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Abstract: In this work, we obtained new sufficient and necessary conditions for the oscillation of
second-order differential equations with mixed and multiple delays under a canonical operator.
Our methods could be applicable to find the sufficient and necessary conditions for any neutral
differential equations. Furthermore, we proved the validity of the obtained results via particular
examples. At the end of the paper, we provide the future scope of this study.
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1. Introduction

Currently, the study of delay differential equations is a very active area of research
since it is much richer than the corresponding theory of ordinary differential equations. In
particular, the delay differential equations are very useful to create mathematical models
for predictions and analysis in different areas of life sciences, for example neural networks,
epidemiology, population dynamics, physiology, and immunology [1–6]. Furthermore, the
delay differential equations are frequently used to study the time between the infection of
a cell and the production of new viruses, the duration of the infectious period, the immune
period, the stages of the life cycle, and so on [6].

Next, we highlight some current developments in oscillation theory for second-order
neutral differential equations.

Santra et al. [7] considered the following highly nonlinear neutral differential equations:

(
p(ϑ)

(
h(ϑ) + q(ϑ)h(ϑ− γ)

)′)′
+

m

∑
k=1

rk(ϑ)Gk(h(ϑ− νk)) = 0, ϑ ≥ ϑ0 , (1)

and studied the oscillatory behavior of (1) under a noncanonical operator with various
ranges of neutral coefficient q. In another paper [8], Santra et al. considered the second-
order delay differential equations with sub-linear neutral coefficients of the form:

(
p(ϑ)

((
h(ϑ) +

m

∑
k=1

qk(ϑ)hδk (γk(ϑ))
)′)δ1

)′
+ r(ϑ)hδ2(ν(ϑ)) = 0, ϑ ≥ ϑ0 , (2)
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where γk(ϑ) < ϑ and ν(ϑ) < ϑ, and found new sufficient conditions for the oscillations
of (2) under the canonical condition when the neutral coefficient was positive. In a recent
paper [9], Santra et al. established some new oscillation theorems for the differential equa-
tions of the neutral type with mixed delays under the canonical operator with 0 ≤ q < 1.
By using different methods, the following papers were concerned with the oscillation of
various classes of half-linear/Emden–Fowler differential equations with different neutral
coefficients (e.g., the paper [10] was concerned with neutral differential equations assum-
ing that 0 ≤ q(ϑ) < 1 and q(ϑ) > 1 where q is the neutral coefficient; the paper [11] was
concerned with neutral differential equations assuming that 0 ≤ q(ϑ) < 1; the paper [12]
was concerned with neutral differential equations assuming that q(ϑ) is non-positive; the
papers [13,14] were concerned with the neutral differential equations in the case where
q(ϑ) > 1; the paper [15] was concerned with neutral differential equations assuming that
0 ≤ q(ϑ) ≤ q0 < ∞ and q(ϑ) > 1; the paper [16] was concerned with the neutral differential
equations in the case where 0 ≤ q(ϑ) ≤ q0 < ∞; the paper [17] was concerned with the
neutral differential equations in the case when 0 ≤ q(ϑ) = q0 6= 1; whereas the paper [18]
was concerned with the differential equations with a nonlinear neutral term assuming that
0 ≤ q(ϑ) ≤ q < 1), which is the same research topic as that of this paper.

For more details on the oscillation theory for second-order neutral differential equa-
tions, we refer the reader to the papers [19–25]. We may note that most of the works
considered sufficient conditions only, and only a few considered both sufficient and nec-
essary condition for the oscillation of the considered differential equations. Hence, in
this study, we established both sufficient and necessary conditions for the oscillation of
second-order differential equations of the form:

(
p(ϑ)

(
g′(ϑ)

)δ1
)′

+
m

∑
k=1

rk(ϑ)hδ2(νk(ϑ)) = 0, ϑ ≥ ϑ0 , (3)

where:
g(ϑ) = h(ϑ) + q(ϑ)h(γ(ϑ))

such that:

(C1) νk ∈ C([0, ∞),R), γ ∈ C2([0, ∞),R), if we consider the simple delay then νk(ϑ) < ϑ
for k = 1, 2, · · · , m, γ(ϑ) < ϑ, limϑ→∞ νk(ϑ) = ∞, and limϑ→∞ γ(ϑ) = ∞;

(C2) νk ∈ C([0, ∞),R), γ ∈ C2([0, ∞),R), if we consider the advanced delay, then (C1) can
be modified by νk(ϑ) > ϑ for k = 1, 2, · · · , , m, γ(ϑ) < ϑ, and limϑ→∞ γ(ϑ) = ∞;

(C3) p ∈ C1([0, ∞),R), 0 < p(ϑ); rk ∈ C([0, ∞),R), rk(ϑ) ≥ 0 for ϑ ≥ 0, and k = 1, 2, . . . , m;

limϑ→∞ P(ϑ) = ∞ where P(ϑ) =
∫ ϑ

0 p−1/δ1(s)ds;
(C4) δ1 and δ2 are the quotient of two odd positive integers;
(C5) q ∈ C2([0, ∞),R+) and 0 ≤ q(ϑ) ≤ q < 1;
(C6)

∫ ∞
ϑ0

∑m
k=1 rk(η)dη = ∞;

2. Preliminaries

In this section, we provide some preliminary lemmas, which we need for our further work.

Lemma 1. Considering (C1)–(C5) for ϑ ≥ ϑ0 and h as an eventually positive solution of (3),
we have:

g(ϑ) > 0, g′(ϑ) > 0, and
(

p(ϑ)
(

g′(ϑ)
)δ1
)′
≤ 0 for some ϑ ≥ ϑ1 ≥ ϑ0 . (4)
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Proof. We considered h(ϑ) to be an eventually positive solution of (3). Therefore, g(ϑ) > 0,
and for ϑ0 ≥ 0, we have h(ϑ) > 0, h(νk(ϑ)) > 0, h(γ(ϑ)) > 0 for ϑ ≥ ϑ0 and k = 1, 2, . . . , m.
From (3), we obtain that:(

p(ϑ)
(

g′(ϑ)
)δ1
)′

= −
m

∑
k=1

rk(ϑ)hδ2(νk(ϑ)) ≤ 0 (5)

which proves that p(ϑ)
(

g′(ϑ)
)δ1 is non-increasing for ϑ ≥ ϑ0. Next, to prove g > 0 and

p(ϑ)
(

g′(ϑ)
)δ1 is positive for ϑ ≥ ϑ1 > ϑ0, we assumed that p(ϑ)

(
g′(ϑ)

)δ1 ≤ 0 for ϑ ≥ ϑ1,
and we can find c1 > 0 such that:

p(ϑ)
(

g′(ϑ)
)δ1 ≤ −c1 ,

that is,
g′(ϑ) ≤ (−c1)

1/δ1 p−1/δ1(ϑ) .

Upon integration from ϑ1 to ϑ, we obtain:

g(ϑ)− g(ϑ1) ≤ (−c1)
1/δ1

(
P(ϑ)− P(ϑ1)

)
.

If we take the limit on both sides as ϑ → ∞, we obtain limϑ→∞ g(ϑ) ≤ −∞, which
contradicts g(ϑ) > 0. Hence, p(ϑ)

(
g′(ϑ)

)δ1 > 0 for ϑ ≥ ϑ1, i.e., g′(ϑ) > 0 for ϑ ≥ ϑ1.
Thus, the lemma is proven.

Lemma 2. Assuming (C1)–(C5) for ϑ ≥ ϑ0 and h as an eventually positive solution of (3),
we have:

h(ϑ) ≥ (1− q)g(ϑ) f or ϑ ≥ ϑ1. (6)

Proof. We considered h(ϑ) to be an eventually positive solution of (3). Therefore, g(ϑ) > 0,
and for ϑ ≥ ϑ1 > ϑ0 we have:

(1− q)g(ϑ) ≤ (1− q(ϑ))g(ϑ)

≤ g(ϑ)− q(ϑ)g(γ(ϑ))

= h(ϑ) + q(ϑ)h(γ(ϑ))− q(ϑ)
(

h(γ(ϑ)) + q(γ(ϑ))h(γ(γ(ϑ)))
)

≤ h(ϑ)− q(ϑ)q(γ(ϑ))h(γ(γ(ϑ)))

≤ h(ϑ).

Hence, g satisfies (6) for ϑ ≥ ϑ1.

Remark 1. Lemmas 1 and 2 hold for δ1 > δ2 or δ1 < δ2.

Lemma 3. Assuming (C1)–(C5) for ϑ ≥ ϑ0 and h as an eventually positive solution of (3),
we have:

g(ϑ) ≥ 1
2

P(ϑ)∆1/δ1(ϑ) for ϑ ≥ ϑ3 (7)

where:

∆(ϑ) =
∫ ∞

ϑ

m

∑
k=1

rk(η)
(
(1− q)g

(
νk(η)

))δ2
dη .

Proof. We assumed that h(ϑ) is an eventually positive solution of (3). Therefore, g(ϑ) > 0,
and for ϑ0 ≥ 0, we have that h(ϑ) > 0, h(νk(ϑ)) > 0, and h(γ(ϑ)) > 0 for ϑ ≥ ϑ0 and
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k = 1, 2, . . . , m. Thus, Lemmas 1 and 2 hold for ϑ ≥ ϑ1. By Lemma 1 and for ϑ2 > ϑ1, we
have g′(ϑ) > 0 for ϑ ≥ ϑ2. Therefore, for ϑ3 > ϑ2 and c2 > 0, we have g(ϑ) ≥ c2 where
ϑ ≥ ϑ3. By Lemma 2, we find h(ϑ) ≥ (1− q)g(ϑ) for ϑ ≥ ϑ3, and (3) gives:

(
p(ϑ)

(
g′(ϑ)

)δ1
)′

+
m

∑
k=1

rk(ϑ)
(
(1− q)g

(
νk(ϑ)

))δ2
≤ 0 . (8)

Integrating (8) from ϑ to +∞, we obtain:

[p(s)
(

g′(s)
)δ1 ]∞ϑ +

∫ ∞

ϑ

m

∑
k=1

rk(s)
(
(1− q)g

(
νk(s)

))δ2
ds ≤ 0 .

Since p(ϑ)
(

g′(ϑ)
)δ1 is non-decreasing and positive, so limϑ→∞ p(ϑ)

(
g′(ϑ)

)δ1 finitely
exists and is positive.

p(ϑ)
(

g′(ϑ)
)δ1 ≥

∫ ∞

ϑ

m

∑
k=1

rk(s)
(
(1− q)g

(
νk(s)

))δ2
ds ,

that is,

g′(ϑ) ≥ p−1/δ1(ϑ)
[ ∫ ∞

ϑ

m

∑
k=1

rk(s)
(
(1− q)g

(
νk(s)

))δ2
ds
]1/δ1

= (1− q)δ2/δ1 p−1/δ1(ϑ)
[ ∫ ∞

ϑ

m

∑
k=1

rk(s)gδ2
(
νk(s)

)
ds
]1/δ1

.
(9)

Using (C3), there exists ϑ3 > ϑ2 for which P(ϑ)− P(ϑ3) ≥ 1
2 P(ϑ) for ϑ ≥ ϑ3. Integrat-

ing (9) from ϑ3 to ϑ, we have:

g(ϑ)− g(ϑ3) ≥
∫ ϑ

ϑ3

p−1/δ1(κ)
[ ∫ ∞

κ

m

∑
k=1

rk(θ)
(
(1− q)g

(
νk(θ)

))δ2
dθ
]1/δ1

dκ

≥
∫ ϑ

ϑ3

p−1/δ1(κ)
[ ∫ ∞

ϑ

m

∑
k=1

rk(θ)
(
(1− q)g

(
νk(θ)

))δ2
dθ
]1/δ1

dκ,

that is,

g(ϑ) ≥ (P(ϑ)− P(ϑ3))
[ ∫ ∞

ϑ

m

∑
k=1

rk(θ)
(
(1− q)g

(
νk(θ)

))δ2
dθ
]1/δ1

≥ 1
2

P(ϑ)
[ ∫ ∞

ϑ

m

∑
k=1

rk(θ)
(
(1− q)g

(
νk(θ)

))δ2
dθ
]1/δ1

.
(10)

Hence,

g(ϑ) ≥ 1
2

P(ϑ)∆1/δ1(ϑ) for ϑ ≥ ϑ3

where:

∆(ϑ) =
∫ ∞

ϑ

m

∑
k=1

rk(η)
(
(1− q)g

(
νk(η)

))δ2
dη .

Hence, g satisfies (7) for ϑ ≥ ϑ3.

3. Oscillation Theorems

In this section, we present our main results from which we found the necessary and
sufficient conditions for the oscillation of (3).
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Theorem 1. Under Assumptions (C2)–(C5) for ϑ ≥ ϑ0 and δ2 > δ1, all solutions of (3) oscillate
if and only if:

∫ ∞

0
p−1/δ1(s)

[ ∫ ∞

s

m

∑
k=1

rk(η)dη
]1/δ1

ds = ∞ . (11)

Proof. To prove the sufficient part by the contradiction, we assumed h(ϑ) is an eventually
positive solution of (3). Therefore, g(ϑ) > 0, and for ϑ0 ≥ 0, we have that h(ϑ) > 0,
h(νk(ϑ)) > 0, and h(γ(ϑ)) > 0 for ϑ ≥ ϑ0 and k = 1, 2, . . . , m. Thus, Lemmas 1 and 2
hold for ϑ ≥ ϑ1. By Lemma 1 and ϑ2 > ϑ1, we have g′(ϑ) > 0 where ϑ ≥ ϑ2. Again, by
Lemma 2, it follows that h(ϑ) ≥ (1− q)g(ϑ) for ϑ ≥ ϑ3. Then, preceding as in the proof of
Lemma 3, we have (9). Using (C2) and that g(ϑ) is non-decreasing on (9), we obtain:

g′(ϑ) ≥ (1− q)δ2/δ1 p−1/δ1(ϑ)
[ ∫ ∞

ϑ

m

∑
k=1

rk(s)ds
]1/δ1

gδ2/δ1(ϑ) ,

that is,

g′(ϑ)
gδ2/δ1(ϑ)

≥ (1− q)δ2/δ1 p−1/δ1(ϑ)
[ ∫ ∞

ϑ

m

∑
k=1

rk(s)ds
]1/δ1

.

Since δ2 > δ1 and after integration on both sides from ϑ3 to +∞, we have:

(1− q)δ2/δ1

∫ ∞

ϑ3

p−1/δ1(s)
[ ∫ ∞

s

m

∑
k=1

rk(ψ)dψ
]1/δ1

ds ≤
∫ ∞

ϑ3

g′(η)
gδ2/δ1(η)

dη < ∞ ,

which contradicts (11); hence, the proof of the sufficient part is complete.
Next, we prove the necessary part by a contrapositive argument. If (11) does not hold,

then for ε > 0 and ϑ′ ≥ ϑ0, we can obtain:∫ ∞

ϑ′
p−1/δ1(s)

[ ∫ ∞

s

m

∑
k=1

rk(η)dη
]1/δ1

ds < ε for ϑ ≥ ϑ′,

where 2ε =
[

1
1−q

]−δ2/δ1
> 0. Consider a set:

S =
{

h ∈ C([0, ∞)) :
1
2
≤ h(ϑ) ≤ 1

1− q
for ϑ ≥ ϑ′

}
and Ω : S→ S as:

(Ωh)(ϑ) =


0 if ϑ ≤ ϑ′,

1+a
2(1−q) − q(ϑ)h(γ(ϑ))

+
∫ ϑ

T p−1/δ1(s)
[ ∫ ∞

s ∑m
k=1 rk(ψ)hδ2(νk(ψ))dψ

]1/δ1
ds if ϑ > ϑ′ .

Next, we prove (Ωh)(ϑ) ∈ S. For h(ϑ) ∈ S,

(Ωh)(ϑ) ≤ 1 + a
2(1− q)

+
∫ ϑ

T
p−1/δ1(s)

[ ∫ ∞

s

m

∑
k=1

rk(ψ)
( 1

1− q

)δ2
dψ
]1/δ1

ds

≤ 1 + a
2(1− q)

+
( 1

1− q

)δ2/δ1
× ε

=
1 + a

2(1− q)
+

1
2
=

1
1− q

.
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Again, for h(ϑ) ∈ S:

(Ωh)(ϑ) ≥ 1 + a
2(1− q)

− q(ϑ)× 1
1− q

+ 0 ≥ 1 + a
2(1− q)

− a
1− q

=
1
2

.

Hence, Ω maps from S to S.
Next, we plan to search a fixed point of Ω in S that is a non-oscillatory solution

(specifically eventually positive) of (3) for which we define a sequence in S by:

h0(ϑ) = 0 for ϑ ≥ ϑ0,

h1(ϑ) = (Ωu0)(ϑ) =

{
0 if ϑ < ϑ′

1
2 if ϑ ≥ ϑ′

,

hn+1(ϑ) = (Ωun)(ϑ) for n ≥ 1, ϑ ≥ ϑ′.

Here, we see h1(ϑ) ≥ h0(ϑ) for each fixed ϑ and 1
2 ≤ hn−1(ϑ) ≤ hn(ϑ) ≤ 1

1−q , ϑ ≥ ϑ′

for n ≥ 1. Therefore, hn converges pointwise to a function h, i.e., Ωh = h ∈ S, and hence, h
is an eventually positive solution.

Thus, the theorem is proven.

Theorem 2. Under Assumptions (C1) and (C3)–(C6) for ϑ ≥ ϑ0, every solution of (3) oscillates.

Proof. Let h(ϑ) be an eventually positive solution of (3). Therefore, g(ϑ) > 0, and
for ϑ0 ≥ 0, we have that h(ϑ) > 0, h(νk(ϑ)) > 0, and h(γ(ϑ)) > 0 for ϑ ≥ ϑ0 and
k = 1, 2, . . . , m. Thus, Lemmas 1 and 2 hold for ϑ ≥ ϑ1. By Lemma 1 and ϑ2 > ϑ1, we find
g′(ϑ) > 0 where ϑ ≥ ϑ2. Then, for ϑ3 > ϑ2 and c2 > 0, we obtain g(ϑ) ≥ c2 for ϑ ≥ ϑ3. By
Lemma 2, it follows that h(ϑ) ≥ (1− q)g(ϑ) ≥ (1− q)c2 for ϑ ≥ ϑ3, and (3) gives:

(
p(ϑ)

(
g′(ϑ)

)δ1
)′

+
m

∑
k=1

rk(ϑ)
(
(1− q)c2

)δ2
≤ 0 . (12)

Integrating (13) from ϑ3 to ϑ, we obtain:

(
(1− q)c2

)δ2
∫ ϑ

ϑ3

m

∑
k=1

rk(η)dη ≤ −
[

p(ϑ)
(

g′(ϑ)
)δ1
]ϑ

ϑ3
. (13)

Since limϑ→∞ p(ϑ)
(

g′(ϑ)
)δ1 exists finitely, letting ϑ→ ∞, we have:

(
(1− q)c2

)δ2
∫ ϑ

ϑ3

m

∑
k=1

rk(η)dη < ∞ (14)

which contradicts (C6).
Thus, the theorem is proven.

Theorem 3. Under Assumptions (C1) and (C3)–(C5) for ϑ ≥ ϑ0 and δ2 < δ1, each solution of
(3) oscillates if:

∫ ∞

0

m

∑
k=1

rk(ζ)[(1− q)P
(
νk(ζ)

)
]δ2 dζ = ∞ . (15)
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Proof. On the contrary, we assumed h(ϑ) to be an eventually positive solution of (3). By
the same argument used in the proof of Lemma 3, we have (7) for ϑ ≥ ϑ2 ≥ ϑ3. Using (C3),
there exists ϑ3 > ϑ2 for which P(ϑ)− P(ϑ3) ≥ 1

2 P(ϑ) for ϑ ≥ ϑ3. Now,

∆′(ϑ) = −
m

∑
k=1

rk(ϑ)
(
(1− q)g

(
νk(ϑ)

))δ2

≤ − 1
2δ2

m

∑
k=1

rk(ϑ)[(1− q)P
(
νk(ϑ)

)
]δ2 ∆δ2/δ1

(
νk(ϑ)

)
≤ 0 (16)

which shows that h(ϑ) is decreasing on [ϑ4, ∞) and limϑ→∞ ∆(ϑ) exists. Using (16) and
(C1), we obtain:[

∆1−δ2/δ1(ϑ)
]′

= (1− δ2/δ1)∆−δ2/δ1(ϑ)∆′(ϑ)

≤ −1− δ2/δ1

2δ2

m

∑
k=1

rk(ϑ)[(1− q)P
(
νk(ϑ)

)
]δ2 ∆δ2/δ1

(
νk(ϑ)

)
∆−δ2/δ1(ϑ)

≤ −1− δ2/δ1

2δ2

m

∑
k=1

rk(ϑ)[(1− q)P
(
νk(ϑ)

)
]δ2 . (17)

Integrating (17) from ϑ4 to ϑ, we have:

[
h1−δ2/δ1(s)

]ϑ

ϑ4
≤ −1− δ2/δ1

2δ2

∫ ϑ

ϑ4

m

∑
k=1

rk(s)[(1− q)P
(
νk(s)

)
]δ2ds,

that is,

1− δ2/δ1

2δ2

[ ∫ ∞

0

m

∑
k=1

rk(s)[(1− q)P
(
νk(s)

)
]δ2 ds

]
≤ −

[
h1−δ2/δ1(s)

]ϑ

ϑ4

< h1−δ2/δ1(ϑ4) < ∞

which contradicts (15).
Thus, the theorem is proven.

4. Examples

In this section, we present two examples to illustrate the results.

Example 1. Assume the differential equations:(((
h(ϑ) + e−ϑh(γ(ϑ))

)′)101/3
)′

+ ϑ(h(ϑ− 2))111/3 + (ϑ + 1)(h(ϑ− 3))111/3 = 0 . (18)

Here, δ2 = 111/3 > δ1 = 101/3, p(ϑ) = 1, 0 < q(ϑ) = e−ϑ < 1, νk(ϑ) = ϑ− (k + 1)
with index k = 1, 2. To check (11), we have:∫ ∞

ϑ0

[ 1
p(s)

[ ∫ ∞

s

m

∑
k=1

rk(ψ)dψ
]]1/δ1

ds ≥
∫ ∞

ϑ0

[ 1
p(s)

[ ∫ ∞

s
r1(ψ) dψ

]]1/δ1
ds

≥
∫ ∞

2

[ ∫ ∞

s
ψ dψ

]3/101
ds = ∞.

Therefore, by Theorem 1, all solutions of (18) are oscillatory.



Mathematics 2021, 9, 1323 8 of 9

Example 2. Consider the differential equations:(
e−ϑ
((

h(ϑ) + e−ϑh(γ(ϑ))
)′)1101/3

)′
+

1
ϑ + 1

(h(ϑ− 2))113/3 +
1

ϑ + 2
(h(ϑ− 3))113/3 = 0 , (19)

where δ2 = 113/3 < δ1 = 1101/3, p(ϑ) = e−ϑ, 0 < q(ϑ) = e−ϑ < 1, and νk(ϑ) = ϑ− (k + 1)
with index k = 1, 2 and P(ϑ) =

∫ ϑ
0 e3s/1101ds = 1101

3 (e3ϑ/1101 − 1). To check (15), we have:

1
(2)δ2

[ ∫ ∞

0

m

∑
k=1

rk(ζ)[(1− q)P
(
νk(ζ)

)
]δ2 dζ

]
≥ 1

(2)113/3

∫ ∞

0
r1(ζ)[(1− q)P

(
ν1(ζ)

)
]δ2 dζ

=
1

(2)113/3

∫ ∞

0

1
ζ + 1

[
(1− q)

1101
3
(
e3(ζ−2)/1101 − 1

)]113/3
dζ = ∞ .

Therefore, by Theorem 3, every solution of (19) oscillates.

5. Conclusions and Open Problem

By this work, we obtained sufficient and necessary conditions for the oscillation of
a highly nonlinear neutral differential Equation (3) when q ∈ [0, 1). In [26], we obtained
the the sufficient and necessary conditions for the oscillatory or asymptotic behavior of
a nonlinear impulsive differential system of the neutral type when the neutral coefficient
lies in (−1, 0]. Therefore, we can claim that the method adopted in the current paper
could be applicable for different kinds of second-order nonlinear neutral delay differential
equations when the neutral coefficient lies in either (−1, 0] or [0, 1). Based on this paper
and [19,20,25,27–31] an open problem can arise: “Is it possible to study the oscillation of all
solutions of (3) to obtain necessary and sufficient conditions when q ∈ (−∞,−1] and q ∈ (1, ∞)?”
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