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Abstract: In this work, we consider output-feedback distributed model predictive control (DMPC)
based on distributed state estimation with bounded process disturbances and output measurement
noise. Specifically, a state estimation scheme based on observer-enhanced distributed moving horizon
estimation (DMHE) is considered for distributed state estimation purposes. The observer-enhanced
DMHE ensures that the state estimates of the system reach a small neighborhood of the actual state
values quickly and then maintain within the neighborhood. This implies that the estimation error
is bounded. Based on the state estimates provided by the DMHE, a DMPC algorithm is developed
based on Lyapunov techniques. In the proposed design, the DMHE and the DMPC are evaluated
synchronously every sampling time. The proposed output DMPC is applied to a simulated chemical
process and the simulation results show the applicability and effectiveness of the proposed distributed
estimation and control approach.

Keywords: nonlinear systems; distributed state estimation; moving horizon estimation; model
predictive control; chemical processes

1. Introduction

In modern industry, large-scale complex processes with distributed structure and
dynamic coupling characteristics exist widely, such as large-scale petrochemical processes,
wastewater treatment plants, and so forth. These complex processes usually consist of
multiple operating units (subsystems) that are connected tightly through materials, energy
and information flows. The decentralized control in general does not fully consider the
interaction between the subsystems, which typically leads to reduced plant-wide control
performance due to the lack of coordination and cooperation between the subsystem con-
trollers. While the centralized control structure provides potentially the best performance,
it is not favorable from the computational and fault tolerance view points. In the past
decade, with the advances of information technology, distributed control system (in par-
ticular, distributed model predictive control (DMPC)) has received significant attention
and development. DMPC has been widely recognized as the control framework for the
next-generation complex processes [1–6].

In the design of DMPC algorithms, the real-time state information of a system is
needed. It is in general difficult to install sufficient sensors to measure all the states. State
estimation techniques should be used to estimate the state every sampling time. State
estimation takes advantage of the system model, noise characteristics, real-time output
measurement to reconstruct the actual state of the system. In a distributed control system,
a distributed state estimation scheme is preferred from a fault tolerance perspective. In the
study of distributed state estimation, there are many distributed Kalman filtering research
results [7,8]. These methods are mainly based on the consensus algorithm and have great
limitation for nonlinear systems [9]. Distributed moving horizon estimation (DMHE) for
linear constrained systems was presented in [10] and was extended to nonlinear system
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in [11]. However, these DMHE designs do not give bounded estimation error and the
convergence speed is not tunable. These features make the above DMHE not suitable for
output feedback control designs.

In [12], an observer-enhanced DMHE algorithm was presented. It is designed for
output feedback control with bounded measurement and process noise. In this algorithm,
the observer-enhanced MHE developed in [13] is adopted for the subsystem MHE design.
For each subsystem MHE design, an auxiliary nonlinear high-gain observer is used to
calculate a reference state estimate and the reference state estimate is then used to construct
a confidence region for the actual state. The subsystem MHE is restricted to optimize the
state estimate within the confidence region. This approach ensures that the estimation error
is always bounded and the convergence speed can also be tuned by tuning the auxiliary
observer. DMHE for nonlinear systems have also been discussed in [14–18].

The observer-enhanced MHE has been adopted to design control systems based on
output feedback. In [19], a centralized MPC was designed based on the observer-enhanced
MHE and a triggered implementation strategy was developed to reduce its computational
load. In [20], an output feedback economic model predictive control was developed
based on the observer-enhanced MHE. The above output feedback control methods were
implemented within a centralized framework. DMPC has been widely considered as
an indispensable advanced control technology to realize intelligent manufacturing and
smart power grid [21,22]. In the DMPC design, the subsystem MPCs coordinate and
communicate to obtain the optimal control performance via the communication network.
Relevant research results and reviews can be found in [1,2]. However, most of the existing
DMPC designs assume that the states of the subsystems or the global system can be
measured, which cannot be guaranteed in many applications.

Motivated by the above considerations, in the present work, we consider output-
feedback distributed model predictive control (DMPC) based on distributed state es-
timation with bounded process disturbances and output measurement noise. Specifi-
cally, the observer-enhanced DMHE is adopted to obtain state estimates of the system.
The observer-enhanced DMHE ensures that the state estimates of the system reach a small
neighborhood of the actual state values quickly. Based on the state estimates provided by
the DMHE, a DMPC algorithm designed using Lyapunov techniques is developed. In the
proposed design, the DMHE and the DMPC are evaluated synchronously every sampling
time. The proposed output DMPC is applied to a simulated chemical process and the
simulation results show the applicability and effectiveness of the proposed distributed
estimation and control approach.

2. Preliminaries
2.1. Notation and Definitions

In this work, | · | represents the Euclidean norm of a scalar or a vector. For each x1 and
x2 in a given region of x, if there exists a positive constant Lx

f such that | f (x1)− f (x2)| ≤
Lx

f |x1 − x2|, the function f (x) is said to be locally Lipschitz with respect to its argument x.

The pseudoinverse of a matrix (or vector) A is denoted by A+. xT denotes the transpose of
vector x. In the set of I = {1, . . . , m}, m denotes the total number of subsystems. The symbol
diag(w) is a diagonal matrix whose diagonal elements are every element of vector w.
Finally, the operator ‘×’ denotes the Cartesian product: Ω1 ×Ω2 = {(x1, x2) : x1 ∈ Ω1 and
x2 ∈ Ω2}.

2.2. System Description

In this paper, it is assumed that a class of nonlinear systems are composed of m
interconnected subsystems. In particular, the state-space model of the i-th subsystem can
be described as follows:

ẋi(t) = fi(xi(t), ui(t), wi(t)) + f̃i(Xi(t)),
yi(t) = hi(xi(t), ui(t)) + vi(t),

(1)
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where xi(t) ∈ Rnxi denotes the state variables of subsystem i, ui(t) ∈ Rnui represents the
control input of subsystem i and yi(t) ∈ Rnyi denotes the measurement output of the
ith subsystem. wi(t) ∈ Rnwi represents the disturbances and vi(t) ∈ Rnvi characterizes
the measurement noise of the ith subsystem. f̃i(Xi(t)) represents the interaction between
subsystem i and other subsystems, the state vector Xi(t) ∈ RnXi contains subsystem states
involved in the above interaction. The sets Ii ⊂ I (i ∈ I) represents the set of subsystem
indices whose subsystem state variables are involved in Xi and the set Ii (i ∈ I) is assumed
to be known in this work.

It is assumed that the control input of the ith subsystem is restricted in a nonempty
convex set Ui ⊆ Rnui , i ∈ I:

Ui := {ui ∈ Rnui : |ui| ≤ umax
i }, (2)

where umax
i is the maximum amplitude of the input constraint. For the subsystem i, it

is assumed that the process disturbances and measurement noise are bounded such as
wi ∈Wi and vi ∈ Vi for all i ∈ I:

Wi : = {wi ∈ Rnwi : |wi| ≤ θwi , θwi ≥ 0},
Vi : = {vi ∈ Rnvi : |vi| ≤ θvi , θvi ≥ 0}, (3)

where θwi , θvi for i ∈ I are known positive real scalars. fi, f̃i and hi with i ∈ I are
assumed locally Lipschitz of their arguments. The global system state vector x is de-
noted as x = [xT

1 · · · xT
i · · · xT

m]
T ∈ Rnx , the input vector and output vector are denoted as

u = [uT
1 · · · uT

i · · · uT
m]

T ∈ Rnu and y = [yT
1 · · · yT

i · · · yT
m]

T ∈ Rny respectively. The dynamics
of the global nonlinear system are described as the following form:

ẋ(t) = f (x(t), u(t), w(t)) + f̃ (x(t)),
y(t) = h(x(t), u(t)) + v(t),

(4)

where w(t) ∈ Rnw denotes the disturbance vector composed by the subsystem disturbance
vectors, and v(t) ∈ Rnv is the corresponding global measurement noise vector. f , h and
f̃ are the corresponding compositions of fi, hi and f̃i, i ∈ I, respectively. It is assumed
that f , h and f̃ are locally Lipschitz of their arguments which satisfy the initial conditions
f (0, 0, 0) = 0, h(0) = 0 and f̃ (0) = 0.

2.3. Stabilizability Assumptions

In each subsystem, for all xl ∈ Dl ⊆ Rnxl , l ∈ Ii, where Dl is a compact set which
contains the origin, it is assumed that there exists a nonlinear state feedback controller
ui = ki(Xi) , which can render the origin of the nominal subsystem asymptotically stable in
the case of satisfying the input constraints. This assumption implies that for each subsystem,
there exists a control Lyapunov function Vi(xi) which is continuous differentiable. Note
that in the above assumption, it is assumed that the state feedback controller has access to
both the state of subsystem i and the states of its neighboring subsystems that are needed
to describe the interaction between subsystem i and other subsystems.

2.4. Observability Assumptions

We further assume that the ith subsystem is observable, for i ∈ I. For the nominal
subsystem of Equation (1) without considering the interaction (i.e., f̃i(Xi(t)) ≡ 0 for all t),
a deterministic nonlinear observer can be designed as follows:

żi(t) = Fi(εi, zi(t), ui(t), h(xi(t))), (5)

where zi is the state vector of the ith subsystem observer, εi denotes a positive tuning
parameter for the convergence rate of the above observer. h(xi(t)) represents the noise-
free output measurement of the subsystem i, i ∈ I. Equation (5) indicates that, for all t,
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if f̃i(Xi(t)) ≡ 0, wi(t) ≡ 0 , zi can asymptotically approach xi. This assumption further
implies that there exists a KL function βi under this assumption such that:

|zi(t)− xi(t)| ≤ βi(|zi(0)− xi(0)|, t), (6)

where zi(0) denotes the initial guess of the subsystem state and xi(0) is the subsystem’s
initial state. It is also assumed that Fi is locally Lipschitz, i ∈ I. A type of observer satisfying
the above assumptions is a high-gain observer [23].

3. Distributed LMPC Based on Distributed State Estimation

In this section, the distributed Lyapunov model predictive control (LMPC) based
on distributed state estimation is presented. For all subsystems, it is assumed that the
measurement output vector of the ith subsystem yi (i ∈ I) is sampled periodically and syn-
chronously such that tk = t0 + k∆, where tk denotes the time instant, t0 = 0 represents the
initial time, k is a positive integer and ∆ denotes a fixed sampling interval. It is also assumed
that the estimator of the subsystem i can directly and immediately access its local output
measurement yi every sampling time. The LMPC of the i-th subsystem can communicate
with the other neighboring subsystems through a shared communication network.

3.1. Implementation Algorithm

In the proposed approach, both the fast convergence rate of the nonlinear observer
and the robustness of the observer-enhanced moving horizon estimation (MHE) to output
measurement noise are considered. During a short period from the initial time, state
estimation is performed using an augmented nonlinear observer based on Fi for each
subsystem i. The short period is described as t0 ≤ t < tsw, where t0 is the initial time, tsw is
a multiples of the sampling time ∆. Due to the fast convergence of the nonlinear observer,
the estimate of the subsystem state reaches a small neighborhood of the actual state value
before time tsw. During this period, the augmented nonlinear observer of subsystem i is
evaluated and it communicates with other subsystems l, l ∈ Ii, continuously. Meanwhile,
it provides state estimates to the LMPC of subsystem i (LMPCi) during this short period.
Then from time instant tsw, after the subsystem state estimates have converged to a small
neighborhood of the actual subsystem states, the estimator of each subsystem switches from
the augmented nonlinear observer to MHE. The MHE of subsystem i (MHEi) is evaluated
to provide the optimal estimate of the subsystem state to LMPCi for time t ≥ tsw. It is
assumed that the distributed state estimators (MHEi) and the distributed LMPCs (LMPCi)
are evaluated with the same sampling time ∆. The above described implementation strategy
of the proposed distributed Lyapunov model predictive control based on distributed state
estimation can be summarized as follows:

1. At t0 = 0, the augmented nonlinear observer based on Fi of each subsystem is
initialized with the subsystem output measurement yi(0) and the initial subsystem
state guess zi(0), i ∈ I.

2. At tk > 0, if tk < tsw, go to Step 2.1; otherwise, go to Step 2.2.

2.1 The subsystem state estimate zi(t), t ∈ [tk−1, tk], i ∈ I, is calculated continu-
ously by the corresponding augmented nonlinear observer based on the output
measurements of subsystem i, the output measurements and state estimates
of its related subsystems l, l ∈ Ii, received by subsystem i via communication
network. The estimate result zi(tk) is sent to the corresponding LMPCi of
subsystem i and go to Step 3.

2.2 The local MHEi of subsystem i estimates the current optimal subsystem state
estimate x̂∗i (tk), t ∈ [tk−1, tk], i ∈ I, based on current and previous output
measurement yi(tq) of subsystem i with q = k− Ne, . . . , k, the previous output
measurements and subsystem state estimates yl(tq) and xl(tq) from subsys-
tems l, l ∈ Ii, with q = k− Ne, . . . , k− 1, are sent to subsystem i via commu-
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nication network, where Ne is the horizon of the MHEi. The estimate x̂∗i (tk),
i ∈ I, is sent to the corresponding subsystem LMPCi and go to Step 3.

3. Based on zi(t) or x̂∗i (tk), i ∈ I, the LMPCi of subsystem i calculates the future input
trajectory ui(t) for t ∈ [tk, tk+Nc ], where Nc denotes the prediction horizon of LMPCi.
The first value of the input trajectory ui(tk) , i ∈ I, is applied to the system.

4. Go to Step 2. (k← k + 1).

3.2. Subsystem Observer Design

In this paper, an augmented subsystem observer based on observer (5) for the ith
subsystem is designed, i ∈ I. For each subsystem i, the estimates of the neighboring
subsystem states Xi are received via the communication network every sampling time.
An approximation of the interaction between the ith subsystem and other subsystems that
involved in set Ii can be calculated by them. The subsystem observer is designed as follows:

żi(t) = Fi(εi, zi(t), ui(t), yi(tk−1)) + f̃i(Zi(tk−1)) + ∑
l∈Ii

Ki,l
(
zl(tk−1)

)(
yl(tk−1)− hl(zl(tk−1))

)
, (7)

where zi(t) is the state of the nonlinear observer, the interactions between the ith subsys-
tem and other neighboring subsystems l, l ∈ Ii are taken into account in this observer.
Zi(tk−1) and zl(tk−1) are the state estimates of Xi(tk−1) and xl(tk−1) calculated by observer
respectively. The first term of the right-hand side of nonlinear observer (7) comes from
Equation (5); the next term f̃i(Zi(tk−1)) describes the interactions between the ith subsys-
tem and other subsystems; the last term is a correction term based on actual measurement
yl , l ∈ Ii. In the last term, the gains Ki,l

(
zl(tk−1)

)
which are functions of zl(tk−1) can be

determined as follows:

Ki,l
(
zl(tk−1)

)
=

∂ f̃i
∂xl

(
∂hl
∂xl

)+∣∣∣∣
zl(tk−1)

. (8)

The correction gains in Equation (8) can be obtained by linear approximation via
Taylor series expansion.

3.3. Subsystem Observer-Enhanced MHE

In this paper, a distributed observer-enhanced moving horizon estimation (distributed
MHE) scheme developed in [12] is adopted. In every subsystem, the augmented nonlinear
observer discussed in the earlier subsection is used to tune the convergence rate of the
subsystem MHE. The nonlinear augmented observer which includes an error correction
term calculates a subsystem reference state estimate first; then based on the reference state
estimate, the local subsystem MHE determines a confidence region of the actual system
state and optimizes the state estimate within the confidence region. At time instant tk,
the local MHE for subsystem i can be described as follows:
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min
x̃i(tk−Ne ),...,x̃i(tk)

k−1

∑
q=k−Ne

|wi(tq)|2Q−1
i

+
k

∑
q=k−Ne

|vi(tq)|2R−1
i

+ Vi(x̃i(tk−Ne)) (9a)

s.t. ˙̃xi(t) = fi(x̃i(t), ui(tq), wi(tq)) + f̃i(X̂i(tq)), t ∈ [tq, tq+1], q = k− Ne, . . . , k− 1 (9b)

yi(tq) = hi(x̃i(tq), ui(tq)) + vi(tq), q = k− Ne, . . . , k (9c)

wi(tq) ∈Wi, vi(tq) ∈ Vi, x̃i(tq) ∈ Xi, ui(tq) ∈ Ui, q = k− Ne, . . . , k (9d)

żn,i(t) = Fi(εi, zn,i(t), ui(t), yi(tk−1)) + f̃i(X̂∗i (tk−1)))

+ ∑
l∈Ii

Ki,l
(
x̂∗l (tk−1)

)(
yl(tk−1)− hl(x̂∗l (tk−1))

)
(9e)

zn,i(tk−1) = x̂∗i (tk−1) (9f)

Ki,l
(
x̂∗l (tk−1)

)
=

∂ f̃i
∂xl

(
∂hl
∂xl

)+∣∣∣∣
x̂∗l (tk−1)

(9g)

|x̃i(tk)− zn,i(tk)| ≤ κi|yi(tk)− hi(zn,i(tk))|. (9h)

In Equation (9), x̃i is the optimized estimation result; Ne denotes the state estimation
horizon; Qi is the covariance matrices of process disturbances wi; Ri is the covariance
matrices of the measurement noise vi; the arrival cost function is described by Vi(x̃i(tk−Ne)),
which includes all the past information up to time tk−Ne . It is assumed that wi and vi are
piece-wise constant variables with sampling time ∆ to guarantee the above optimization
problem is finite dimensional. Parameter κi is a positive constant which depends on the
properties of the corresponding subsystem.

Once the Equation (9) is solved, a series of subsystem states x̃∗i (tk−Ne), . . . , x̃∗i (tk) can
be determined. The optimal subsystem state estimate denoted as x̂∗i (tk) is the last element
x̃∗i (tk) in the series:

x̂∗i (tk) = x̃∗i (tk). (10)

In the subsystem observer-enhanced MHE scheme (9), (9a) is the cost function which
needs to be minimized. Constraints (9b) and (9c) are subsystem model. (9d) denotes the
constraint boundary of wi, vi and subsystem state x̃i. Constraints (9e)–(9h) are used to
determine a confidence region. The confidence region is calculated based on the augmented
nonlinear observer. Note that the observer (9e) embedded in MHE is evaluated based on
the optimal state estimate x̂∗i of the previous time instant. (9h) describes the confidence
region determined by the parameter κi, the current subsystem output measurement yi(tk)
and state estimate zn,i(tk) given by the nonlinear observer (9e).

3.4. Subsystem Lyapunov MPC

In the distributed Lyapunov MPC scheme, for each subsystem i, i ∈ I, the design of
local LMPC is based on the subsystem nominal model and the subsystem state estimate.
In the time interval 0 < tk < tsw, the state estimate zi(tk) is calculated by the observer Fi;
when tk ≥ tsw, the optimal state estimate x̂∗i (tk) is obtained from the corresponding local
MHE. In the remainder of this work, x̂i is used to denote the state estimate of subsystem
i for the consistency of expression. At time instant tk, the subsystem LMPC i optimizes
its future control input sequence using its subsystem nominal model, it is assumed that
the state trajectories of related subsystems keep the same as the values sent to subsystem
i at the previous time instant tk−1. Specifically, the LMPC i is based on the following
optimization problem:
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u∗i (τ|tk) = arg min
ui(τ)∈S(∆)

∫ tk+Nc

tk

[x̃i(τ)
TQi x̃i(τ) + ui(τ)

T Riui(τ)]dτ (11a)

s.t. ˙̃xi(τ) = fi(x̃i(τ), ui(τ), 0) + f̃i(X̃i(τ)) (11b)

x̃i(tk) = x̂i(tk), X̃i(tk) = X̂i(tk) (11c)

ui(τ) ∈ Ui (11d)

∂Vi(x̃i(tk))

∂x̃i

(
fi(x̃i(tk), ui(tk), 0) + f̃i(X̃i(tk))

)
≤ ∂Vi(x̂i(tk))

∂x̂i

(
fi(x̂i(tk), ki(X̂i(tk)), 0) + f̃i(X̂i(tk))

)
, (11e)

where u∗i denotes the optimal input sequence of subsystem i calculated by the above
optimization problem, S(∆) means piece-wise constant function and ∆ is the sampling
period, Nc denotes the prediction horizon, x̃i is the predicted state trajectory of the nominal
subsystem i with control inputs calculated by the local LMPC, Qi and Ri are positive
definite weighting matrices.

In the local LMPC optimization problem (11), for subsystem i, i ∈ I, (11a) is the cost
function concerning the subsystem state vector and input vector; (11b) is the subsystem
nominal model comes from Equation (1); (11c) define the initial condition calculated by
local MHE at time instant tk, including the state estimate x̂i(tk) of subsystem i and its
related subsystem state X̂i(tk) obtained through communication network; (11d) denotes
the constraint on control input sequence ui; (11e) expresses the stability constraint based
on Lyapunov function Vi and the nonlinear controller ki(X̂i(tk)), 0) at time instant tk.
The subsystem manipulated input under the control of the distributed MHE-LPMC is
defined by the following expression:

ui(t) = u∗i (t|tk), t ∈ [tk, tk+1), i ∈ I. (12)

4. A Brief Stability Analysis

In this section, we provide a sketch of the stability analysis of the proposed distributed
control scheme. The stability of the closed-loop system can be shown following similar
arguments in our previous work in [12,20,24].

First, according to the results of [12], the estimation error provided by the adopted
distributed observer-enhanced MHE is ultimately bounded in a small neighborhood of the
origin when some conditions are satisfied. The detailed conditions can be found in [12].
In [12], it was also shown that the convergence speed of the distributed observer-enhanced
MHE can be tuned by tuning the convergence speed of the reference observer. If high-gain
observers are used to design the reference nonlinear observers, the convergence speed can
be fast and the switching time tsw can be made to be small (for example, smaller than a
sampling time ∆).

Second, we consider the stability of each subsystem controller. Let us assume that the
interactions between subsystems are constant or absent for now. Since the switching time
tsw can be made to be small, the duration such that each local LMPC operates with a less
accurate state estimate is small. As long as the operation in this small duration does not
drive the subsystem state outside of the region of attraction, the subsystem stability can
be ensure. This requires that the initial condition is not very close to the boundary of the
region of attraction and that there is no finite-time escape phenomena in the subsystem
dynamics. A detailed mathematical characterization of these conditions can be found
in [20].

Third, the above explains how to analyze the stability of each subsystem without
considering the interaction between subsystems. For a distributed control system, this is
indeed important. To take into account the interaction, the approach used in [24] can be
adopted. The information exchanged between the neighboring subsystems can be used to
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compensate for the interaction between the subsystems. A detailed characterization of the
conditions needed can be derived following similar approach as in [24].

5. The Simulation Application
5.1. Chemical Process

In this paper, the proposed scheme is applied to a chemical process to verify its
applicability. The process consists in two continuous stirred tank reactors (CSTRs) and a
flash tank separator. Figure 1 shows a schematic diagram of the chemical process. There is a
feed stream of pure reactant A goes into the first CSTR at flow rate F10 and temperature T10.
In the CSTR, two elementary reactions take place: A→ B, B→ C, where the reactant is A,
the desired product and the side product are B and C, respectively. A recycle stream from
the separator also goes into the first CSTR at flow rate Fr and temperature T3. The effluent
of the first CSTR enters the second CSTR at flow rate F1 and temperate T1. Another feed
stream of pure A at flow rate F20 and temperature T20 also goes into the second CSTR to
generate more product. In the second CSTR, the same reactions as in the first CSTR occur.
The outlet stream from the second CSTR goes into the flash separator at flow rate F2 and
temperature T2. In the separator, flash separation happens and the bottom outlet stream
F3 primarily contains the product. A portion of the top effluent is purged and the rest is
recycled back to the first CSTR. Both reactors and the separator are equipped with a jacket
for heat input or removal.

Figure 1. Reactor-separator process with a recycle stream.

A detailed description of the process and a description of the dynamical model of the
process can be found in [12]. In the dynamical model, the manipulated inputs are the heat
inputs/removals, Q1, Q2 and Q3. We can divide the whole system into three subsystems:
the first CSTR, the second CSTR and the last flash separator. The subsystem states can be
described as xi = [xAi xBi Ti]

T , i = 1, 2, 3, where xAi and xBi are subsystem mass fractions
of A and B, Ti is the subsystem temperature. The entire system state is the aggregation of
the three subsystem states as follows:

x = [xA1 xB1 T1 xA2 xB2 T2 xA3 xB3 T3]
T , (13)

where temperatures T1, T2 and T3 are assumed to be measured and are sampled syn-
chronously. The sampling time is ∆ = 0.005 h = 18 s. The mass fractions of Ai and Bi,
i = 1, 2, 3, are unmeasurable and should be estimated.

The steady-state of the system state xs and the steady-state manipulated input Qs are
shown in Table 1. The control objective is to steer the process from the initial state x0 to the
steady-state xs.



Mathematics 2021, 9, 1327 9 of 16

Table 1. Steady state values.

Variable Steady State Value Variable Steady State Value

xA1s 0.1763 T1s 480.3165 [K]
xA2s 0.1965 T2s 472.7863 [K]
xA3s 0.0651 T3s 474.8877 [K]
xB1s 0.6731 Q1s 2.9× 106 [KJ/h]
xB2s 0.6536 Q2s 1.0× 106 [KJ/h]
xB3s 0.6703 Q3s 2.9× 106 [KJ/h]

5.2. Observer and Controller Designs

The detailed modeling equations of the process can be found in [12]. By examining the
modeling equations, it can be found that the dynamics of each subsystem i in the chemical
process, i = 1, 2, 3, can be described compactly in the following form:

ẋi(t) = fi(Xi(t)) + gi(Xi(t))ui(t)
yi(t) = Cxi(t),

(14)

where xi = [xi1 xi2 xi3]
T = [xAi xBi Ti]

T denotes the subsystem state vector, Xi denotes
the state vector containing all the neighboring subsystems’ states. The control input ui of
subsystem i is the heat input Qi (kJ/h), i = 1, 2, 3.

It is assumed that the three temperatures are measured. The subsystem states are
estimated based on the three temperature measurements. First, the nonlinear observer in
Equation (7) is designed for each subsystem. For subsystem i, i = 1, 2, 3, the first term on
the right-hand side of Equation (7) is designed as follows:

żi(t) = fi(zi(t), 0) +
(dΦi(zi)

dzi

)−1
Go,i(yi(t)− hi(zi(t)))

Φi(zi) = [hi(zi),
∂hi(zi)

∂zi
fi,

∂
(

∂hi
∂zi

fi

)
∂zi

fi]

Go,i = [ko,i(1)/θ, ko,i(2)/θ2, ko,i(3)/θ3]T ,

(15)

where zi is the state of nonlinear observer and Go,i is a gain vector. In the gain vector, θ
sets to 0.5, and Ko,i = [ko,i(1), ko,i(2), ko,i(3)]T is determined such that the eigenvalues of
the matrix Ao,i − Ko,iCo,i are placed at −1.1, −1 and −1.2, with Aoi = [0 1 0; 0 0 1; 0 0 0]
and Co,i = [1 0 0]. The second term (interaction model) and the third term (correction term)
on the right-hand side of observer (7) are added to Equation (15) to finish the design of
the augmented nonlinear observer for a subsystem. From the system model in [12], it can
be seen that the states of subsystem 1 are affected by subsystem 3 only; therefore, I1={3}.
Similarly, it can be found that I2={1}, I3={2}. The gains Ki,l , i ∈ I, l ∈ Ii in the third term of
observer (7) are determined following Equation (8) to be the following:

K1,3 = [0, 0, 50.4]T , K2,1 = [0, 0, 110.88]T , K3,2 = [0, 0, 60.48]T .

Note that the correction gains Ki,l should be time-varying for general nonlinear sys-
tems. In this chemical process, the designed gains are constants because the interactions
between subsystems are actually linear.

Secondly, for every subsystem, a reference nonlinear controller is designed based on
state feedback via feedback linearization as follows.

ui(t) = −gi(Xi(t))−1( fi(Xi(t)) + Kci(Ti − Tset
i )
)
. (16)

In the above design, Kci, i = 1, 2, 3, are three tunable parameters; Tset
i denotes the tem-

perature set-point, which is the steady-state temperature. In the simulation, the three param-
eters are Kc1 = Kc2 = Kc3 = 10; the set points of the temperatures are Tset

1 = 480.3165 [K],
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Tset
2 = 472.7863 [K] , Tset

3 = 474.8877 [K], respectively. The nonlinear state feedback
controller can asymptotically stabilize the closed-loop chemical process at the desired
steady-state and will be used as the reference controller in the design of the LMPCs.

5.3. MHE and LMPC Designs

In this section, we design the MHE based on the nonlinear observer (15) and LMPC
on the basis of the nonlinear controller (16). In the design of local MHE, we decompose
constraint (9h) into three constraints considering different orders of magnitude of the state
values. The constraints can be described as follows:

|x̃Ai(tk)− zi1(tk)| ≤ κi1|yi(tk)− h(zi1(tk))|
|x̃Bi(tk)− zi2(tk)| ≤ κi2|yi(tk)− h(zi2(tk))|
|T̃i(tk)− zi3(tk)| ≤ κi3|yi(tk)− h(zi3(tk))|,

(17)

where zi = [zi1 zi2 zi3]
T is the reference state estimates of subsystem states [xAi xBi Ti]

T ,
i = 1, 2, 3, and zi is determined by augmented observer. The constraint parameters
κi = [κi1 κi2 κi3]

T in the inequality (17) are tuned as follows [13]:

κ1 = [0.0041, 0.0141, 0.3580]T

κ2 = [0.0039, 0.0141, 0.3005]T

κ3 = [0.0026, 0.0182, 0.4435]T .

These parameters are designed based on extensive off-line simulations taking into
account the range difference between mass fractions of A, B and temperature.

In the design of local LMPC, for the control input Qi of each subsystems, the available
actuation are bounded by the following convex sets:

1.9× 106 [KJ/h] ≤ Q1 ≤ 3.9× 106 [KJ/h]
0 [KJ/h] ≤ Q2 ≤ 2.0× 106 [KJ/h]

1.9× 106 [KJ/h] ≤ Q3 ≤ 3.9× 106 [KJ/h]
(18)

A quadratic Lyapunov function Vi(x) = xT
i Pixi is considered with Pi = diag([103 103 1]).

The weighting matrices in the cost function of the LMPCs are:

Qc,i =

 1000 0 0
0 1000 0
0 0 1

, Rc,i = 10−12, i = 1, 2, 3.

5.4. Simulation Analysis

The performance of the proposed scheme is compared with two other different control
schemes. The three schemes considered are as follows: (I) the proposed distributed MHE-
LMPC; (II) the distributed LMPC based on the deterministic nonlinear observer (7); (III) a
distributed MHE-LMPC scheme implemented following the proposed scheme but without
constraints (9e)–(9h) in the local MHE design.

In the simulations, the prediction horizon of the LMPC is Nc = 8 in different control
schemes, and the estimation horizon of the MHE in scheme I is Ne = 5. In scheme
III, the local MHEs use the same parameters as used in the local MHEs in scheme I.
The extended Kalman filtering approach is adopted to approximate the arrival cost in both
of the local MHEs in the two schemes. The same initial conditions, process disturbance
and measurement noise sequences are used in these three different schemes. The initial
system state is:

x0 = [0.1323, 0.8076, 484.7340 K, 0.1140, 0.8856, 466.8548 K, 0.0196, 0.8288, 479.2492 K]T ,
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and the initial values in the different state estimation schemes are the same as follows:

x̂0 = [0.14, 0.81, 485 K, 0.10, 0.90, 468 K, 0.19, 0.83, 478 K]T .

The temperature measurements are subject to bounded measurement noise. The noise
in the measurements Ti, i = 1, 2, 3, is generated as normal distribution values with mean
of 0 and standard deviation of 1 and is bounded between [−1, 1]. Bounded additive
random process disturbances are also added to the simulations. The additive random
process disturbances in xAi, xBi and Ti, i = 1, 2, 3, are generated with zero mean and
standard deviation vector being [0.5, 0.5, 50]T , the upper bounds are [1, 1, 100]T and the
lower bounds are [−1, −1, −100]T . The weighting matrices in the cost function of the
local MHEs in scheme I is the same as the weighting matrices in the cost function of the
local MHEs in scheme II:

Qe,i =

 1 0 0
0 1 0
0 0 10, 000

, Re,i = 1, i = 1, 2, 3.

In the simulation, the sampling period of the MHE in the proposed scheme and the
MHE in scheme III is the same as the LMPC in three strategies (i.e., ∆e = ∆c = 0.005 h = 18 s).
The process ordinary differential equations are solved by an explicit Euler integration method
with integration step h = 3.6 s. In the proposed distributed MHE-LMPC and scheme III,
for the first 80 sampling periods, the nonlinear augmented observer provides state estimate to
the LMPC. In the following sampling periods, the MHE is adopted in the proposed scheme
while classical MHE used in the scheme III. In scheme II, the augmented nonlinear observer
is always used in the state estimation part.

Figures 2–4 show the trajectories of the subsystem states xAi, xBi and Ti, and heat input
Qi of subsystem 1 (the first CSTR), subsystem 2 (the second CSTR) and subsystem 3 (the
separator) respectively generated by the three different schemes for a simulation duration
of t f = 1.2 h. We can see from the three figures that all of the proposed distributed MHE-
LMPC, scheme II and scheme III can drive the process state to the desired steady-state.
At the initial time, the observers in each subsystems are applied for 80 sampling intervals
to drive the state estimates to a small neighborhood of the actual state values. Starting
from tb = 80, the MHE is activated in the proposed scheme. It can be seen that the state
trajectories of the three subsystems can all track the steady-state values well. However in
scheme II, the trajectories of temperature Ti, i = 1, 2, 3, exhibit relatively large oscillations
around the steady-state. The figures also show that the proposed distributed MHE-LMPC
gives overall the best control performance. This is because in the state estimation part of
the three different control strategies, the proposed scheme takes advantages of both the
stability property of the nonlinear observer and the optimality of the MHE.

In order to further illustrate the role of different state estimation methods played in
the control strategies, the error of state estimations given by the proposed scheme, scheme
II and scheme III are compared. Figure 5 illustrates the trajectories of the Euclidean norm of
estimation errors of the three different schemes. Note that, in order to solve the problem of
different estimation error magnitudes of different states, the error of each state is normalized
based on the maximum estimation error of all the three different schemes. Figure 5 shows
that all of the three estimation methods adopted by the three control strategies can track
the trends of the system real states. We can also see from the figure that the estimation
error of the proposed scheme is the smallest among the three schemes. The maximum
estimation errors calculated by the state estimation in the proposed scheme, scheme II and
scheme III are 1.2575, 1.2627 and 1.7516, respectively. The average estimation error in the
simulation time are also calculated. They are 0.4738, 0.5494 and 0.8320 corresponding to
the three different state estimation methods. Theses results show that the proposed scheme
gives the best estimation performance in the three different schemes.
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Figure 2. States and input trajectories of subsystem 1 given by the proposed distributed MHE-LMPC (solid line), scheme II
(dash-dotted line) and scheme III (dashed line). The set points of states are denoted as dotted line.
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Figure 3. States and input trajectories of subsystem 2 given by the proposed distributed MHE-LMPC (solid line), scheme II
(dash-dotted line) and scheme III (dashed line). The set points of states are denoted as dotted line.
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Figure 4. States and input trajectories of subsystem 3 given by the proposed distributed MHE-LMPC (solid line), scheme II
(dash-dotted line) and scheme III (dashed line). The set points of states are denoted as dotted line.
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Figure 5. Trajectories of the Euclidean norm estimation errors calculated by the proposed scheme
(solid lines) and the scheme II (dash-dotted line) and the scheme III (dashed line).
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In the simulations, the overall control performance of the different control designs for
the entire system is also compared by a performance index as follows:

J =
t f

∑
tk=t1

x(tk)
TQcx(tk) + u(tk)

T Rcu(tk), (19)

where t f = 1.2 h denotes the simulation time, x(k) denotes system state at time instant
tk, Qc and Rc are based on the weighting matrices Qc,i and Rc,i in local LMPC, such that
Qc = diag([Qc,1 Qc,2 Qc,3]) and Rc = diag([Rc,1 Rc,2 Rc,3]). The entire system performance
calculated by index Equation (19) of the proposed distributed MHE-LMPC, scheme II and
scheme III are 6189.1, 6619.9 and 9499.2 respectively. The result further confirms that the
proposed strategy gives the best control performance.

Another set of simulations has also been carried out to compare the overall perfor-
mance of these three distributed control schemes. For different simulation run in the set
of simulations, different initial states, initial guesses, process disturbances and output
measurement noises are adopted. The results of 15 simulation runs are shown in Table 2.
From simulation run 1 to run 10, the estimation horizon of local MHE in the proposed
distributed MHE-LMPC and local MHE in scheme III is Ne = 5. From the simulation
results, we can see that the proposed distributed MHE-LMPC gives the best overall per-
formance and scheme III gives the worst performance. From simulation run 11 to run 15,
the effects of horizon Ne on the performance of different schemes are studied. All the
parameters of these three control strategies are the same except Ne. The results shown
that with the increase of Ne, the performance of scheme III improves dramatically, it is
better than scheme II when Ne is larger than 10. However the proposed MHE-LMPC is less
sensitive to the value of moving horizon, and can obtain satisfactory result even when Ne
is small.

Table 2. Control performance comparison of the closed-loop process with various initial conditions,
initial estimation guess, process disturbances and output measurement noise under three different
schemes: (I) the proposed distributed MHE-LMPC; (II) the distributed LMPC based on the deter-
ministic nonlinear observer (7); (III) a distributed MHE-LMPC scheme implemented following the
proposed scheme but without constraint (9e)–(9h) in the local MHE design.

Run Scheme I Scheme II Scheme III

1 6522.4 (Ne = 5) 7470.6 8244.6 (Ne = 5)
2 9338.0 (Ne = 5) 9972.1 15,760.0 (Ne = 5)
3 4898.0 (Ne = 5) 5084.9 6442.7 (Ne = 5)
4 4913.3 (Ne = 5) 5087.1 5711.2 (Ne = 5)
5 6476.6 (Ne = 5) 6971.0 8710.7 (Ne = 5)
6 5874.9 (Ne = 5) 6355.3 8789.3 (Ne = 5)
7 7102.8 (Ne = 5) 8158.9 9872.5 (Ne = 5)
8 4005.1 (Ne = 5) 4325.2 5986.3 (Ne = 5)
9 5120.1 (Ne = 5) 5483.0 6011.1 (Ne = 5)

10 6813.5 (Ne = 5) 7592.6 11,156.2 (Ne = 5)

11 6263.8 (Ne = 5) 6717.0 9571.7 (Ne = 5)
12 6169.7 (Ne = 8) 6717.0 7052.0 (Ne = 8)
13 6126.9 (Ne = 10) 6717.0 6455.5 (Ne = 10)
14 6101.1 (Ne = 12) 6717.0 6209.4 (Ne = 12)
15 6073.4 (Ne = 15) 6717.0 6079.9 (Ne = 15)

In Table 3, the mean evaluation times of the local MHE in the proposed scheme,
the observer in scheme II and local MHE in scheme III are compared when Ne = 5 and
Ne = 15. Matlab in a computer with Intel Core i5, 4GB RAM is used for the evaluations.
From Table 3, we can see that compared with the local MHE in scheme III, although the
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local MHE in the proposed scheme uses the nonlinear observer to calculate the reference
state estimate, the evaluation time of this part is negligible. However, from small Ne to large
Ne, the computation time both of the proposed scheme and scheme III increase significantly.

Table 3. Comparison of mean evaluation time of different schemes for each subsystem.

Horizon Sub-System Scheme II (s) Scheme II (s) Scheme III (s)

Ne = 5
#1 2.3280 0.0023 1.6878
#2 1.7162 0.0022 1.6660
#3 2.2600 0.0022 1.6625

Ne = 15
#1 29.9427 0.0025 26.7433
#2 25.3235 0.0027 22.6616
#3 28.7194 0.0027 26.0822

6. Conclusions and Future Work

Distributed schemes are very important for large-scale nonlinear systems. In this work,
a distributed Lyapunov model predictive control based on distributed state estimation
is proposed for these complex processes consisting of multiple interacting subsystems.
Subsystems can exchange information through a communication network. During a
short period from the initial time, the state estimates of each subsystem can reach a small
neighborhood of the actual state values by a nonlinear observer due to its fast convergence.
Meanwhile, the subsystem observer provides state estimates to subsystem Lyapunov MPC
during this short period. After that, each subsystem state estimate sapproach switches to
observer-enhanced moving horizon estimation, the MHE is evaluated to provide optimal
estimates of subsystem state to the Lyapunov-based MPC. The detailed implementation
algorithm of the proposed distributed strategy is given in the paper. Finally, the proposed
scheme is used in a chemical process with two continuous stirred tank reactors and a flash
tank separator to verify its applicability. The subsystem observer, the observer-enhanced
MHE and Lyapunov MPC of this chemical process are designed. The performance of the
proposed schemes are compared with two different distributed control strategies from
different aspects to illustrate its effectiveness.

As for future work, the proposed scheme may be extended to handle communication
delays and data losses. The performance and applicability of the proposed distributed scheme
may also be further investigated by applying to large-scale industrial-relevant processes.
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