3 (ξ)
d2φ

dx2

∣∣∣∣
3

+
pξ

∑
i=6

Ni
2(ξ)

diφ

dξ i

∣∣∣∣
2(orξ=0)

(18)

This is the desired C2(Ω̄e
x) approximation that would yield global approximation Ω̄T

x
of class C2(Ω̄T

x ).

4.3. Cq(Ω̄e
x) Local Approximation

Following the procedure presented for local approximation of types C1(Ω̄e) and
C2(Ω̄e), we can derive the following for Cq(Ω̄e) type local approximations in one dimension
that ensure continuity of φ of order q over the discretization Ω̄T

x of Ω̄x. For φ(ξ) of class
Cq(Ω̄e

x) and Cq(Ω̄T
x ), we can write

φ(ξ) = N˜ 0
1(ξ)φ1 + N˜ 1

1(ξ)
dφ

dx

∣∣∣∣
1
+ N˜ 2

1(ξ)
d2φ

dx2

∣∣∣∣
1
+ . . . + N˜ q

1(ξ)
dqφ1

dxq

∣∣∣∣
1

+ N˜ 0
3(ξ)φ3 + N˜ 1

3(ξ)
dφ

dx

∣∣∣∣
3
+ N˜ 2

3(ξ)
d2φ

dx2

∣∣∣∣
3
+ . . . + N˜ q

3(ξ)
dqφ

dxq

∣∣∣∣
3

+
pξ

∑
j=2q+1

N˜ j
3(ξ)

djφ

dξ j

∣∣∣∣
ξ=0 (or 2)

(19)
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The expression for φ(ξ) in (19) allows local approximations that yield global differen-
tiability of order q and will permit increase in p-level up to any arbitrary value pξ beyond
the minimum p-level needed for Cq(Ω̄e

x).

5. Cqr(Ω̄e
xy) Local Approximation in R2

Regarding HGDA or HGDA/DG in R2 there is no single theory, methodology or even
a unique and general mathematical procedure in the published works that can be used to
derive them. The basic point of confusion begins with the very definition of what Cqr(Ω̄e

xy)

local approximations are. From Cqr(Ω̄e
xy), it is clear that we want global differentiability of

orders q and r in x and y, but what is not clear is the fact in context with local approximation
how do we achieve this in a unique and hierarchical manner.

Definition 1. If n and t are normal and tangential directions at an inter-element boundary Γ
(Figure 3), then global differentiability of orders q and r of φ in the n and t directions requires that

∂i+jφ

∂ni∂tj i = 0, 1, . . . , q; j = 0, 1, . . . , r i + j < q + r (20)

be unique at every point Q along the boundary Γ.

n

b
a

t

y

x

Q
Γ

Figure 3. A four element discretization: inter-element boundary Γ between elements a© and b©.

Figure 3 shows a four element discretization in R2. If φ is a dependent variable, then
the Cqr(Ω̄e

xy) local approximation of continuity require continuity of the derivatives of φ
in normal (n) and tangential (t) directions of orders q and r, respectively, along the inter-
element boundary, i.e., these derivations must be unique on Γ regardless of whether we
use element a© or b©. For example along the inter-element boundary Γ between elements a
and b the following must hold

∂i+jφa
h

∂ni∂tj =
∂i+jφb

h
∂ni∂tj i = 0, 1, . . . , q j = 0, 1, . . . , r i + j < q + r (21)

in which φa
h and φb

h are local approximation for elements a© and b© of the four element
discretization. The orthogonal normal and tangential directions n and t can be transformed
to x, y orthogonal direction, thus (21) implies that the following must hold along an
inter-element boundary Γ between elements a and b.

∂i+jφa
h

∂xi∂yj =
∂i+jφb

h
∂xi∂yj i = 0, 1, . . . , q j = 0, 1, . . . , r i + j < q + r (22)

Thus, in a discretization Ω̄T
xy =

⋃
e

Ω̄e
xy, using (nine node p-version) elements, an el-

ement Ω̄e
x shown in Figure 4 in xy space with its map in natural coordinates space ξη

shown in Figure 5, must have the nodal dofs at the corner nodes for (nonhierarchical nodes)
Cqr(Ω̄e

xy) and Cqr(Ω̄ξη) differentiability approximations in xy and ξη spaces as shown in
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Figures 4 and 5. We note that local approximations of class Cqr(Ω̄e
xy) require minimum

p-levels of 2q + 1 and 2r + 1. For p-levels pξ = 2q + 1 and pη = 2r + 1, the hierarchical
nodes have no dofs. For pξ > 2q + 1 and pη > 2r + 1 the dofs at the nonhierarchical corner
nodes remain unaffected but additional dofs appear at the hierarchical nodes. It is more
meaningful to represent dofs in terms of nodal variable operators (obtained by removing
dependent variable). When the nodal variable operators act on a dependent variable they
produce dofs. These are shown in Figures 4 and 5 in xy and ξη coordinate spaces. Nodal
variable operators for the nonhierarchical nodes of a nine node p-version element in xy
and ξη spaces for C11, C22 and C33 classes are listed in Table 1.

Table 1. Nodal variable operators at the nonhierarchical nodes for C11, C22, C33 classes in xy and
ξη spaces.

Global Differentiability
Nodal Variable Operators at Nonhierarchical

Nodes (Nodes 1,3,5,7)

xy Space ξη Space

1 C11 1, ∂
∂x , ∂

∂y 1, ∂
∂ξ , ∂

∂η

2 C22 when (1) holds ∂2

∂x2 , ∂2

∂y2 , ∂2

∂y∂x
∂2

∂ξ2 , ∂2

∂η2 , ∂2

∂η∂ξ

3 C33 when (1) and (2) hold ∂3

∂x3 , ∂3

∂y3 , ∂3

∂y∂x2 , ∂3

∂y2∂x
∂3

∂ξ3 , ∂3

∂η3 , ∂3

∂η∂ξ2 , ∂3

∂η2∂ξ

7

8

1

56

Nodal variable operators

Dofs (nodes 1,3,5,7)

9
4

32

Non−hierarchical nodes
Hierarchical nodes

∂i+j

∂xi∂yj ;

x

y

i = 0, 1, . . . , q

i + j < q + r

i = 0, 1, . . . , q
j = 0, 1, . . . , r
i + j < q + r

j = 0, 1, . . . , r
∂i+jφ

∂xi∂yj ;

Figure 4. Nodal variable operators and dofs for nonhierarchical nodes: Cij(Ω̄e
xy).

9

7

8

1 32

4

56
Dofs (nodes 1,3,5,7)

Nodal variable operators
ξ

η

∂i+j

∂ξ i∂η j ;
i = 0, 1, . . . , q
j = 0, 1, . . . , r
i + j < q + r

i + j < q + r

i = 0, 1, . . . , q
j = 0, 1, . . . , r

∂i+jφ

∂ξ i∂η j ;

Figure 5. Nodal variable operators and dofs for nonhierarchical nodes: Cij(Ω̄e
ξη).

Remark 2.

1. We note that dofs for C11, C22 and C33 listed in Table 1 at the nonhierarchical nodes in
ξη space can be transformed into those listed in xy space. Transformation of the dofs at
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nonhierarchical nodes is always possible in general between Cqr(Ω̄ξη) and Cqr(Ω̄e
xy) (see

Section 6).
2. Based on Remark 1, it is convenient to generate Cqr(Ω̄ξη) approximation first (nodal dofs or

nodal variable operators and associated functions) and then transform the nodal dofs or nodal
variable operators at the nonhierarchical nodes into xy space for Ω̄e

xy. We keep in mind that all
derivations initiate with p-version C00 hierarchical local approximation in ξη spaces, as this
approach will allow us to retain the feature of increasing p-levels beyond (2q + 1) and (2r + 1)
in ξ and η directions without influencing the dofs at the nonhierarchical nodes responsible
for Cqr(Ω̄e

xy) continuity at the inter-element boundaries and will also retain the hierarchical
nature of Cqr(Ω̄e

xy) approximation.

5.1. Transformation of Dofs between Cqr(Ω̄ξη) and Cqr(Ω̄xy) at the Nonhierarchical Nodes

Let

x(ξ, η) = ∑
i

Ñi(ξ, η)xi

y(ξ, η) = ∑
i

Ñi(ξ, η)yi
(23)

define a mapping of points between ξη and xy configurations of a nine node p-version
hierarchical element. For suitably chosen mapping, the lengths between ξη and xy are
defined by

{
dx
dy

}
=


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

{dξ
dη

}
=

[
xξ xη

yξ yη

]{
dξ
dη

}
= [J]

{
dξ
dη

}
(24)

in which

[J] =
[

xξ xη

yξ yη

]
(25)

Let

{φ}ξη
1 =

[
∂φ

∂ξ

∂φ

∂η

]T
; {φ}xy

1 =

[
∂φ

∂x
∂φ

∂y

]T
(26)

{φ}ξη
2 =

[
∂2φ

∂ξ2
∂2φ

∂η∂ξ

∂2φ

∂η2

]T

; {φ}xy
2 =

[
∂2φ

∂x2
∂2φ

∂y∂x
∂2φ

∂y2

]T

(27)

{φ}ξη
3 =

[
∂3φ

∂ξ3
∂3φ

∂η∂ξ2
∂3φ

∂η2∂ξ

∂3φ

∂η3

]T

; {φ}xy
3 =

[
∂3φ

∂x3
∂3φ

∂y∂x2
∂3φ

∂y2∂x
∂3φ

∂y3

]T

(28)

In the following we define the rule of transformation between {φ}ξη
i and {φ}xy

i ;
i = 1, 2, . . .

{φ}ξη
i = [Ji]{φ}

xy
i (29)

Obviously,

[J1] =

[
xξ yξ

xη yη

]
= [J]T (30)

Using the following notation, we can transform dofs between natural and physical
coordinate spaces [17,20].
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xξ =
∂x
∂ξ

; xi
ξ =

(∂x
∂ξ

)i
; xξ i =

∂ix
∂ξ i ; xξ iη j =

∂i+jx
∂ξ i∂η j (31)

xη =
∂x
∂η

; xi
η =

( ∂x
∂η

)i
; xηi =

∂ix
∂ηi (32)

yξ =
∂y
∂ξ

; yi
ξ =

(∂y
∂ξ

)i
; yξ i =

∂iy
∂ξ i ; yξ iη j =

∂i+jy
∂ξ i∂η j (33)

yη =
∂y
∂η

; yi
η =

(
∂y
∂η

)i

; yηi =
∂iy
∂ηi (34)

and

{φ}xy
2 = [J2]

−1
[
{φ}ξη

2 − [J1
2 ]{φ}

xy
1

]
(35)

[J2] =

 x2
ξ 2xξ yξ y2

ξ

xξ xη xξ yη + xηyξ yηyξ

x2
η 2xηyη y2

η

 [J1
2 ] =

xξ2 yξ2

xξη yξη

xη2 yη2

 (36)

{φ}xy
3 = [J3]

−1
[
{φ}ξη

3 − [J1
3 ]{φ}

xy
2 − [J2

3 ]{φ}
xy
1

]
(37)

[J3] =


x3

ξ 3x2
ξ yξ 3xξ y2

ξ y3
ξ

x2
ξ xη 2xη xξ yξ + x2

ξ yη 2xξ yηyξ + y2
ξ xη yηy2

ξ

x2
η xξ 2xη xξ yη + x2

ηyξ 2xηyηyξ + y2
η xξ yξy2

η

x3
η 3x2

ηyη 3xηy2
η y3

η

 (38)

[J1
3 ] =


3xξ xξ2 3xξ2 yξ + 3yξ2 xξ 3yξ yξ2

xη xξ2 + 2xξ xξη xξ2 yη + 2xξηyξ + xηyξ2 + 2xξ yξη yηyξ2 + 2yξyξη

xξ xη2 + 2xη xξη xξ yη2 + 2xξηyη + xη2 yξ + 2xηyξη yη2 yξ + 2yηyξη

3xη xη2 3xη2 yη + 3yη2 xη 3yηyη2

 (39)

[J2
3 ] =


xξ3 yξ3

xξ2η yξ2η

xξη2 yξη2

xη3 yη3

 (40)

From (29), (35) and (37) it follows that we can write the following general expression.

{φ}xy
i = [Ji]

−1
[
{φ}ξη

i − [J1
i ]{φ}

xy
i−1 − [J2

i ]{φ}
xy
i−2 − . . .− [Ji−1

i ]{φ}xy
1

]
(41)

Let us use the abbreviation HGDA/DG to denote higher order global differentiability
approximation. The symbol Cqr(Ω̄e

xy) denotes a HGDA/DG of class q and r in respective
coordinates x and y on Ω̄e

xy. To show specific details that are needed in (41), we consider
C11(Ω̄e

xy), C22(Ω̄e
xy), C33(Ω̄e

xy), . . . local approximations.

5.2. 2D C11 HGDA/DG Quadrilateral Elements

The dofs at the hierarchical and the nonhierarchical nodes of a 2D C11 HGDA/DG
elements are shown in Figure 6. A C00 p-version element will only have φ as dof at the
nonhierarchical nodes. The nonhierarchical nodes of 2D C11 HGDA/DG element require
additional eight dofs compared to 2D C00 p-version element. These are generated by
borrowing eight dofs from the hierarchical nodes of C00 p-version element (two from each
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hierarchical edge or face node), i.e., we borrow φξ2 , φξ3 and φη2 , φη3 from nodes (2,6) and
(4,8) of C00 p-version element (see [17–21] for more details).

(a) (b)

7 6 5

8

21 3

9 4
8

7 5

4

2 31

9

6

dofs at the nonheirarchical nodes
of a 2D C11 HGDA/DG element

dofs at the hierarchical nodes of 2D
C11 HGDA/DG element

j = 4, 5, . . . , pη

m = 2, 3, . . . , pη

i = 4, 5, . . . , pξ

l = 2, 3, . . . , pξ

η

ξ

φ, φx, φy φ, φx, φy

φ, φx, φyφ, φx, φy

η

∂iφ

∂ξ i

∂jφ

∂η j ξ

∂iφ

∂ξ i

∂jφ

∂η j
∂l+mφ

∂ηl∂ξm

Figure 6. Nodal dofs for a 2D C11 HGDA/DG quadrilateral element.

5.3. C22 HGDA/DG for 2D Distorted Quadrilateral Elements in xy Space

Figure 7 shows dofs at the nonhierarchical and the hierarchical nodes of this element.
To generate φx, φy, φx2 , φxy, φy2 at the nonhierarchical nodes (a total of twenty), we borrow
φξ2 , φξ3 , φξ4 , φξ5 from nodes 2 and 6 and φη2 , φη3 , φη4 , φη5 from nodes 4 and 8, a total
of sixteen. Additional four dofs are borrowed from node 9 of 2D C00 p-version element
(shown in Figure 8). See [17–21] for more details and for the rationale of this choice.

5.4. 2D C33 HGDA/DG Elements

For this element φx, φy, φx2 , φxy, φy2 , φx3 , φx2y, φxy2 , and φy3 are the dofs needed at
the nonheirarchical nodes in addition to φ. Compared to C00 p-version element, we need
nine additional dofs at each of the nonhierarchical nodes (a total of thirty six). We borrow
φξ2 , φξ3 , φξ4 , φξ5 , φξ6 and φξ7 from each of the four mid side hierarchical nodes (a total
of twenty four). The remaining twelve dofs are borrowed from node nine as shown in
Figure 8. See [17–21] for the rationale of this choice and for more details.

(a) (b)

7 6 5

8

21 3

9 4
8

7 5

4

2 31

6

9

dofs at the nonhierarchical nodes
of a 2D C22 HGDA/DG element

dofs at the hierarchical nodes of a
2D C22 HGDA/DG element

l = 2, 3, . . . , pξ

m = 2, 3, . . . , pη

l + m ≥ 7

φ, φx, φy

φx2 , φxy, φy2

φ, φx, φy

φx2 , φxy, φy2

φ, φx, φy

φx2 , φxy, φy2

φ, φx, φy

φx2 , φxy, φy2

η

ξ

η

∂iφ

∂ξ i

∂jφ

∂η j ξ

∂iφ

∂ξ i

∂jφ

∂η j

i = 6, 7, . . . , pξ j = 6, 7, . . . , pη

∂6φ

∂η2∂ξ4

∂l+mφ

∂ηl∂ξm

∂6φ

∂η4∂ξ2

Figure 7. Nodal dofs for a 2D C22 HGDA/DG quadrilateral element.
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2 3 4 5

2

3

4

5

6

6


 ξ

ξ∂

∂ 
2




η∂

∂
η

3




 ξ

ξ∂

∂ 
4


 ξ

ξ∂

∂ 
5


 ξ

ξ∂

∂ 
6




η∂

∂
η

2




 ξ

ξ∂

∂ 
3




η∂

∂
η

4



 


η∂

∂
η

5




η∂

∂
η

6



1

ξp

ηp

22ηξ 23ηξ 24ηξ 25ηξ 26ηξ

32ηξ 33ηξ 34ηξ 35ηξ 36ηξ

42ηξ 43ηξ 44ηξ 45ηξ 46ηξ

52ηξ 53ηξ
54ηξ 55ηξ

56ηξ

62ηξ 63ηξ
64ηξ 65ηξ 66ηξ

Additional dofs from the center node of C00 p-version element for C22

HGDA element

Additional dofs from the center node of C00 p-version element for C33

HGDA element

Figure 8. Dofs at the center node of a C00 p-version hierarchical element.

5.5. 2D Cij HGDA/DG Elements

The dofs {δe} of C00 p-version element are partitioned into {δe
co}, {δe

m}, {δe
c} and

{δe
mc} in which co, m, c and mc stand for corner nodes, mid side nodes, center nodes and

mid side plus center node and we can write the following:

φ(ξ, η) = [a]{δe
co}r1 + [b]{δe

mc}el + [c]{δe
m}r2 + [d]{δe

c}r3 (42)

in which r1, r2, r3 imply retained, el implies eliminated and [a], [b], [c], and [d] are row
matrices of approximation functions in ξ, η space for 2D C00 p-version element. As an
example, consider a 2D C11 HGDA/DG element. In this case, from nodes 2, 4, 6 and 8,
we have:

{δe
m}e = [φξ2

∣∣
2 , φξ3

∣∣
2 , φη2

∣∣
4 , φη3

∣∣
4 , φξ2

∣∣
6 , φξ3

∣∣
6 , φη2

∣∣
8 , φη3

∣∣
8] (43)

We note that for 2D C11 HGDA/DG element, we do not need to borrow dofs from
node 9 of 2D C00 p-version element. Hence, {δe

mc}el = {δe
m}el .

If {δe}xy
n are the new dofs at the nonhierarchical nodes of 2D Cij HGDA/DG element,

then for 2D Cij HGDA/DG we have (in the natural coordinate space) the following at
nodes 1, 3, 5 and 7.

{δe}ξη
n =

{
φξ |1 , φη |1 , φξ |3 , φη |3 , φξ |5 , φη |5 , φξ |7 , φη |7

}T
(44)

We differentiate (42) with respect to ξ and η (as needed) and evaluate these at each of
the non hierarchical nodes to obtain the following:

{δe}ξη
n = [A]{δe

co}r1 + [B]{δe
mc}el + [C]{δe

m}r2 + [D]{δe
c}r3 (45)
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Solving for the dofs to be eliminated, i.e., {δe
mc}el in (45), we obtain

{δe
mc}el = [B]−1{δe}ξη

n − [B]−1[A]{δe
co}r1 − [B]−1[C]{δe

m}r2 − [B]−1[D]{δe
c}r3 (46)

Substituting Jacobian of transformation from (41) into the above equation, we can
transform the new derivative dofs from ξη space to xy space. Equation (46) can thus be
written as

{δe
mc}el = [B]−1[Ji]{δe}xy

n − [B]−1[A]{δe
co}r1 − [B]−1[C]{δe

m}r2 − [B]−1[D]{δe
c}r3 (47)

Now, substituting {δe
mc}el from (47) into (42),

φ(ξ, η) = [a]{δe
co}r1 + [b]

(
[B]−1[Ji]{δe}xy

n − [B]−1[A]{δe
co}r1

− [B]−1[C]{δe
m}r2 − [B]−1[D]{δe

c}r3

)
+ [c]{δe

m}r2 + [d]{δe
c}r3

(48)

Collecting terms in the (48), we obtain the final form of the Cij HGDA/DG local approxi-
mations as follows:

φ(ξ, η) =
(
[a]− [b][B]−1[A]

)
{δe

co}r1 + [b][B]−1[Ji]{δe}xy
n

+
(
[c]− [b][B]−1[C]

)
{δe

m}r2 +
(
[d]− [b][B]−1[D]

)
{δe

c}r3

(49)

Remark 3.

1. The derivation is based on 2D C00 p-version hierarchical approximation.
2. Dofs from the hierarchical nodes of C00 element are borrowed to generate desired degrees of

freedom first in ξη space which are then transformed to xy space.
3. All matrices [a], [b], [c] and [d] contain C00 p-version hierarchical local approximations while

matrices [A], [B], [C] and [D] contain derivatives of 2D C00 p-version hierarchical local ap-
proximations.

4. Dofs at the non hierarchical nodes of 2D Cij HGDA/DG are transformable between ξη and
xy spaces transparently (an intrinsic feature of truly Cij elements).

5.6. HGDA/TP: Higher Order Global Differentiability Elements Using Tensor Product

Consider a 2D distorted nine node p-version hierarchical element in xy space and its
map in ξη space in a two unit square (Figure 9). We know that tensor product requires
the two orthogonal directions in which the 1D approximations are defined, hence tensor
product cannot be used in xy space for the distorted 2D element. However, in ξη space 2D
functions and the dofs for Cqr(Ω̄ξη) approximated can be derived using tensor product of
1D Cq(Ω̄ξ) and Cr(Ω̄η) approximations. For the Cqr(Ω̄ξη) 2D element in ξη space the nodal
dofs at the nonhierarchical nodes are function φ and its derivatives of φ with respect to ξ, η.
A Cqr(Ω̄e

xy) element will require transformation of these dofs to the xy space. We consider details
in the following. Consider the 1D Cq(Ω̄ξ) and Cr(Ω̄η) hierarchical local approximation in
the ξ and η directions (following (19))

φ(ξ) = ξN0
1 φ1 +

ξN0
3 φ3 +

q

∑
i=1

ξNi
1

diφ

dξ i

∣∣∣∣
1
+

q

∑
i=1

ξNi
3

diφ

dξ i

∣∣∣∣
3
+

pξ

∑
i=2q+1

ξN j
2

diφ

dξ i

∣∣∣∣
2

(50)

φ(η) = ηN0
1 φ1 +

ηN0
3 φ3 +

r

∑
j=1

ηN j
1

djφ

dη j

∣∣∣∣
1
+

r

∑
j=1

ηN j
3

djφ

dη j

∣∣∣∣
3
+

pη

∑
j=2r+1

ηN j
2

djφ

dη j

∣∣∣∣
2

(51)

using (50) and (51) we can generate 2D approximation functions in the ξη space as well as
nodal dofs (also in ξη space) by taking tensor product of 1D approximation and the tensor
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product of the nodal variable operators [17,18]. The dofs at the nonhierarchical nodes (1, 3,
5, 7) generated in doing so are given by

∂i+jφ

∂ξ i∂η j ; i = 0, 1, . . . , q; j = 0, 1, . . . , r (52)

For C11(Ω̄ξη) we have the following dofs at nodes 1, 3, 5, 7

φ,
∂φ

∂ξ
,

∂φ

∂η
,

∂2φ

∂η∂ξ
(53)

For C22(Ω̄ξη) we have the following dofs at nodes 1, 3, 5, 7

φ,
∂φ

∂ξ
,

∂φ

∂η
,

∂2φ

∂η∂ξ
;

∂2φ

∂ξ2 ,
∂2φ

∂η2 ,
∂3φ

∂η∂ξ2 ,
∂3φ

∂η2∂ξ
,

∂4

∂ηξ2 (54)

Based on Section 6, all dofs in (53) and (54) with respect into ξη cannot be transformed
to those with respect to xy.

2 3

4

56
7

8

1 1 2 3

567

8 99
4

2

2

(a) (b)

η

ξ

y

x

A nine-node quadrilateral
element map in ξη-space

A quadrilateral element in
xy-space

ξ

3

2

1

1 32

η

(c) 1D three-node elements in ξ and η spaces

Figure 9. Mapping of nine-node bi-quadratic element in (x, y)-space into (ξ, η)-space.

5.7. Remarks: HGDA or HGDA/DG and HGDA/TP Elements

1. The issue of not being able to transform the derivative dofs (with respect to ξ and
η) at nonhierarchical nodes needs further investigation. We note that (Section 5) a
Cqr(Ω̄e

xy) approximation has

∂i+jφ

∂ξ iη j ; i = 0, 1, . . . , q; j = 0, 1, . . . , r; i + j < q + r (55)

dofs at the nonhierarchical nodes. These can be transformed from ξη space to xy
space as shown in Section 5.
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2. The dofs at the nonhierarchical nodes in the tensor product element in ξη space are

∂i+jφ

∂ξ iη j ; i = 0, 1, . . . , q; j = 0, 1, . . . , r (56)

for each order of continuity (i.e., C11, C22, . . . ), (56) contain additional dofs compared
to (55). We note that for C11(Ω̄ξη), sum of the orders of derivatives with respect to ξ

and η should be one which is true in case of (55), but in (56) ∂2φ
∂η∂ξ term violates this

condition confirming that HGDA/TP is not a true C11(Ω̄ξη) approximation in ξ and η.
The same argument holds true for C22(Ω̄ξη), as in (54). Thus, the tensor product in ξη

space does not generate dofs at the nonhierarchical nodes for Cij(Ω̄ξη) ; i = 1, 2, . . . , q,
j = 1, 2, . . . , r local approximation that conform to (55), containing only the needed
dofs at the nonhierarchical nodes for Cij continuity.

3. If we only consider rectangular elements in xy space with ξη for each element parallel

to xy and pointing in the same direction, then we can transform diφ

dξ i and djφ

dη j in (50)

and (51) to diφ

dxi and djφ

dyj using

diφ

dξ i = (Ji
x)

diφ

dxi and
djφ

dη j = (J j
y)

djφ

dyj

Jx =
dx
dξ

and Jy =
dy
dη

(57)

giving

φ(ξ) = ξN0
1 φ + ξN0

3 φ3

+
q

∑
i=1

(ξNi
1(Jx)

i)
diφ

dxi

∣∣∣∣
1
+

q

∑
i=1

(ξNi
3(Jx)

i)
diφ

dxi

∣∣∣∣
3
+

pξ

∑
i=2q+1

ξNi
2

diφ

dxi

∣∣∣∣
2

(58)

φ(η) = ηN0
1 φ + ηN0

3 φ3

+
r

∑
j=1

(ηN j
1(Jy)

j)
djφ

dyj

∣∣∣∣
1
+

r

∑
j=1

(ηN j
3(Jy)

j)
djφ

dyj

∣∣∣∣
3
+

pη

∑
j=2r+1

ηN j
2

djφ

dyj

∣∣∣∣
2

(59)

By taking tensor product of expressions (58) and (59), the resulting element will contain

∂i+jφ

∂ξ i∂yj ; i = 0, 1, . . . , q; j = 0, 1, . . . , r (60)

as dofs at the nonhierarchical corner nodes (nodes 1, 3, 5 and 7). We refer to this
element as Cqr(Ω̄e

xy) HGDA/TP element. This element is not a true Cij(Ω̄e
xy) global

differentiability element.
4. HGDA/TP is not very useful in applications as it requires elements to be rectangular

in xy space with ξη pointing in the same directions as xy. Thus, distorted element
geometries required for an irregular domain cannot be supported by this higher order
global differentiability 2D finite elements based on tensor product.

5. If we consider a discretization of a domain Ω̄xy for which HGDA/TP are valid, then for
this special case we may ask the following question. Are the HGDA/DG formulations
meritorious over HGDA/TP or vice versa? Answering this question requires many
basic and important considerations.

(a) In the case of HGDA/DG elements, the dofs at the nonhierarchical nodes
(corner nodes) in ξη and xy spaces for each order of continuity Cii; i = 1, 2, . . .
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constitute derivatives sets in the two spaces that can be transformed from ξη
to xy and xy to ξη spaces. Thus, these dofs are in conformity with calculus.

(b) HGDA/DG elements contain only those dofs at the nonhierarchical nodes for
the desired orders of continuity that are essential. Thus, a C11(Ω̄e

xy) element
will have

φ,
∂φ

∂dx
,

∂φ

∂y

as dofs at the nonhierarchical nodes. The set ∂φ
∂x , ∂φ

∂y can be obtained from ∂φ
∂ξ ,

∂φ
∂η in ξη using calculus.

(c) In the case of a C11(Ω̄e
xy) HGDA/TP element we have

φ,
∂φ

∂x
,

∂φ

∂y
,

∂2φ

∂y∂x

as dofs at the nonhierarchical nodes. The first important point to note is that
∂2φ

∂y∂x is not part of the C11(Ω̄e
xy) approximation. This is obvious from the dofs

at the nonhierarchical nodes of HGDA/DG C11(Ω̄e
xy) element.

(d) Does the extra dof ∂2φ
∂y∂x at each of the four nonhierarchical node in case of

a HGDA/TP element help in improving local approximation or just adds
extra dofs without much improvement compared to the dofs in HGDA/DG
C11(Ω̄e

x) element? From the numerical studies presented in a later section we

conclusively show that the latter is the case, i.e., ∂2φ
∂y∂x dofs do not result in an

improved approximation but add additional dofs compared to HGDA/DG
C11(Ω̄e

xy) approximation, hence they result in poor accuracy for a given dofs
and also result in lower convergence rates. A somewhat less rigorous but

persuasive argument may be since ∂2φ
∂y∂x is only one element of the complete

set needed for C22(Ω̄xy), hence cannot be very effective in improving local
approximation. Similar arguments hold for C22(Ω̄e

xy), . . . etc. HGDA/DG and
HGDA/TP elements.

(e) Thus, our conclusion is that in the HGDA/TP approach of deriving local approximation:

i. true Ci J(Ω̄e
xy) ; i = 1, 2 . . . , q, j = 1, 2 . . . , r local approximations are not

possible.
ii. HGDA/TP elements are inferior to HGDA/DG elements in all aspects.

6. HGDA/DG: Triangular and Hexadral Elements

Higher order global differentiability local approximations for triangular and hexadron
elements can also be derived [17,18,20,21], but are not presented here for the sake of brevity.

7. Isogeometric Analysis and k-Version

In 2005 [26,27] isogeometric analysis method was presented. According to the authors
Analogues of finite element h- and p-refinement schemes are presented and a new, more efficient,
higher order concept, k-refinement is introduced. Thus, in our view isogeometric analysis claims
to be an h, p, k method. We first present details of the isogeometric analysis, then compare
it with hpk finite element method, but, more importantly, we compare it with the k-version
of finite element introduced by Surana et al. [1–3,11–14,19–21].

In isogeometric analysis, the complex domain is subdivided into subdomains (not
finite elements). Let us refer to a subdomain as a patch. For a patch, one picks points called
control points that are not necessarily on the boundary of the patch. Using the coordinates
(geometric locations) of these points one constructs a geometric description (say using
NURBS or other methods). This gives a relationship of the type for geometry.
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{(x)i
p} = [N(ξ)]


{xi

p}
{yi

p}
{zi

p}

 (61)

Equation (61) gives position coordinates xi
p, yi

p, zi
p of every point in the patch in terms

of the control points and the functions [N]. A relationship similar to (61) is established
for displacements u, v, w of an arbitrary point in the patch at location x, y, z in terms of
displacements of the control points and the same functions as used in (61)

uuui
p = {ui

p} = [N]


{ui

p}
{vi

p}
{wi

p}

 = [N]{δi
p} (62)

{δi
p} are the total dofs for the patch i. If the approximation (62) is of degree p in x, y, z

then it is also of class Cp(Ω̄i
p) where Ω̄i

p is the domain of the ith patch. Thus, within the
patch the order of the approximation space of uuu is k = p + 1. We remark that so far we
do not have finite elements in the true sense in which (Ω̄i

p)
T =

⋃
e

Ω̄e, in which (Ω̄i
p)

T is a

discretization of Ω̄i
p. Instead (62) is a statement that one would use in classical methods

of approximation in which Ω̄p is not a discretized domain (patch). Now, since we have
an approximation of displacements in (62), we can proceed with standard method using a
method of approximation to obtain algebraic equation for the patch Ω̄i

p. If we choose linear
elasticity as an example, then the balance of linear momenta gives

AAA ··· uuu− fff = 0 (63)

We construct an integral form of (63) over the domain Ω̄ consisting of N patches,

i.e., Ω̄ =
N⋃

i=1
Ω̄i

p. Then

{uN} =
N⋃{ui

p}

where {uN} is approximation of u, v, w over Ω̄ and {ui
p} is approximation of {u} over Ω̄i

p
(ith patch). Based on the fundamental lemma [17,18] we can write the following using (63)

(AAA ··· uuuN − fff , vvv)Ω̄ = 0 (64)

in which Ω̄ =
⋃
i

Ω̄i
p. If we consider Galerkin method with weak form, then vvv = δuuuN , (64)

can be written as (over the patches).

N

∑
i=1

([A]{ui
p} − { f }, {v})Ω̄i

p
= 0; v = δui

p (65)

Consider ([A]{ui
p} − { f }, {v})Ω̄i

p
for ith patch using integration by parts (IBP) (since

in linear elasticity adjoint of AAA, i.e., AAA∗ = AAA), we obtain

([A]{ui
p} − { f }, {v})Ω̄i

p
= Bp(ui

p, v)− lp(v) (66)

Substituting (62) in (66) and noting that δui
p = [N]T we obtain

([A]{ui
p} − { f }, {v})Ω̄i

p
=

[∫
Ω̄i

p

[B]T [D][B]dΩ

]
{δi

p} − {Fi
p} = [Ki

p]{δi
p} − {Fi

p} (67)
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Secondary variables due to IBP are included in {Fi
p} and strain {ε} = [B]{δ}, stress

{σ} = [D]{ε}. In addition, [Ki
p] is the stiffness matrix for the ith patch. Using (67) in (65),

we have

[K]{δ} = {F} (68)

in which

[K] =
N

∑
i=1

[Ki
p]; assembly of patch stiffness matrices

{δ} =
N⋃

i=1
{δi

p}; Total dofs for Ω̄ =
N⋃

i=1
Ω̄i

p

Remark 4.

1. In this process described above used in isogeometric analysis there is no concept of finite
element anywhere.

2. A patch appears like a C0 p-version finite element in which p-level can be as high as desired.
Naturally, if Ω̄e is the domain of C0 p-version finite element with degree of local approximation
p for a field variable φ then φe

h (local approximation of φ over Ω̄e) is naturally of class Cp(Ω̄e)
and holds over the element domain Ω̄e. This is not a discovery. This has been known since the
advent of the finite element method. The isogeometric analysis with patches is exactly like C0

p-version finite element mesh in which each finite element is a patch. Within each C0 element
(i.e., a C0 patch) the solution is of class Cp but at the inter-element boundaries (same as inter
patch boundaries) the solutions remains of class C0. Thus, all isogeometric solutions with
more than one patch are globally of class C0.

3. Since only displacements are dofs on the boundaries of the patches, {uN} =
N⋃

i=1
{ui

p} remains

of class C0 at the interpatch boundaries. Thus, in all isogeometric analyses containing more
than one patch, the global solutions are not of class p (order of the space k = (p + 1)/2), but are
undoubtedly of class C0 due to their C0 nature at the interpatch boundaries. Thus, presenting
isogeometric analysis as k-version is misleading and misrepresentating.

4. Computation of the patch stiffness matrix requires integrals (2D or 3D) over an irregular
domain Ω̄i

p (in (67)). This can be done in several different maps. For example, Ω̄i
p is subdivided

and each subdivision is mapped into two unit square or two unit cube to integrate using Gauss
quadrature while still maintaining (61) and (62) for each subdivision. The subdivisions are
not finite elements but this is necessary to do to perform integration over Ω̄i

p. The subdivision
are not finite elements as subdivisions have no concept of local approximation.

5. The works published by Surana et al., [1–3,12,19–21] are based on true finite element method-
ology in which global differentiability of order k− 1 is always ensured. There is no comparison
of these works with isogeometric analysis as at present it cannot do what k-version [1–3,19–21]
can, i.e., to ensure global differentiability of any desired order. Isogeometric at present always
has global differentiability of class C0, hence no different than traditional C0 finite element
method analysis.

6. On another small note, in some published works on isogeometric analysis and in other works
we find that some authors beleive that work as referenced in [1–3,19–21] is motivated due
to least squares method. This is wrong. Perhaps a consequence of not reading our published
works carefully enough. We always point out that minimally conforming space is dictated by
the differential operator and not the integral form as the integral form may be a weak form.

7. We also wish to point out that in all of the published works on isogeometric analysis, the in-
fluence of higher order differentiability of geometry on the accuracy of the computations has
never been shown. Is it that the benefits advocated are only because of higher order global
differentiability of the displacement approximation over the interior of the patches (Ω̄i

p) and
that the geometry has nothing to do with this? In our own works on true k-version finite
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elements with h and p, this is true. As a matter of scientific curiosity, this should have been
addressed at the onset of the method, but continues to be ignored.

8. A Priori Error Estimation and Convergence Rates: h, p, k-Versions

Surana et al. [28] have shown that variational consistency [17,18] of the integral forms
in BVP and IVP is essential in the derivation of a priori error estimates that establish
the dependence of various error norms on h, p, k. This was a fundamental and essential
discovery that enabled derivation of a priori error estimates for self-adjoint, non-self
adjoint, and nonlinear differential operators. Current published works on a priori error
estimates rely on the best approximation property in the B(·, ·) norm that only exists for
self-adjoint operators. Thus, in the currently published works a priori error estimates are
rarely considered and found for non-self-adjoint and non-linear operators. In this paper
we only present final results that are useful in model problem studies. Derivation can be
found in the references [17,18,28]. Surana et al., showed that for BVPs the following hold
when the integral forms used in finite element processes are variationally consistent.

When the differential operator is self-adjoint, GM/WF and LSP yields a VC integral
form. For non self-adjoint and non-linear differential operators only LSP based on residual
functional yields a VC integral form. Following references [17,28] we have the following a
priori error estimates when the integral form is VC regardless of the method used.

Let Aφ− f = 0 in Ωx be the BVP and let φh be the finite element solution of Aφ− f = 0
over Ω̄T

x =
⋃
e

Ω̄e
x, discretization of Ω̄x, thus we have

‖e‖L2 = ‖φ− φh‖L2 ≤ c1hp+1|φ|p+1 (69)

|φ− φh|Hq ≤ c2hp+1−q|φ|p+1; seminorm of order q (70)

‖e‖Hq = ‖φ− φ‖Hq ≤ c3hp+1−q|φ|p+1 (71)

and if

E = Aφh − f ; residual function (72)

I = (E, E)Ω̄x
; residual functional (73)

then

‖E‖L2 =
√

I = c4hp+1−2m|φ|p+1 (74)

Here e is true error, c1, c2, c3 and c4 are variables that only depend on the order k of
the approximation and 2m is the highest order of the derivatives in Aφ− f = 0.

Convergence Rate

Consider ‖e‖Hq in (71). Taking logarithm of both sides

log ‖e‖Hq ≤ log(c3|φ|p+1) + (p + 1− q) log h (75)

or y ≤ c˜+ mx (76)

with y = log ‖e‖Hq (77)

c˜= log(c3‖φ‖p+1) (78)

m = p + 1− q (79)

x = log h (80)

When we use the equality in (76), this is an equation of a straight line in xy space in
which m is the slope and c˜ is the intercept., i.e., if we plot log h versus log ‖e‖Hq on an xy
plot, then we obtain a straight line whose slope is (p + 1− q) and intercept is log(c3|φ|p+1).
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Slope (p + 1− q) is called the rate of convergence of ‖e‖Hq . Higher values of (p + 1− q)
imply faster convergence of φh to φ measured in ‖e‖Hq . Equation (77) can also be expressed
in terms of total dofs for the discretization. If h = max(he), he being characteristic length
for an element e, then

h ∝
1

dof
or h = O

(
1

dof

)
(81)

using h =
1

dof
(82)

log ‖e‖Hq ≤ log(c3|φ|p+1)− (p + 1− q) log(dof) (83)

Remark 5.

1. We keep in mind that the a priori error estimate (75) only holds for a uniform mesh refinement
or at the most for a quasi-uniform mesh refinement.

2. The quantity ‖e‖Hq requires knowledge of the theoretical solution φ which is generally not
possible for a practical application.

3. When the approximation spaces are minimally conforming, i.e., when k = 2m + 1, 2m is the
order of the highest derivation in the BVP Aφ− f = 0, then the integrals over discretization
Ω̄T

x are Riemann and the ‖E‖L2 can be computed for Ω̄T
x as it does not require knowledge of

theoretical solution and we have

log ‖E‖L2 ≤ log(c4|φ|p+1)− (p + 1− 2m) log(dof) (84)

If the solution φ is sufficiently smooth, we can also use k = 2m. In this case the integrals are
Lebesgue over discretization Ω̄T

x .
4. In the case of 1D problems (82) holds precisely. However in case of BVP in R2 and R3 this

is generally not true precisely. For example, for exactly same discretization (h fixed) for
HGDA/DG and HGDA/TP elements, the HGDA/TP elements have an additional dof at
the nonhierarchical nodes, thus the total dof for HGDA/DG and HGDA/TP are going to be
different even though h is same. Thus, even though a priori error estimates are derived using
h, but it is perhaps more illustrative to exhibit the real convergence rates if we use dof instead
of h. Thus, in all model problem studies we present graphs of error norms versus dof.

9. Model Problems: Numerical Studies (BVPs)

In this section we present numerical studies using higher order continuity 1D p-
version hierarchical formulations for: (1) axial deformation of a rod (self adjoint differential
operators), (2) 1D convection diffusion equation (non-self adjoint differential operator),
(3) and 1D Burgers equation (non-linear differential operator). We also present numerical
studies using HGDA/DG and HGDA/TP higher order continuity 2D element formulations
for: (1) Poisson’s equation (self-adjoint operator) and (2) 2D convection equation (non-
self-adjoint operator) and (3) 2D Burgers Equation (non-linear operator). Various aspects
of k-version are illustrated in terms of correct description of physics in the computations,
improved accuracy and convergence rates.

9.1. 1D Axial Deformation

The dimensionless form of the 1D deformation of an axial rod is described by (Au−
f = 0) (also see [1])

− d
dx

(b(x)
du
dx

) = f (x) 0 < x < L

u(0) = 0
(

du
dx

)
x=L

= 0; on boundary Γ
(85)
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For this BVP A∗, the adjoint of the differential operator is the same as A = − d
dx

(
b(x) d

dx

)
.

A is naturally linear and the concomitant < Au, v >Γ is zero as the BCs in (85) are ho-
mogeneous, hence A is self-adjoint. We consider finite element formulations based on
Galerkin method with weak form (GM/WF) as well as based on residual functional, least
squares finite element formulation. Details are straight forward and can be found in [17].
The approximation uh of u over discretization Ω̄T

x =
⋃
e

Ω̄e
x must be such that

uh ∈ V ⊂ Hk(Ω̄T
x ); k ≥ 3 (86)

in which k = 3 is minimally conforming space (in which case uh, duh
dx and d2uh

dx2 are con-

tinuous and uh and duh
dx are differentiable for ∀ x ∈ Ω̄T

x ). This requires that the local
approximation ue

h over Ω̄e
x must also belong to the same space as uh. Figure 10 shows a

schematic of the problem.

(a) Schematic: Axial deformation of a rod

(b) Non-dimensional lengths for the eight element graded finite element
discretization

Figure 10. Axial deformation of a rod: schematic and discretization.

9.1.1. Analytical Solution

We choose dimensionless L to be one and b(x) to be constant and the following for
the body force f (x)

f (x) = α
[
(x + σ)θ − (1 + σ)θ)

]
(87)

where σ is a positive constant 0 < σ < ∞ and θ is another constant −∞ < θ < ∞. Then
(85) can be written as

−d2u
dx2 = β

[
(x + σ)θ − (1 + σ)θ

]
where β =

α

b
(88)

The analytical solution of (88) can be obtained by integrating it twice and using the
boundary conditions. We obtain

u(x) = β

{[
1
2

x2(1 + σ)θ − (x + σ)2+θ

(1 + θ)(2 + θ)

]
−
[
(1 + σ)θ − (1 + σ)1+θ

(1 + θ)

]
+

[
σ2+θ

(1 + θ)(2 + θ)

]} (89)
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du
dx

= β

{[
x(1 + σ)θ − (x + σ)1+θ

(1 + θ)

]
−
[
(1 + σ)θ − (1 + σ)1+θ

(1 + θ)

]}
(90)

Remark 6.

1. For 0 < σ < ∞ , f (x) is analytic and square integrable.
2. When σ = 0, du

dx has square root singularity at x = 0, hence this case is ruled out.
3. For 0 < σ < 1, θ = −1.5, f (x) ∈ C∞[0, 1]. Hence, u(x) ∈ C∞[0, 1].

4. We use α = 0.001, θ = −1.5 and σ = 0.0005. As σ decreases, magnitude of diu
dxi ; i = 1, 2, . . .

increase. Largest value is at x = 0 i.e., diu
dxi becomes localized near x = 0.

9.1.2. Numerical Results

Since the operator A is self-adjoint, the quadratic functional π is given by

π =
1
2

B(uh, uh)− l(uh) = ∑
e

(
1
2

Be(ue
h, ue

h)− le(ue
h)

)
(91)

and the error or the residual functional is given by

I = (E, E)Ω̄T
x
= ∑

e
(Ee, Ee)Ω̄e

x
(92)

in which Ee = Aue
h − f ∀ x ∈ Ω̄e

x. For k ≥ 3 both π and I can be computed for GM/WF
and LSP. Using theoretical value of π we can calculate percentage error in π, gεπ and lεπ
for GM/WF and for LSP. We consider L̂ = 10 in., area of section â = 1 in.2, and Young’s
modulus Ê = 30× 106 psi. The rod is fixed at the left end (x̂ = 0), and free at the right
end (x̂ = L̂) (see Figure 10). If we choose L = L0 = 10 and E0 = E = 30× 106 = σ0 then
F0 = E0L2

0 = 30× 108 lb, and a = â
L2

0
= 0.01.

We consider a fixed eight element graded mesh as shown in Figure 10b. Solutions are
calculated using GM/WF as well as LSM. For each order of space, p-level is increased up
to 19.

Plots of gεπ and lεπ versus dofs for GM/WF and LSM are shown in Figure 11a,b. Plots
of residual functional I versus dof for GM/WF and LSM are shown in Figure 11c,d.

9.1.3. Discussion of Results

Since discretization is fixed, characteristic length h of the mesh is constant. Thus,
from Figure 11a–d, we can observe p-convergence, k-convergence and pk-convergence of
the solutions and the functionals.

p-convergence: For a fixed k, the sequence of computed solutions for progressively in-
creasing p-level represent p-convergence of the solution and the functionals in Figure 11a–d.
For each value of k in Figure 11a–d, we observe progressively increasing slope of the func-
tionals versus dof graphs for progressively increasing p-level, indicating progressively
increasing convergence rate (as derived in the a priori error estimation).

k-convergence: We note from the graphs of functionals versus dof, for increasing
p-level, that with progressively increasing k the graphs for all k-values remain almost
parallel to each other, but progressively shift downwards with progressively increasing
value of k. Indicating that, increasing k does not result in higher convergence rate but
results in better accuracy (lower value of the functionals) for a given degrees of freedom.
Thus, k affects accuracy but not the convergence rate. Along the lines of constant p, hence
constant h, p and only k varies, thus we have k-convergence. We note that increase in k
results in increasing functional values indicating increasing error. This is due to the fact that
for fixed p, increasing k results in reduced dofs (obvious from the graphs). We observe from
the graphs that for a fixed dofs, increase in k unconditionally results in lower functional
values, hence better accuracy of the solution.
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pk-convergence: We can view pk-convergence at least in the following two ways: (1)
for a fixed k we can choose p based on p = 2k− 1, minimum p-level for k. If we connect
these points on graphs in Figure 11a–d, we obtain much higher convergence rate than p-
convergence for any value of k. (2) The most obvious dramatic and the highest convergence
rates are achieved for combination of p and k for which dofs are almost constant indicated
by almost vertical lines on the graphs in Figure 11a–d. The numerical studies presented
here for this model problem confirm h, p, k as three independent parameters in the finite
element computational processes for self-adjoint operators.

(a) Error in quadratic functional π using the
Galerkin method

(b) Error in quadratic functional π using the
least-squares method

(c) Error functional I using the Galerkin
method

(d) Error functional I using the least-
squares method

Figure 11. Graphs of π and I versus dof for axial deformation.

9.2. 1D Convection Diffusion Equation

Consider the following BVP [2]:

dφ

dx
− 1

Pe
d2φ

dx2 = 0 ∀x ∈ Ωx = (0, 1) (93)

φ(0) = 1.0 φ(1) = 0 (94)
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The differential operator A = ( d
dx ) − ( 1

Pe )(
d2

dx2 ) in (93) is non-self-adjoint, hence
GM/WF will yield a VIC integral form but the integral form based on LSP is VC. Here, we
only consider LSP (see [17] for numerical studies using GM/WF). We consider k ≥ 2 and
p-levels up to 19. A theoretical solution of (93) and (94) is given by

φ(x) =
(
exPe − ePe)
(1− ePe)

(95)

Obviously, φ is of class C∞. We consider the following meshes for Pe = 100 and 106.

For Pe = 100: Element Lengths (5 element mesh)

0.826545, 1.535×10−1, 1.535×10−2, 1.535×10−2, 1.535×10−2

For Pe = 106: Element Lengths (10 element mesh)

0.722215, 2.5×10−1, 2.5×10−2, 2.5×10−3, 2.5×10−4, 2.5×10−5, four of length 2.5×10−6

We consider k ≥ 2 with p-levels up to 19 in LSFEP. For each k, p-levels are increased
up to 19 uniformly for each element of the discretization.

Discussion of Results

As in previous model problem, here also characteristic discretization length h is
constant as the discretization is fixed, hence we can study p-convergence, k-convergence
and pk-convergence of the solution and functionals. Figure 12a,b present residual functional
I versus dof graphs for various values of k for both Pe.

p-convergence: For a fixed k, the sequence of solutions for progressively increasing
p-level represent p-convergence of the solution and the residual functional I in Figure 12a,b.
For each value of k in Figure 12a,b we observe progressively increasing slope of residual
functional I versus dof graphs for progressively increasing p-levels, indicating progressively
increasing convergence rate (as shown in a priori error estimation section).

k-convergence: From the graphs of residual functional I versus dof for increasing
p-level but for a fixed value of k, we note that with progressively increasing k the I verus
dofs graphs for all k values remain almost parallel to each other but shift downwards with
increasing k. This confirms that increase in k does not result in higher convergence rate
but results in better accuracy (due to lower values of functional I) for a given degrees of
freedom. Thus, k affects accuracy but not the convergence rate. In Figure 12a,b, from the
curves of constant p, hence constant h and p , thus only k is varying along these curves
(k-convergence). We note that increase in k results in increase in the value of residual
functional I, indicating increasing error. This is due to the fact that for fixed p, increasing k
results in reduced dofs (obvious from the graphs). We observe from the graphs that for a
fixed dofs, increase in k unconditionally results in lower values of I, hence better accuracy.

pk-convergence: As in case of previous model problem, here also we can view pk-
convergence in at least the following two ways: (1) for a fixed k, we can choose p = 2k− 1,
minimum p-level of this choice of k. If we construct these parts on the graph in Figure 12a,b,
we observe much higher convergence rate than p-convergence for any value of k. (2) The
most dramatic and the highest convergence rates are achieved for combinations of p and
k for which dofs are almost constant indicated by nearly vertical lines in the graphs in
Figure 12a,b.

The numerical studies presented here for the model problem in which differential
operator is non-self adjoint also confirm that h, p and k are three independent parameters
in finite element computations and the observed convergence behavior is in accordance
with a priori estimates.
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(a) Error or Residual Functional I versus dof: p, k, pk-processes, Pe = 100

(b) Error or Residual Functional I versus dof: p, k, pk-processes, Pe = 106

Figure 12. Graphs of I versus dof for convection diffusion equation.

9.3. 1D Burgers Equation

Steady state Burgers equation (Aφ− f = 0) is given by (also see [3]):

φ
dφ

dx
− 1

Re
d2φ

dx2 = 0 ∀x ∈ Ωx = (0, 1) (96)

φ(0) = 1.0 φ(1) = 0 (97)
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A theoretical solution of (96) and (97) is given by [2,17,18].

φ = φ̄

(
1− eφ̄Re(x−1)

1 + eφ̄Re(x−1)

)
where φ̄ is the solution of

φ̄− 1
φ̄ + 1

= e−φ̄Re (98)

φ ∈ C∞(Ω), i.e., φ(x) has continuous derivatives of all orders. The differential operator
A = φ d

dx −
1

Re
d2

dx2 is nonlinear, therefore only LSP yields VC integral form [17,18]. LSFEP
is used to present numerical studies using the following discretizations for k ≥ 2 with
p-levels up to 17.

For Re = 100: Element lengths (5 element mesh)

0.779, 0.17, 0.017, 0.017, 0.017

For Re = 106: Element lengths (10 Element mesh)

0.4944443 , 0.4944443 , 1.0×10−2, 1.0×10−3, 5.0×10−5, 5.0×10−5

5.0×10−6, 5.0×10−6, 1.0×10−6, 1.0×10−7, 1.0×10−7, 1.0×10−7 , 1.0×10−7

Discussion of Results

In the numerical studies, the characteristic discretization length h is fixed (due to fixed
mesh), hence we can study p-convergence, k-convergence and pk-convergence. Figure 13a,b
show plots of residual functional I versus dof for Re = 100 and 106 for different values of k
for progressively increasing p-level up to 17.

p-convergence: For a fixed value of k, the sequence of computed finite element so-
lutions for progressively increasing p-level represent p-convergence of the solution and
the residual functional I in Figure 13a,b. For each value of k in Figure 13a,b we observe
progressively increasing slope of I versus dof graphs for progressively increasing p-level,
indicating progressively increasing convergence rate (shown in a priori error estimation).

k-convergence: From the I versus dof graphs for increasing p-level but for a fixed
value of k, we note that with progressively increasing k, the I versus dof graphs for all
values of k remain almost parallel to each other but shift downward with increasing k.
This confirms that increase in k does not result in higher convergence rate but results in
better accuracy (lower values of I) for a given degrees of freedom. Thus, k affects accuracy
but not the convergence rate. From the curves of constant p, hence constant h and p in
Figure 13a,b, thus only k varying along these curves (k-convergence), we note that increase
in k results in increase of the value of functional I, indicating increasing error. This is due
to the fact for fixed p, increasing k results in reduced degrees of freedom (obvious from the
graphs). We note from the graphs that for a fixed dof, increase in k unconditionally results
in lower values of residual functional I, hence improved accuracy.

pk-convergence: We can observe pk-convergence in at least two ways: (1) for a fixed k
we can choose p = 2k− 1, minimum p-level for this choice of k. If we connect these points
in the graphs in Figure 13a,b, we observe much higher convergence rate than p-convergence
for any value of k. (2) The most dramatic and the highest convergence rates are achieved
for combination of p and k for which the dofs are almost constant indicated by nearly
vertical lines in the graphs in Figure 13a,b. The numerical studies for the BVP in which the
differential operator is nonlinear also confirm that h, p, k are three independent parameters
in the finite element computations and the convergence behavior is in accordance with a
priori estimates.
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(a) Error or Residual Functional I versus dof: p, k, pk-processes, Re = 100

(b) Error or Residual Functional I versus dof: p, k, pk-processes, Re = 106

Figure 13. Graphs of I versus dof for Burgers equation.

9.4. Poisson’s Equation (BVP)

Consider the two-dimensional steady state Poisson’s equation (see [19–21] also):

∂2u
∂x2 +

∂2u
∂y2 = − f (x, y) ∀ x, y ∈ Ωxy = (−a, a)× (−b, b) (99)

u(x,−b) = u(x, b) = u(−a, y) = u(a, y) = 0 (100)

f (x, y) is chosen that the theoretical solution of (99) and (100) is given by
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u(x, y) = (an − xn)(bm − ym) (101)

u(x, y) in (101) satisfies boundary conditions (100). We choose a = b = 1, m = n =
8. The differential operator in (99) is self-adjoint, hence GM/WF and LSP both yield
variationally consistent integral forms. If uh is an approximation of u over Ω̄T

xy =
⋃
e

Ω̄e
xy,

discretization of Ω̄xy, then

φh ⊂ V ⊂ Hk(Ω̄T
xy); k ≥ 3 (102)

in which k = 3 is minimally conforming space of approximation φh and hence φe
h for which

integrals are Riemann over (Ω̄T
xy) . We consider two types of discretization.

Mesh A

The domain Ω̄xy is divided into 2× 2, 4× 4, . . . uniform discretizations in which
elements are square and ξη axes for each element parallel to xy and pointing in the same
directions as the xy axes. (Figure 14). For these discretizations we can use both HGDA/DG
and HGDA/TP element formulations.

he = 1/2he = 1
(2× 2) mesh (4× 4) mesh

Figure 14. Mesh A: Discretizations with square elements (undistorted).

Mesh B

Initial mesh for distorted elements is shown in Figure 15. Each element of this mesh is
uniformly divided into 2× 2, 4× 4, . . . to generate progressively refined meshes.

(a) Initial mesh of 4 elements (b) Quasi-uniform mesh of
16 elements

Figure 15. Mesh B: Discretizations with distorted elements (quasi-uniform).

Computations are performed for progressively refined Mesh A and Mesh B using
HGDA/DG of class C11, C22 and C33 as well as using HGDA/TP elements of class C11, C22,
C33 for p-levels of 3, 5, 7 and 9, keeping in mind that for HGDA/TP elements only Mesh A
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can be used whereas for HGDA/DG both Mesh A and Mesh B can be used. The p-levels
are increased starting with 3 in ξ and η directions. Figures 16–21 show graphs of residual
functional I versus dof for solutions for classes C11, C22 and C33 for Mesh A and Mesh B
using HGDA/DG and HGDA/TP formulations. We discuss details in what follows.
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Figure 16. Residual function I versus dof, C11 solutions: Model Problem 4 (Poisson’s Equation; Mesh
A; HGDA/DG and HGDA/TP).
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Figure 17. Residual function I versus dof, C22 solutions: Model Problem 4 (Poisson’s Equation; Mesh
A; HGDA/DG and HGDA/TP).
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Figure 18. Residual function I versus dof, C33 solutions: Model Problem 4 (Poisson’s Equation; Mesh
A; HGDA/DG and HGDA/TP).
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Figure 19. Residual function I versus dof, C11 solutions: Model Problem 4 (Poisson’s Equation; Mesh
B, HGDA/DG; Mesh A, HGDA/TP).



Mathematics 2021, 9, 1333 32 of 43

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0  1  2  3  4  5

L
O

G
(√

I)

LOG(dof)

Model Problem 4: Mesh A and Mesh B
p = 5         

HGDA
HGDA/TP
p = 7         

HGDA
HGDA/TP
p = 9         

HGDA
HGDA/TP

Figure 20. Residual function I versus dof, C22 solutions: Model Problem 4 (Poisson’s Equation; Mesh
B, HGDA/DG; Mesh A, HGDA/TP).
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Figure 21. Residual function I versus dof, C33 solutions: Model Problem 4 (Poisson’s Equation; Mesh
B, HGDA/DG; Mesh A, HGDA/TP).

Discussion of Results

1. In Figures 16–18, residual functional I versus dof are presented for solutions for classes
C11, C22 and C33 for p-levels of 3, 5, 7 and 9 for both HGDA/DG and HGDA/TP
formulations using Mesh A. Slopes of I versus dof graphs for HGDA/DG, C11, C22,
C33 solutions for all p-levels are higher compared to the corresponding graphs for
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HGDA/TP solutions showing higher convergence rates of HGDA/DG elements
compared to HGDA/TP.

2. HGDA/DG solutions yield lower values of I for given dofs. This holds true for all
three classes of solutions and for each p-level considered.

3. It is significant to note that even though HGDA/TP formulations are perfectly valid
for Mesh A and are believed to have optimal convergence rates, even then HGDA/DG
solutions yield higher convergence rates and yield better accuracy. This needs further
investigation and discussion (given later).

4. Figures 19–21 show plots of I versus dof for solutions for class C11, C22 and C33 at
p-levels of 3, 5, 7 and 9 using HGDA/DG formulation with Mesh B and HGDA/TP
formulation with Mesh A. We remark that HGDA/TP element formulation is believed
to be meritorious formulation for Mesh A. Obviously HGDA/TP formulation cannot
be used for Mesh B as the elements of the discretizations are distorted.

5. HGDA/DG formulation always has higher convergence rate and lower values of I
for a given dof for solutions for classes C11, C22 and C33 for each p-level considered.

6. Thus, regardless of whether the discretization contains square (or rectangular) ele-
ments or distorted elements in xy space, HGDA/DG formulation has higher conver-
gence rate and better accuracy (lower values of I) compared to HGDA/TP elements
for Mesh A.

9.5. 2D Convection Diffusion Equation (BVP)

We consider 2D steady state convection diffusion equation

∂u
∂x

+
∂u
∂y
− 1

Pe

(
∂2u
∂x2 +

∂2u
∂y2

)
= 0 ∀ x, y ∈ Ωxy = (0, 1)× (0, 1) (103)

with boundary conditions

u(x, 0) =
1− e(x−1)Pe

1− e−Pe ; u(0, y) =
1− e(y−1)Pe

1− e−Pe (104)

and u(x, 1) = u(1, y) = 0 (105)

where Pe is the Peclet number. A theoretical solution is given by

u(x, y) =

(
1− e(x−1)Pe

)(
1− e(y−1)Pe

)
(1− e−Pe)(1− e−Pe)

(106)

From the theoretical solution, we observe that u(x, y) is analytic for all value of Pe
and is of class Cjj, where j→ ∞ is admissible.

We consider the same discretizations that are described for Mesh A and Mesh B for
the Poisson’s equation and the same p-levels for solutions for classes C11, C22, and C33.
Figures 22–27 show graphs of residual functional I versus dof obtained using Mesh A and
Mesh B for solutions for class C11, C22, C33; p-levels of 3, 5, 7, and 9 for HGDA/DG and
HGDA/TP formulations. We discuss results in the following.
1. In Figures 22–24, I versus dof graphs are presented for solutions for classes C11, C22,

C33 at p-levels of 3, 5, 7 and 9 for both HGDA/DG and HGDA/TP using Mesh A.
We observe higher slopes of I versus dof graphs in case of HGDA/DG for solutions
for classes C11, C22 and C33 for each p-level compared to the solutions obtained from
HGDA/TP.

2. We note from Figures 22–24 that HGDA/DG solutions yield lower values of I for a
given dofs compared to HGDA/TP. This holds for solutions for classes C11, C22, C33

for each p-level considered.
3. Figures 25–27 show graphs of I versus dof for solutions for class C11, C22, C33 at

p-levels of 3, 5, 7 and 9 using HGDA/DG with Mesh B and HGDA/TP with Mesh A.
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Obviously HGDA/TP elements cannot be used for Model B. Here also we observe a
higher convergence rate of I versus dof as well as lower values of I (for given dofs)
in case of HGDA/DG, hence better accuracy for given dofs. This holds for all three
classes of solutions and for all p-levels considered.
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Figure 22. Residual function I versus dof, C11 solutions: Model Problem 5 (Convection Diffusion
Equation; Mesh A; HGDA/DG and HGDA/TP).
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Figure 23. Residual function I versus dof, C22 solutions: Model Problem 5 (Convection Diffusion
Equation; Mesh A; HGDA/DG and HGDA/TP).



Mathematics 2021, 9, 1333 35 of 43

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

 0  1  2  3  4  5

L
O

G
(√

I)

LOG(dof)

Model Problem 5: Mesh A
p = 7         

HGDA
HGDA/TP
p = 9         

HGDA
HGDA/TP

Figure 24. Residual function I versus dof, C33 solutions: Model Problem 5 (Convection Diffusion
Equation; Mesh A; HGDA/DG and HGDA/TP).
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Figure 25. Residual function I versus dof, C11 solutions: Model Problem 5 (Convection Diffusion
Equation; Mesh B, HGDA/DG; Mesh A, HGDA/TP).
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Figure 26. Residual function I versus dof, C22 solutions: Model Problem 5 (Convection Diffusion
Equation; Mesh B, HGDA/DG; Mesh A, HGDA/TP).
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Figure 27. Residual function I versus dof, C33 solutions: Model Problem 5 (Convection Diffusion
Equation; Mesh B, HGDA/DG; Mesh A, HGDA/TP).

9.6. 2D Burgers Equation (BVP)

Consider the 2D steady state scalar Burgers equation (see [19–21] also):

u
∂u
∂x

+ u
∂u
∂y
− 1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
= f (x, y) ∀ (x, y) ∈ Ωxy = (−a, a)× (−b, b) (107)
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with the BCs

u(−a, y) = u(a, y) = u(x,−b) = u(x, b) = 0 (108)

We consider Re = 10 and choose f (x, y) such that the theoretical solution of (107) and
(108) is given by

u(x, y) = (an − xn)(bm − ym) (109)

In the numerical studies we consider a = b = 1 and m = n = 8. In this case the
differential operator A = u ∂

∂x + u ∂
∂y −

1
Re

(
∂2

∂x2 − ∂2

∂y2

)
is nonlinear, hence the GM/WF will

yield a VIC integral form. Modified LSP [24] yields VC integral form, hence we consider
finite element formulation based on this integral form in the numerical studies. We consider
the same discretizations that are described for Mesh A and Mesh B for Poisson’s equation
and we consider the same p-levels for solutions of classes C11, C22, C33 and the formu-
lations based on HGDA/DG and HGDA/TP. Since, in this case the differential operator
is nonlinear, the system of algebraic equations resulting from LSP are nonlinear. Their
solution is obtained using Newton’s linear method with line search [17,18]. A tolerance of
10−6 or lower is used for assuming computed quantities to be zero. We discuss results in
what follows.
1. Figures 28–30 show plots of residual functional I versus dof for solutions for class

C11, C22, C33 at p-levels of 3,5,7 and 9 obtained using HGDA/DG and HGDA/TP for
Mesh A. We observe higher slopes of I versus dof graph for HGDA/DG compared to
HGDA/TP almost in all cases.

2. We also note from Figures 28–30 that HGDA/DG solutions yield lower values of I
compared to HGDA/TP solutions.

3. Figures 31–33 show plots of I versus dof for solutions for class C11, C22 and C33 at
p-levels of 3,5,7 and 9 using HGDA/DG for Mesh B and HGDA/TP for Mesh A.
Obviously, HGDA/TP formulation cannot be used for mesh B. Here also we observe
higher convergence rate of I versus dof as well as lower values of I (for a given dof).
This holds true for all three classes of solutions and for all three p-levels.
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Figure 28. Residual function I versus dof, C11 solutions: Model Problem 6 (Burgers Equation; Mesh
A; HGDA/DG and HGDA/TP).
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Figure 29. Residual function I versus dof, C22 solutions: Model Problem 6 (Burgers Equation; Mesh
A; HGDA/DG and HGDA/TP).
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Figure 30. Residual function I versus dof, C33 solutions: Model Problem 6 (Burgers Equation; Mesh
A; HGDA/DG and HGDA/TP).
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Figure 31. Residual function I versus dof, C11 solutions: Model Problem 6 (Burgers Equation; Mesh
B, HGDA/DG; Mesh A, HGDA/TP).
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Figure 32. Residual function I versus dof, C22 solutions: Model Problem 6 (Burgers Equation; Mesh
B, HGDA/DG; Mesh A, HGDA/TP).
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Figure 33. Residual function I versus dof, C33 solutions: Model Problem 6 (Burgers Equation; Mesh
B, HGDA/DG; Mesh A, HGDA/TP).

10. Model Problem: IVPs

In the case of IVPs, space-time coupled finite element processes with a space-time vari-
ationally consistent integral form with local approximation in H(k)(Ω̄xt) = H(k1,k2)(Ω̄xt)
scalar product spaces containing space-time functions of global differentiability k1 − 1 in
space and k2 − 1 in time are most meritorious over all others [18]. Since the space-time dif-
ferential operators are either non-self adjoint or non-linear, only space-time finite element
processes based on space-time residual functional (space-time least squares processes) are
STVC [18]. In case of initial value problems, rather than discretizing the entire space-time
domain, we could consider an increment of time and discretize the space-time strip or
slab for the increment of time, with only one element in time, but adequate discretization
in space. Need for more elements in time can be addressed by reducing the size of the
time increment. We compute converged solution (residual functional I → 0) for the first
increment of time. The solution for the second increment of time is calculated using second
space-time strip for which initial conditions are determined using the converged solution
from the first increment of time, i.e., first space-time strip.

On obtaining converged solution for second space-time strip we move on to third
space-time strip and so on until entire evolution is calculated. This process is referred to
as space-time strip or slab with time marching. This is the most efficient and meritori-
ous approach of computing evolution described by the IVP. We make some remarks in
the following.

Remark 7.

1. If 2m1 and 2m2 are the highest orders of the derivatives of the dependent variables in space
and time in the initial value problem, then k1 = 2m1 + 1 and k2 = 2m2 + 1 correspond to the
minimally conforming scalar product space H(k1,k2)(·) containing functions of space and time
for which all space-time integrals will remain Riemann type over the space-time discretization.

2. In the space-time strip with time marching method, we must ensure that the computed solution
for the first space-time strip is converged before we move on to the second space-time strip as the
ICs for the second space-time strip are obtained using the solution for the first space-time strip.



Mathematics 2021, 9, 1333 41 of 43

3. Based on Remark 2, the convergence studies in IVPs can be done only for the first space-time
strip. In reference [18], it has been shown using many model problems that the convergence
characteristics and various aspects of space-time HGDA/DG and HGDA/TP element formula-
tions as well as their performance in terms of accuracy remain the same as shown for 2D BVPs
discussed in this paper. For this reason and also for the sake of brevity, numerical studies are
not presented for IVPs.

4. We emphasize that the space-time finite elements of classes Cqr, Cqrs. have precisely same
formulations as the Cqr, Cqrs formulations for BVPs. Just like BVPs, here also HGDA/DG
elements only have the required dof at the nonhierarchical nodes for desired orders of continuity
and the HGDA/TP space-time elements are inferior to HGDA/DG in all aspects for the same
reasons that have been discussed earlier in the context with BVPs.

11. Summary and Conclusions

In the k-version of the finite element method initiated by Surana et al. [1–3], the authors
showed that k, the order of the approximation space defining global differentiability of
approximation over a discretization is an independent parameter in all finite element
processes in addition to h and p, hence the terminology k-version of the finite element
method in addition to h- and p-versions is quite natural. In this paper, we considered the
works of Surana et al. [1–3,11–21] on k-version finite element method and have presented a
unified computational methodology incorporating the k-version that addresses all higher
order global differentiability issues in BVPs and IVPs. The k-version of the finite element
method presented in this paper is compared with other published works on higher order
global differentiability approaches including isogeometric analysis. We present a short
summary and draw some conclusions.

1. The global differentiability of an approximation is due to union of local approxima-
tions, i.e., in the k-version presented in this paper, the element local approximation
over finite elements are designed such that their union automatically gives the desired
globally differentiability everywhere in the discretized domain. This must be intrinsic
and fundamental aspect of all finite element processes considering k-version.

2. The HGDA/DG are p-version and are hierarchical, i.e., in Cq, Cqr and Cqrs approxima-
tions, p-levels can be increased beyond those needed for q, qr, qrs orders of continuity.
This increase in p-level does not increase dofs at the nonhierarchical nodes that are
responsible for the desired degree of global smoothness.

3. It is shown and established that HGDA/DG are truly higher order global differen-
tiability local approximations. HGDA/TP elements contain additional dofs at the
nonhierarchical nodes compared to HGDA/DG elements. The consequence of this is:
(a) the HGDA/TP elements have dofs at the hierarchical nodes that cannot be trans-
formed between ξη and xy (ξηζ and xyz) spaces (b) poor convergence rate compared
to HGDA/DG (c) poor accuracy compared to HGDA/DG (d) HGDA/TP elements
do not have true Cq, Cqr, Cqrs global differentiability.

4. HGDA/DG elements work perfectly well in discretizations containing distorted
element geometries while HGDA/TP elements are restricted to rectangular shapes
with additional restrictions on ξη for the elements to be parallel to xy and pointing in
the same directions.

5. Graphs of residual functional and the error in quadratic functional are reported in
the paper with respect to dof instead of using characteristic discretization length
h. Since HGDA/TP elements have additional dofs at the nonhierarchical nodes
compared to HGDA/DG elements, use of dof is a true measure of their performance
in terms of convergence rate and the accuracy as h is not effected by additional dof in
HGDA/TP elements.

6. We find some published works on k-version that has been cited in the literature review
section of this paper. Unfortunately, the approaches used in those publications are
specific to some order of differentiability and are not p-version hierarchical and cannot
be extended to orders higher than those presented in the paper. The work presented
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here allows any desired order of global differentiability local approximations in R1,
R2 and R3 with p-version hierarchical structure. To the best of our knowledge, there
is no other published work on the k-version that has these features.

7. We have considered and presented considerable details of isogeometric analysis. (1)
We have clearly shown that isogeometric analysis is nothing more than C0 finite
element discretization with higher p-level, each element being a patch in isogeometric
analysis. We have clearly demonstrated that in the isogeometric approach, the global
solution for the entire domain is always of class C0 when the domain contains more
than one patch regardless of the solution class within the patch. This is due to
the fact that in isogeometric analysis, inter-patch continuity is C0. (2) Isogeometric
analysis is not a finite element method. A patch is like a complex domain, for which
displacement approximation is constructed (no finite elements yet). The patch is
subdivided into smaller patches that are mapped in two unit squares or cubes for the
sake of integration over the patch. Smaller patches or subdomains of the patch have no
local approximation. Each smaller patch or subdomain has to inherit the displacement
approximation constructed for the whole patch (no finite element yet either).

8. In isogeometric analysis, benefits of higher order smoothness of geometry have never
been shown. Our work on the k-version shows that the benefit of accuracy and con-
vergence rates are due to local approximation and not due to higher order geometry.

9. A comparison of isogeometric method with k-version [1–3,19–21] is meaningless for
two reasons (i) isogeometric analysis is not a finite element method (ii) the global
approximation in isogeometric is only C0, so where is the k-version?

In conclusion this paper presents a true k-version finite element method (HGDA/DG)
in which local approximation can be of class Cq, Cqr, Cqrs p-version hierarchical that always
yield global differentiability of orders q, qr and qrs in R1, R2, R3. There is no other published
works on the k-version of finite element method or higher order global differentiability
approximation that has these features.
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Abbreviations
The following abbreviations are used in this manuscript:

BVPs Boundary Value Problems
dof or dofs degrees of freedom
GM/WF Galerkin Method with Weak Form

HGDA or HGDA/DG
Higher Order Global Differentiability Approximation Elements with
Distorted Geometry

HGDA/TP
Higher Order Global Differentiability Approximation Based on Tensor
Product

IBP Integration by Parts
IVPs Initial Value Problems
LSM Least Squares Method
LSP Least Squares Process
VC Variationally Consistent
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VIC Variationally Inconsistent
LSFE Least Squares Finite Element
LSFEM Least Squares Finite Element Method
LSFEP Least Squares Finite Element Process
LSM Least Squares Method
Ω̄T or Ω̄xy Discretization of (finite element mesh) of Ω̄ or Ω̄xy
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