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Abstract: This paper presents a long-term study of Preservice Mathematics Teachers (PMTs) at the
Faculty of mathematics, physics and informatics, Comenius University in Bratislava (FMFI UK),
focusing on the implementation of digital technologies (DT) into the teaching of theoretical and
practical (or applied) subjects. We conducted parallel research into two aspects, one on Calculus
lessons as a theoretical subject, another on the Financial Mathematics module as an applied subject.
The implementation of DT and the way this was measured varied from year to year and also in the
method of implementation into the aforementioned subjects. The methods of implementation and
the results are briefly described, and a comparison of these two subjects in the PMTs’ preparation is
also discussed.
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1. Introduction

The implementation of digital technologies (DT) into the teaching and learning process
of mathematics started at the end of the 20th century. The environments for dynamic
geometry, the computer algebra system and graphic calculators were the main areas in
which research was conducted. Several researchers have pointed out how DT could
overcome the limitations of paper and pencil, e.g., [1,2] while others have focused on the
preparation of prospective Mathematics teachers (PMTs), e.g., [3,4].

The use of DT differs and can be beneficial in many aspects. As [5] (pp. 20–21)
declared, the teaching and learning process provides an environment in which DT is a
tool for communication, cooperation, or both. Ernst and Ryan [6] (p. 222) stated that
“tools are the materials, models and representations that students use to organize and keep
track of their thinking as they solve problems”. Cohen and Hollebrands [7] stated the
importance of encouraging synchronous (for, e.g., blogs) and asynchronous (for, e.g., wikis)
collaboration, communication and the construction of knowledge in the classroom. Jančařík
and Novotná [8] designed mathematical problems for higher secondary students where
the computer algebra system (CAS) could be beneficial in reaching the solution, by either
modelling the solution numerically or by using the computational power of computers.
Hoyles and Lagrange [9] discussed

“( . . . ) how far studies have taken on board the challenges of the use of digital
technologies and their potential for the improvement of mathematics teaching, learning
and the curriculum, remains a matter of debate”. [9] (p. 2)

Gruson et al. [10] when comparing two case studies—English and Mathematics
teachers—observed significant use of digital resources in both cases, but of a different
nature. In our study we compare two cases as well: the teaching and learning process in
Theoretical as well as Applied mathematics.

In our own research, the target area was the use of modelling and visualization
processes in different digital environments. Following a review of the relevant literature
and the impact of the Covid-19 pandemic, there is no doubt that further research in this
area is crucial, a notion confirmed for example in [11].
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We can identify two main threads in the research concerning the implementation of
DT in mathematics education at the university level. Firstly, research focused on theoretical
mathematics (such as Calculus, Algebra, etc.). In our research we have focused on Calculus
due to our professional interest. Secondly, research focused on applied mathematics (such
as Financial Mathematics, Management, Economy, etc). Due to the educational reforms in
Slovakia in 2008, we focused on Financial Mathematics since it has become an integral part
of mathematics education in Slovakia, starting at lower secondary school. As the research
we conducted covered two distinct strands, the text is organised as follows: firstly, the
strand concerning Calculus and, secondly, the strand concerning Financial Mathematics
(FM). Our study aims to compare different approaches in implementing DT into the
aforementioned types of Mathematics lessons. We will briefly review the results in both
areas—Calculus and Financial mathematics.

1.1. Theoretical Subject in Preparation PMTs

Research connected to understanding theoretical concepts in Calculus is usually fo-
cused on different topics (like sequences, limits, derivatives, integrals, etc.). We looked
only at the research aimed at the limit concept, the reason being that the concept of a limit
is fundamental to the standard foundation of other aspects of Calculus. Williams [12]
discovered that observations by teachers are corroborated in empirical research that docu-
ments the extreme difficulty in using a formal limit as a foundation for teaching calculus.
Guin and Trouche [13] showed the influence of the representation of the situation on
graphic calculators in finding a limit of the function. This research showed that graphic
calculators are often the most influential tool for investigation and, in some cases, the only
one. Cottrill et al. [14] argued limit as a complex schema with two important processes:
process of x approaching to the given point and the process of f (x) approaching to L. Tall
et al. [15] recognized that students had difficulties seeing sequences as a cognitive whole;

for example, sequence an =

{
1 + 1

n , n = 2k
1
n , n = 2k + 1

. McDonald et al. [16] examined students’

cognitive construction of the concept of sequence.
The mainstream of our research concerning calculus was (and still is) on the concept

of the limit of a sequence. The focus on “ε-n0” definition of a limit of the sequence was
described in [17], using of “epsilon strip” in [18]. We used the aforementioned “epsilon
strip” approach to make sense of arbitrary epsilon and its relationship to n0 in defining
a limit of a sequence. Later, when introducing the limit of a function, similarly to Ar-
ganbright [19], we used spreadsheets to explore the “epsilon-delta” definition of a limit
of a function. Chappell and Killpatrick [20] investigated the effects of the instructional
environment (concept-based vs. procedure-based) on students’ conceptual understanding
and procedural knowledge of calculus. The latter led us to study not only procedural
knowledge but the level of understanding. The targeted group was PMTs studying for
their bachelor’s degree.

Later studies have continued in the implementation of DT using different approaches.
Swinyard [21] made students write computer code for sequence xn approaching the given
real number and then examine the sequence f (xn). While we found this approach not
applicable to our group, but it was an inspiration for the preparation of small software
environments for PMTs. Jones [22] focused on students’ understanding of limits at infinity
or infinite limits that involve continuous functions (as opposed to discrete sequences).
We implemented this kind of task in PMTs preparation and also into the tests. Pinto
and Scheiner [23] investigated how mathematics university students understood the limit
concept of a sequence. Fernández-Plaza and Simpson [24] explored how students linked
different basic limit concepts. As the literature review on this stage of research shows, there
are minimal steps forward in finding the best way of how to work with a limit concept
properly and avoid PMTs misconception. Therefore, in this strand of our research, we (1)
tried to use good practices described and tested in the researchers mentioned above, and
(2) prepare innovative lessons by using a computer with mathematical software.
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1.2. An Applied Mathematics in Preparation of PMTs

The second strand of our research was focused on FM. Bernheim et al. [25] inte-
grated instructions on topics related to household financial decision-making in higher
education. They provided systematic evidence of the long-term behavioural effects. They
reported “significantly increased exposure to financial education, and ultimately elevated
the rates at which individuals save and accumulate wealth during their adult lives” (p. 462).
Avard et al. [26] assessed the financial literacy of 407 first-year students, reporting an
average of 34.8% correct responses. When preparing the 1st module of FM in 2008/2009
which was to be implemented into the PMTs’ preparation at FMFI UK, we made it based
on the recommendations of OECD [27] and implemented the topics crucial as a result of
the literature review in PMTs’ preparation. In later studies, Vankúš [28] suggested using
interactive Excel sheets in modelling/solving mathematical tasks from FM. Chong et al. [29]
studied the technological integration approach of teaching and learning FM on a sample
of 85 undergraduates. They found out a significant impact of DT on the research sam-
ple. Drábeková and Švecová [30] dealt with the insufficient financial literacy of first-year
students at the university. Fajkus [31] discussed the relationship between mathematical
symbols, economic terms and real-life terminology in the environment of Mathematica.
Rosaker and Rosaker [32] conducted a study of Master of Business Administration (MBA)
students and found that a parsed approach to teaching financial literacy, as opposed to a
single personal finance course, represented a potentially effective method for addressing
their basic financial literacy needs. Rosa and Petrášková [33] developed an original col-
lection of educational materials with the use of the CAS Maple to support the financial
education of PMTs. Lopes and Soares [34] implemented a flipped model into courses of
Financial Mathematics with a positive impact on a sample of over 800 students within
three years. All of the aforementioned studies indicated the importance of the research in
the area of FM and looking for the best way of implementation of DT into students (and in
some cases like [30,33] PMTs) preparation.

1.3. Rationale and Aims

Even though there are several subjects where PMTs can focus on presenting different
kinds of software, most of our PTMs do not consider it to be applicable in their future
career (based on the results of an internal evaluation of the educational process by students,
held every examination period during the year). On the other hand, PMTs struggle with
theoretical subjects such as Calculus, Algebra, etc. and consider these to be too abstract and
with little connection to school mathematics (based on the aforementioned results from
the internal evaluation). To demonstrate to our PMT’s the usefulness of both technology
and theoretical subjects we decided to implement digital technologies into a course of
Calculus [35,36]. Later, we also implemented DT into didactical seminars where FM has its
place [37,38] We wanted to know how the implementation DT into theoretical and applied
mathematics differs and what there is in common. Therefore, this paper has two main parts.
The first one is focused on the implementation of DT into Calculus as one of the theoretical
subjects in the preparation of PMTs (research commenced in 2008), and the second part
is focused on the implementation of DT into FM, which can be characterized as a subject
with the application of mathematical content (research commenced in 2009).

Modelling through the use of DT and symbolization on the blackboard (or in the
notebook) following classroom discussions are key mechanisms for developing content
knowledge and technological-content knowledge of pre-service mathematics teachers. Our
goal is to make them use the aforementioned mechanisms in their work (as in-service
teachers). It is this specific goal which is the primary focus of this paper. We will briefly
describe the results of the aforementioned studies and discuss the results of our research.

2. Theoretical Framework

There are several theoretical frameworks in papers concerning the implementation of
DT into mathematics. Several researchers used Microworlds and Constructionism [39,40].



Mathematics 2021, 9, 1319 4 of 27

We can find the Process-Object theoretical framework, e.g., [41–44]. A different approach
to Visual and Analytical thinking can be identified in other studies, e.g., [45,46]. Mostly in
French didactics it is the use of the Theory of didactical situation, the concept of milieu,
e.g., [47,48].

We are using the framework of TPACK as introduced by Mishra and Koehler [49]
which describes the kinds of knowledge needed by a teacher for the effective integration
of technology. There are three main competencies in the TPACK model: Technological
knowledge (TK), Content knowledge (CK) and Pedagogical knowledge (PK). TPACK is one
of four competencies that address how these three main bodies interact (see also Figure 1).
TPACK was proposed as the interconnection and intersection of TK, CK and PK.

Figure 1. TPACK model, authors’ representation.

Our research has focused on two components of the TPACK model. The first com-
ponent is Technological-Content knowledge (TCK) which refers to “knowledge of the
reciprocal relationship between technology and content. Disciplinary knowledge is of-
ten defined and constrained by technologies and their representational and functional
capabilities.” [50] (p. 102). The second component is Technological, pedagogical and
content knowledge (TPACK) which “refers to knowledge about the complex relationships
between technology, pedagogy and content that enable teachers to develop appropriate
and context-specific teaching strategies” (ibid)

Koehler et al. [50] identified three paths in the development of TPACK in PMTs:
(a) from PCK to TPACK, (b) from TPK to TPACK and (c) developing PCK and TPACK
simultaneously. In our research we focused on a path which Koehlers’ et al. did not mention
in their work: from TCK to TPACK. We did so because integrating the functionalities of
different representation in the CAS system (such as graphical, numerical and/or formal
computation) does not necessarily facilitate conceptualization [51] (this issue, p. 8)

Ball et al. [52] distinguish three competencies in CK which they termed Subject Matter
Knowledge (SMK):

• Common content knowledge (CCK), defined as “the mathematical knowledge and
skill used in settings other than teaching” (p. 13), which includes the teachers’ need
to know and understand the material they teach, their ability to recognise students’
wrong answers or to identify any inaccuracies in the textbook, etc.

• Specialized content knowledge (SCK), defined as “the mathematical knowledge and
skill unique to teaching” (p. 14), which includes looking for and recognising patterns
in student errors, non-standard approaches, whether a given solution would work in
general, etc.

• Horizon content knowledge, defined as an “awareness of how mathematical topics
are related over the span of Mathematics included in the curriculum” (p. 17), which
includes being able to see connections to more advanced mathematical ideas.
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In the research presented later in the text we used several theoretical frameworks
within the TPACK—Dubinsky’s APOS theory [43], Brousseau’s Theory of didactical sit-
uations [53] and Ernest’s social constructivism approach [54]. In the following text, we
provide a brief reminder of the terms we are operating within as per the description of
our research. Since the presented results of this paper are focused mostly on the level
of PMTs knowledge, we explain APOS theory in this place a bit more than the other
mentioned theories.

Since APOS distinguishes four levels of knowledge (Action, Process, Object and
Schema [43]), it offers a tool for measuring the level of CK or understanding. As Dubinsky
and McDonald [55] defined, an action is a transformation of objects by the individual as
external and requiring step-by-step instructions on how to perform the operation. By
reflecting on an action, the individual can interiorize the action and form an internal mental
construction called a process. In the process the individual can perform and describe the
transformation without external stimuli. An object is constructed when the individual
encapsulates the process as a totality and can now perform transformations on this pro-
cess. Finally, a schema is an individual’s collection of actions, processes, objects and other
schemas that are linked by some general principals to form a coherent framework in the
individual’s mind.

There are different types of didactic situations distinguished in Brousseau’s TDS [53].
The first three are part of the a-didactic situation (auto didactic situation, not a “non-
didactic” situation). In the Situation of action, the teacher organizes a milieu for the
students. Knowledge appears as a means for solving a problem or a class of problems.
Sierpinska, [56] (p. 4) In the Situation of formulation, students exchange and compare
observations between themselves. They may not have the language to formulate their
observations, so their main effort in this situation goes into creating such a language and
agreeing on some common meanings (p. 3). In the Situation of verification, students try
to explain some phenomenon or to verify a theoretical conjecture. The teacher acts as the
chair of a scientific debate (ibid). In the Situation of institutionalization, the teacher informs
the students about the officially accepted terminology, definitions, theorems considered
important from the institution’s points of view (ibid).

Before the teaching unit an a priori analysis is made. The a priori analysis can be
characterized as an explanatory model of students’ and teachers’ behaviour. Its goal is
to identify potential obstacles, misconceptions, mistakes, corrections and further work
with these mistakes. In this analysis, prerequisite knowledge necessary for the use of the
different solving strategies are essential. After the teaching unit, an a posteriori analysis is
made. In the a posteriori analysis, the a priori analysis is compared with experience from the
realized teaching unit in the classroom, and recommendations for changes are formulated.

TDS could be a strong tool for the analysis of situations in the classroom. Its use within
the TPACK model could help explain both students’ and teacher’s behaviour. That was the
reason for choosing this framework in the description of PMTs.

As briefly presented above, TPACK could be used with different theoretical frame-
works to obtain a deeper insight into the situations in the classroom (or lessons). The choice
of the theory to be linked with the TPACK model relies on the purpose of the study and a
research question.

3. Methodology and Sample Description

The research included several groups of PMTs in their 1st and 4th years of studying to
become Mathematics teachers. The sample size differed from phase-to-phase depending on
the actual size of the groups of PMTs studying at FMFI UK. Since this article presents out-
puts of longitudinal research in two strands, the specific numbers of PMTs were determined
at the beginning of each research phase.

The overall methodology of the early stages of research involved a didactical experi-
ment: enter test, determination of experimental and control group, tests and comparison
of the collected data. This was not possible to attain in later stages of the study due to
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organizational changes at FMFI UK. Therefore, the later stage (Sections 4.2, 5.2 and 5.3)
design differs. We choose a pre-test and post-test design, in other words working with one
group and looking for PMTs progress (comparing pre- and post-tests).

In both designs, we applied supportive methods of collecting data:

• Structured observations of PMTs progress on CCK and SCK (when PMTs solved the
tasks on blackboard or into their notebooks)

• Group interviews concerning CK, TK and TCK (after the tests)
• Questionnaire concerning real-life experiences (used in the last stage of the research)

The collected data helped us to formulate conclusions and answer stated research
questions. Data processing from earlier stages provided entry points for the formulation of
new research questions for the next phase of our research.

In every phase of our research, we used DT in several ways. First, for the visualization
of different processes (like a limit of a sequence, financial growth, etc.). Second as a smart
calculator (finding the result of specific limit, annuity, etc.). Third, for communication
between PMTs and between PMTs and the teacher (mostly asynchronous, using LMS
Moodle). When solving the tests, PMTs were not allowed to use DT.

Tests were scored using the levels of APOS (Section 4.1) or in % (the other phases),
then hypothesis were tested by means of a statistical method appropriate to the particular
size of the groups. Specific methods are introduced at the beginning of each phase of
the research.

4. Implementation DT into Theoretical Subject—Development of
Technological-Content Knowledge (TCK)

In this part we focus on the implementation of DT into courses of mathematical
analysis. From the literature review and our teaching experiences, we decided to implement
DT into the preparation of the Calculus lessons for PMTs. There are several studies
concerning differential or integral Calculus (e.g., [57,58]). Research concerning the use of
digital technologies usually has the same structure: a comparison of the procedural abilities
between the experimental and control group (in other words, a group taught with digital
technologies and a group taught without digital technologies) [20,59,60]. Several studies
declare that infinity (or concept of limit) is extremely difficult for students [61–63] and
understanding is rare among the students in the first two years of university studies. We
have followed this pattern in the 1st phase of our research concerning the PMTs’ skills [18].
In the second phase, we focused on the durability of the PMTs’ knowledge [36]. The second
phase was specific by also leading lectures (not only exercises) from mathematical analysis.
These studies were followed by other studies [64–66] in which any newly raised questions
were answered.

There were two reasons for the implementation of DT into teaching CK. First, we
wanted to demonstrate to the students that DT could help them visualize the situation
and construct abstract knowledge. Second, we hypothesized that if students experience
teaching new concepts by using DT, they will be more open to using it in their future
teaching career. Results from the study opened up new questions which we have been
researching in the following phases of the research. Nowadays, PMTs have 3 semesters of
Calculus (the functions of 2 real variables were moved to the master study as a voluntary
subject). The other difference is that we have now moved the Calculus from the 1st semester
to the 3rd semester.

The PMTs encountered the aforementioned concepts in the first semester of their
Bachelor’s degree to be a secondary school Mathematics teacher. The PMTs had 4 semesters
of Calculus; each semester focused on a different main topic. Semester 1: limits and
derivatives; semester 2: series; semester 3: integrals; semester 4: functions of 2 real
variables. Our research sample comprised PMTs in the first study at the University. The
focus was on their knowledge/understanding of the limit concept in the first semester.

The research concerning TCK which started in 2008 is still in progress. We will describe
the first 3 phases of this research and their results as well as suggestions for further research
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in this area. There is also a new phase of the research that had to be modified due to the
COVID-19 situation. At the end we will briefly summarize the modification and the first
observations of its pros and cons.

4.1. The 1st Phase

In the first phase of the research, we focused on the PMTs’ understanding of a function,
properties and graph, followed later on in the semester by a focus on the limit of a sequence
and a function, a derivative of a function. Our hypothesis was that students who used DT
in their preparation would have a better insight into the limit concept than the students
who did not used DT in their preparation. We decided to use the software Graphic Calculus
(more information and link for download: https://www.vusoft.eu/GraphicCalculus.htm
(accessed on 8 June 2021)) which is suitable for users of different ages, levels of mathematical
knowledge and skills with DT as well. For less advanced users/pupils in mathematics
doing modules like finding a formula, graphing, parabola, line etc., Graphic Calculus
provides a vital aid in the visualization and conceptualization of mathematical concepts.
For more advanced users such university students of mathematics, derivative, integrals,
Taylor polynomial, etc., Graphic Calculus is a more dynamic source of visualization. Users
can adjust the speed of visualization (step-by-step, or varying the speed of animation), view
a table of values and other expressions of the same phenomena. Since the author of Graphic
Calculus declared that the “program should especially benefit starting students” [67], we
have found it especially suitable for PMTs in the first semester of their study at university.

We encouraged PMTs to use DT for the class exercises and at home by giving them
extra tasks in order to earn extra points. There is a free demo version (in the time of writing
this paper, Graphic Calculus was not working under the OS Win10) of Graphic Calculus
with full functionality of all the concepts we were focused on in the study. In the lessons
(or home preparation), PMTs could use DT to search and analyse information obtained
concerning the main topic of an exercise (for, e.g., motivation, additional information,
usability in other subjects outside the mathematics, etc.) All the results were discussed and
clarified with the group of students.

To find out the answers for our research questions we took a group of 12 PMTs and
divided them into groups of 6 students in each according to the test results. We picked the
experimental group randomly due to the equivalent score in the test of both groups of PMTs.
The author of this article taught both groups using different methods. In the experimental
group, she prepared materials requiring Graphic Calculus as well as questions concerning
what could be observed using DT. For the control group, the same set of tasks were used
but without the use of DT. The topic and order of the tasks was the same for both groups.

The experimental group spent more time with visualization, exploration and concep-
tualizing the concept of a limit and, later, the derivative of a function. The time for solving
tasks “by hand” was shorter compared to the control group. The control group had the
same organization of exercises as the experimental group but instead of working with DT
and making their own conclusions from observations, the teacher explained the concepts
on the blackboard (usually by using colour chalk). Then the PMTs in control group focused
on the procedure of finding a limit of the sequence/function and, later, the derivative of
the function.

We assigned students some notebooks and tablets courtesy of the Hewlet-Packard
project “Application of mobile technology in preparation of future mathematics teachers”.
We got 20 tablets and notebooks, which the PMTs used for modelling, visualization,
observation, etc. It took a long time for the PMTs to get familiar with Graphic Calculus
in order to get to the point where they could not rely on the teacher’s help and were able
to do own their observations. The teacher used a projector to show students how to use
the software and encouraged them to discover other mathematical properties in groups
and to explain them to the others. The level of digital literacy was not the same in the
group. There were 2 PMTs who were unhappy to be in the DT-taught group and had what
amounted to a phobia of working with computers. However, when paired with someone

https://www.vusoft.eu/GraphicCalculus.htm
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more skilled, they were able to help with drawing conclusions from the activities. Once
PMTs became familiar with the technology side, the lessons started to be more dynamic
and we observed more mathematical discussions compared to the control group.

During the semester we prepared 2 tests for both groups in two versions. The versions
differed only in constants and/or coefficients. We wanted to keep the principle (or idea
of solving) the same and have an opportunity to collect comparable data. The 1st test
was written in the middle of the semester and contained only tasks concerning a limit
of a sequence (all 6 tasks). The 2nd test was written at the end of the semester and
contained tasks for a limit of the function (tasks 1–3) and derivative of the function (tasks
4–6). The PMTs could not use the DT for the solutions. We looked for the levels of
knowledge according to Dubinsky’s APOS theory [56] (Tables 1–6) and evaluated the tests
quantitatively. We did it by assigning weights for each level of APOS (see Table 7) and
used them as entry values to find the levels of students’ knowledge and the median of the
groups’ score (Figures 2–7). Then we used a comparison of these scores to validate our
assumption concerning the PMTs knowledge levels in the topic of a limit of sequence and
function within APOS theory.

The tasks in the tests ranged from the very basic level (for the PMTs’ knowledge at the
Action level) to the more complex, up to the level of Object or Schema.

Table 1. Task 1 in the 1st test.

1st Group 2nd Group

lim
n→∞

(
1 + 4

n

)3(
2− 5

n

)2( 4
n − 2

)3
lim

n→∞

(
2 + 3

n

)(
5
n − 4

)2( 2
n − 1

)3

The researcher considered this task as an easy, procedural task to start the test. The
reason for including it in the test was to find out the PMTs’ ability to correctly use basic
theorems of a limit of the product of sequences. Therefore, we only code the first two levels
in APOS in this task. The codes to this task were assigned as follow:

• A = PMT “stroke out” fractions and multiplied the whole numbers.
• P = PMT used the theorem of the limit of the product of sequence and solved the problem.

Table 2. Task 2 in the 1st test.

1st Group 2nd Group

lim
n→∞

sin 2n× 10−9n
5−n2 lim

n→∞
sin 2n× 7−9n

4−n2

We include this task in the test to determine whether PMTs can combine knowledge
concerning the procedures of finding the limit of the product of two sequences with specific
conditions. We apply codes for task 2 as follow:

• A = application of the procedure for a limit of the quotient (extension of a fraction by
1/n2), finding the result by using the theorem about the product of boundary sequence
and sequence convergent to zero.

• P = sin(2n) is boundary sequence. The fraction converges to zero (the denominator is
“stronger”); therefore, the result is zero.

Table 3. Task 3 in the 1st test.

1st Group 2nd Group

lim
n→∞

(
3n−2
1+3n

)5n−3
lim

n→∞

(
3n−2
1+3n

)5n−3

We used this task to determine whether PMTs can distinguish the special sequence that
converges to the powers of the Euler’s number. We assigned codes to this task as follow:
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• A = working with the procedure as in task 1, in this case, “1 to the anything is 1”.
• P = it is Euler number because it is a limit 1 to the infinity.
• O = it is a power of Euler number, to find out a solution, the modification of the term

is needed.

Table 4. Task 4 in the 1st test.

1st Group 2nd Group

lim
n→∞

n×
(√

n− 1−
√

n
)

lim
n→∞

(√
(n + a)(n + b)− n

)

We used this task to find out the PMTs’ understanding of infinity and operation with
it. Since we were visualizing on the lessons the sequences that subtraction of two infinity
does not always lead to zero, we assumed that the experimental group could have fewer
misleading ideas when solving this task. Assignment of the codes was as follow:

• A = direct division of every term in the task by “n”.
• P = multiplication of the term by 1 in a specific form (sum of the square roots in

the brackets).
• O = like in a Process, but with correct explanation of the used procedure.

Table 5. Task 5 in the 1st test.

1st Group 2nd Group

lim
n→∞

n× 12+22+32+...+n2

n3 lim
n→∞

n× 12+22+32+...+n2

n3

Including a task with an infinite sum in the numerator should determine whether the
limit concept is correctly included in PMTs cognitive structure and determine the shift in
their understanding of the limit process. Assignment of the codes was as follow:

• A = division numerator and denominator by 1/n3 (the highest power of “n” in the
fraction), “zero times anything is zero.”.

• P = identification of “infinity times constant,” the theorem of a limit of the product of
sequence cannot be directly used, using a distributive law in the numerator (1n + 22n
+ 32n + . . . n3), making the procedure as in Action, the result is 1.

• O = finding the general formula for the numerator and procedure follows as in
Action level.

• S = like on an Object level, but after finding the correct sum for the numerator expla-
nation of a result—the sequence diverges to infinity.

Table 6. Task 6 in the 1st test.

1st Group 2nd Group

lim
n→∞

(4n−2)100(3n+3)200

(6n−5)300 lim
n→∞

(4n−2)100(3n+3)200

(6n−5)300

The last task of the 1st test should refer to the higher levels on APOS. PMTs who
encapsulated several actions and processed them into the objects and schemas should solve
this task only “by looking at it”. Assignment of the codes was as follow:

• A = expand the brackets, sometimes without using of binomial theorem (e.g., (3n + 3)200

as (3n + 3)2 or as 3n2 + 9).
• P = partial expansion of the terms—using only the highest power of “n”.
• O = leading values are powers of terms with “n”; therefore, the limit is the same as

the limit of (4n)100(3n)200/(6n)300.
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• S = since the highest power of “n” is equal in the numerator and denominator, the
result is equal to the coefficients with a corresponding power of “n”. Therefore, the
result is (2 × 3)200/6200.

Due to the small size of the groups, we used only a descriptive statistic based on
the qualitative analysis of the PMTs’ solutions. We prepared a converse table of level of
knowledge according to Dubinsky’s APOS theory and assigned to them numerical values
from the interval [0, 1] as follows:

Table 7. Assign values.

Level in APOS Numerical Value

(none, PMT did not solve the task) 0
Action 0.2
Process 0.6
Object 0.8

Schema 1

There is a jump of 0.4 between Action and Process (0.2 and 0.6). Since we assumed
that several students could be on the Action level but after several cycles within APOS
levels, we maintain the value 0.4 to indicate this situation (to be in between A and P).

Then we put weight on each solved task and tried to find which group possessed a
higher level of knowledge. The results from both tests and both groups are in Tables 8 and 9.

Table 8. Results of the 1st test.

Experimental Group 1 2 3 4 5 6 Control Group 1 2 3 4 5 6

Student 1 0.2 0.6 0.6 0.6 0 1 Student 7 0 0.2 0.2 0 0 0
Student 2 0.2 0.6 0.6 0 0 0 Student 8 0.2 0.2 0.2 0.2 0.2 0
Student 3 0.2 0.2 0.4 0.2 0 1 Student 9 0.2 0.6 0.2 0.6 0.2 1
Student 4 0.2 0.2 0 0 0 0 Student 10 0.2 0 0 0.2 0 0.2
Student 5 0.2 0.2 0 0 0.2 0.8 Student 11 0.2 0.2 0.6 0.6 0.2 1
Student 6 0.1 0.2 0.4 0 0 1 Student 12 0.2 0.2 0.2 0.2 0.2 1

The graphical representation (Figures 2 and 3) could be observed as showing better
results of the control group in solving tasks concerning the limit of a sequence.

Figure 2. Graphical representation by tasks.
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Figure 3. Results in groups for every PMT.

To get better insight into the results in the 1st test, we made a comparison of the
average level of student’s knowledge (Figure 4).

Figure 4. Median of the score in the groups by tasks.

Even though PMTs had a median score higher in tasks 3 and 6, we cannot conclude
that their knowledge is higher. In the other tasks, the median of their score was zero.

There were three tasks on the limit of a function (1–3) and the rest on the derivative of
the function (4–6) in the 2nd test. The making codes was the same as in the 1st test.

Table 9. Results of the 2nd test.

Experimental Group 1 2 3 4 5 6 Control Group 1 2 2 4 5 6

Student 1 0.2 0.2 0.8 0.4 0.4 1 Student 7 0 0 0 0.4 0.8 0.8
Student 2 0.2 0.2 0.2 0.2 0.2 0.2 Student 8 0 0 0 0 0 0
Student 3 0.4 0.6 0.6 0.4 0.4 0.8 Student 9 0.4 0.6 0.6 0.4 0.8 1
Student 4 0 0.6 0 0.4 0.4 0.8 Student 10 0 0 0 0.2 0.2 0.2
Student 5 0 0.6 0.6 0.4 0.8 1 Student 11 0.2 0 0.2 0.4 0.8 1
Student 6 0.2 0.2 0.6 0.4 0.4 0.8 Student 12 0.2 0 0 0.4 0.8 0.4

To determine whether PMTs shift to a higher level of limit concept, we will focus only
on the first three tasks in the test. Since we are interested only in the limit concept, the
graphs are prepared for task 1 to 3 (Figures 5–7)
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Figure 5. Score of the 2nd test by tasks.

Figure 6. Score of the 2nd test by PMTs.

Looking at the graphs on the left side in Figures 5 and 6 (experimental group), one
could observe that PMTs we more successful. Comparing the median of the scores of
PMTs in both groups by tasks confirmed our assumption of a higher level of CK in the
experimental group (Figure 7).

Figure 7. Mean of the score in the groups by the tasks.
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Due to the small groups of students, we were not able to reach or make any general
conclusion. The progress which could be observed in the results was not significant.
Therefore, we interviewed the PMTs. Since the groups were small, we did group interviews
following the tests. Questions were asked about their strategies for solving, how they liked
the tasks, whether they were challenging/easy to solve, etc. Two PMTs in the experimental
group confessed that they had learned every task “word by word,” so while they didn’t
understand what they were solving they were aware that “this is the way”. The control
group students thought the test was easy and they were delighted.

Even though we could not claim a general conclusion about the level of knowledge
and whether the DT helped or not, we observed that students who worked with DT during
the lessons were more active and more motivated. They tried to find out solutions without
the help of the teacher. On the contrary, students in the control group were more dependent
on the teacher’s help.

The results in both groups were almost of the same level. We could only assume which
group attained better and deeper knowledge from this part of the calculus. We could not say
that the experimental group was better than the control group or vice versa. In both groups
there were difficulties in solving and understanding the strategy of solving. Some PMTs
tried to apply the memorized procedure without understanding it (for example, solving
a limit of type “1 to the infinity” as a limit of polynomials quotient). Another problem
in both groups was working with infinity, like with a real number. As a mathematics
teacher and educator with a lot of experience, we identified the following reasons for the
aforementioned problems:

• The PMTs simply learn the way to solve without any understanding (they did it this
way in secondary school and the habit remains).

• The PMTs do not know how to study alone or independently (they are not used to
working alone, preparing systematically, studying . . . ).

• When the PMTs were learning for the test, everything was clear, but they didn’t try to
find solutions alone. Without the help of the notebook or a teacher, they failed.

Some research results (e.g., [68,69]) pointed to students’ difficulties with the concept
of a limit due to an insufficient understanding of the basic concepts such as infinity (actual),
sequence or function so we decided to implement DT into lectures as well. These studies
mentioned that the factor influencing misunderstanding is the dialectics of quantifiers
used in the limit’s formal definition. So, changing the lectures from the scheme “definition-
theorem-proof” to more constructive could be especially helpful for the PMTs. Thus, the
research in the 2nd phase was conducted in two lines—one line for changes in lectures, the
second line for changes in exercises. Since we were looking at a different aspect of using
DT, we changed the research question. We hypothesized that the influence of DT on PMTs
knowledge could eventually be seen in time. Therefore, we focused on the construction of
knowledge with DT support and its durability. The topic remains—the limit of a sequence
and a function

4.2. The 2nd Phase

As we stated above, this phase of our research was focused on the durability of the
mathematical knowledge obtained by the PMTs and DT’s role in their mathematics’ prepa-
ration. Therefore, the stated research question was: “Is knowledge (from mathematical
analysis) developed through the use of digital technology more durable?” According to the
results from [70] we assumed yes. We wanted to validate our assumptions about university
level students with a higher level of mathematics.

There were two main differences compared with the 1st phase. First, we did not
choose only one software for implementation in our lesson preparation. The reason was to
offer our PMTs the possibility to look critically at several kinds of software and choose the
one (or more) they felt more comfortable with or felt was better used in certain, specific
situations. We offered them: Graphic Calculus, Derive, GeoGebra and we also provided
the option of choosing any other mathematical software they were familiar with. We



Mathematics 2021, 9, 1319 14 of 27

also hypothesized that if they saw the advantages of using DT in specific mathematical
topics, they could better judge when to use DT as opposed to chalk and blackboard in their
teaching practice. Second, this was the 1st year of teaching lectures as well for which we
used a constructivist approach. Especially, we chose the social constructivism characterized
in the Theoretical framework.

Since, in this research phase the author of this article taught using both, lectures and
exercises, the research was conducted in two “parallel” lines:

• Lectures: focus on the process of conventionalization and transformation (according
to [54]), these could be observable and encouraged by Socrative dialog.

• Exercises: how the chosen DT helped students to solve the problem tasks.

We started to work with a group of 18 PMTs, but at the end of our research, only 12 of
them remained. Therefore, all evaluations are in respect to those 12 PMTs. We prepared a
Moodle course to support the PMTs activity. In this course, extra tasks were uploaded to
be solved by using DT. More than half of the students solved these tasks and uploaded
their original solutions. They were encouraged to use DT with their preferred choice
of software. We noticed that several students started to use their own computers with
GeoGebra in lessons and to support mathematics’ discussions. In the exercises, we noticed
good preparation. The PMTs were aware and understood what we were talking about,
what we were solving, why it worked that way, etc. We hypothesized that this phenomenon
was observed possibly due to solving extra tasks in Moodle.

To measure the durability of students’ knowledge in exercises, we wrote two tests
with them. The first test was written at the end of semester, the second three months later
(approximately in the middle of the following semester). Both tests focused on finding a
limit of a function without the use of L’Hospital rule. To analyze the data that were obtained,
we used the Wilcox test for small groups. It is a non-parametric statistical hypothesis test
used when comparing two related samples, matched samples or repeated measurements
on a single sample to assess whether their population mean ranks differ (i.e., it is a paired
difference test). It can be used as an alternative to the paired Student’s t-test, t-test for
matched pairs or t-test for dependent samples when the population cannot be assumed to
be normally distributed.

To answer the stated research question, besides the two tests with a 3-month gap
and observations, we also compared the results with data obtained a few years ago from
the groups taught traditionally (i.e., giving definition, theorem, lemma, proof, etc. with
no DT support). Other supportive data for our claims were the state exams 2 years later.
The PMTs from this research showed better insight into problematics when answering
questions concerning the limit of function than the PMTs in the previous years. The PMTs
involved in our research also provided correct solutions for the given tasks along with
explanations. Therefore, we can conclude that DT and the constructivist teaching/learning
environment support the durability of knowledge concerning the limit concept and finding
limit of function without using L’Hospital’s rule. The results are presented in the Table 10
and Figures 8 and 9.

Table 10. Results of the 1st and the 2nd test.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

1st test 0.667 0.533 0.667 0.467 0.400 0.733 0.933 0.733 0.733 0.733 0.533 0.867
2nd test 0.656 0.563 0.688 0.594 0.750 0.781 0.750 0.750 0.625 0.625 0.781 0.875

The average score of the 1st test was 66.7%, and for the 2nd one 70.3% (see also
Table 10 and Figure 8).
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Figure 8. Result of the tests for each student.

To have better insight into the results, we used a quartile graph (Figure 9). The 2nd
test results had a higher median and smaller range.

Figure 9. Quartile graph of the results of the tests.

We tested our hypotheses: “There is significant difference between the 1st and the 2nd
test” to the null hypotheses: “There is no significant difference between the tests”.

The criteria W =

∣∣∣∣ n
∑

i=1
(sgn(x1i − x2i)Ri )

∣∣∣∣ = 18 where x1i are results of i-th student

in the 1st test, x2i—result of the i-th student in the 2nd test, Ri—the average rank of the
ties. The critical values W0.05(12) = 13. Therefore, we do not reject the null hypotheses.
Between the results there are no significant differences.
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We observed several shifts comparing the previous years in teaching PMTs. In the
lectures, we observed a shift from the passive role at the beginning of the semester when
students were listening and writing notes, to active participation of the PMTs having
fruitful discussions at the end of the semester. By fruitful discussions we mean discussions
about mathematical ideas, not mathematical notation. From this shift both PMTs and the
teacher educator benefit. For PMTs, it is by formulating ideas, through construction of
knowledge, the sharing/communication with their classmate(s). For the teacher educa-
tor, there is beneficial feedback about their teaching method. Concerning the model of
sign appropriation and use, the process of conventionalization and transformation in the
classroom was identified—a teacher-student communication pointed out an inner conflict
between what was said and what they think it is like.

Our observations and the results of the tests tend to show that this approach could
motivate the students to learn more, to be more active during the lessons and we can expect
that they will be able to use DT in their own lessons when they will start teaching.

As we showed in our previous research [70], students’ knowledge is more durable if
this knowledge is a result of a construction rather than a passive reception. Therefore, we
can assume that changes in the lessons based on DT can explain the good results of the
students in testing. As Jonassen [71] proposes, the teachers and students should design DT
based lessons and thus become knowledge constructors rather than knowledge users.

5. Implementation DT into Applied Mathematics Subject—Development of TCK
and TPACK

In this part, we focus on implementing DT in the FM module of the PMTs preparation.
The long-term research started in 2009 with a test of trial procedures for teaching FM to
PMTs. We estimated intervention effects and piloted a small-scale intervention. There were
three phases of research.

5.1. Phase 1: Explanatory Study of PMTs Financial Literacy

The aim was to determine the financial literacy of secondary school graduates (in our
case, students in their 1st year of study in our teacher training programme). Our sample
of the students did not follow the course of FM at secondary schools. We conducted our
research following the analysis of students’ solutions following the Theory of didactical
situations [53]. The first important issue was identifying the target knowledge (it is not
always explicit and not always the one expressed by the teacher) and how it appeared
in the problem to solve. The second one was to identify the milieu (similarly to [47,48]):
data and all actual givens usable by students without any teacher intervention. The third
one was to identify students’ prior knowledge, foresee actions students may undertake
in this milieu, and how they could interpret feedback arising from it. In achieving this,
we elaborated an a priori analysis of the class situation. The milieu of the material should
activate the student to the activity, which could lead to obtaining the targeted knowledge.

We prepared a test comprised of 4 tasks from real life, which every secondary school
graduate should be able to solve without any problems. Then we made a priori analysis.
We identified possible solving strategies, possible obstacles, the structure of the milieu (we
started with an Objective situation and finished in a Didactical situation. The PMTs did not
reach the situation of learning, but that was not the aim of our effort).

For descriptions of the milieu’s vertical structure in the a-didactic situation, we used
the scheme according to Perrin-Glorian [72] due to the classification which corresponds
with our prepared situations in the Financial Mathematics courses (Figure 10).
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Figure 10. Vertical structure of the milieu in a-didactic situation (source [72]).

The crucial part of the a priori analysis was identifying possible correct and incorrect
strategies of solving. We made graphs as in Figure 11 of hypothetical strategies of solving
for each task. In this place, we demonstrate possible incorrect strategies for solving the
following task:

We would like to set up new bank account and deposit 100 € every month starting at
the beginning of the year. The deposit will always be made at the beginning of the month.
We know that “our bank” offers a 2.3% fixed interest rate (the interest rate will not change
through the year). The interest rate is calculated and deposited only once to our account,
and always at the end of the calendar year. How many € would we have in the account by
December 31st with a 2.3% interest rate? How many € would we save by the end of the
year if we would put 100 € every month to our piggy bank? [37] (p. 128).

Figure 11. A priori analysis—possible incorrect strategy of solving of chosen task (source: [37],
p. 128).
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We tested all 25 PMTs in the 1st year of study at our institution in 2008/2009. They
could use only a pen, paper and calculator. After the test, we compared our projection
from a priori analysis of students’ solutions and evaluated a posteriori analysis. We used a
similar scheme as in Figure 11 to analyze PMTs solutions (for detailed information, see [37]).

In the a posteriori analysis we identified the Objective situation S-3 (Figure 10) the same
in every strategy. PMTs acquaint with the tasks and Material milieu M-3. The material part
of M-3 included basic writing tools (paper, pen . . . ), the mathematical and real context of
the task. The Cognitive part of M-3 contains knowledge and understanding of different
levels. The level depends on the secondary school from where the students graduated,
their age, and the strategy used. This is mostly knowledge concerning interest, interest rate,
payment amount, mortgage and the necessary mathematical tools for solving the given
tasks. The Social part of the M-3 was minimized because it was not desirable to have any
distractions while solving the tasks.

In the Reference situation, S-2, the PMTs tried to solve the tasks in an already familiar
milieu M-3. PMTs used only known schemas, relations, procedures, algorithms. In situation
S-1, a Learning situation, the PMTs were in the position being the problem solvers. The
nature of the activity involved loss so the PMTs had to think more and start to formulate
answers to the questions which they asked themselves. The realization of the basic research
did not assume any interruption to the PMTs solution. PMTs did not reach Didactical
situation S0.

In general, from the solution to the whole test, we observed that PMTs in the 1st year
of their study are not familiar with the basic terms of FM, their understanding having
come from the advertisements promoting mortgages, credits, loans, leasing and other
financial products sold by banks and other financial institutions. This limitation influenced
the choice from the concrete offer of financial institutions. This choice was often without
any logical correct counting or guesses. Therefore, students not only failed in this field of
mathematics and but in a real-life situation.

According to the result of the 1st phase of our research, we prepared study material
with 42 tasks and suggested intervention by using DT, which is described in phase 2 of
the research.

5.2. Phase 2: Intervention

The aim was to find out if the study material prepared for teaching FM with the
implementation of DT improves (a) knowledge of the PMTs in the 1st year of study at our
faculty; (b) the PMTs ability to prepare their own teaching sequence of FM. This curricular
change should permit the PMTs to obtain the necessary knowledge of FM needed for
both for usage in real life and notably in their future career as teachers of mathematics at
secondary school.

We prepared 42 tasks and divided them into 2 thematically independent parts. The 1st
part focused on bank accounts, fixed deposits, bank books and different types of savings
products. The 2nd part focused on different types of loans, leasing and credit. We tested a
sample of 25 PMTs in the 1st year of study (2 groups of students). The PMTs in both groups
did a pre-test in the same week. Students in the groups were taught by different teachers
(both teachers were authors of paper [38]). The PMTs were unaware that they would be
involved in an experiment. The teaching/learning process started one week after the pre-
test. The innovation of teaching was not only in adding a new topic into the existing subject.
The approach to the problem was different. We started to use DT as a demonstration
tool, but students also had computers to make their own simulations, calculations and
modelling. The PMTs had the possibility to use DT to do their homework, etc. Using the
DT was common, the individual work of the students was necessary and the PMTs could
prepare homework by using DT. Approximately two weeks after the intervention, a post-
test was written. The post-test tasks were equivalent to the pre-test tasks (the mechanisms
remained the same, the context of the tasks and numerical values differed).



Mathematics 2021, 9, 1319 19 of 27

According to the teaching/learning process, we specified one task for every student
to solve. They had one week for preparation. Therefore, the PMTs realized the situation
of action in a home environment. The situation of formulation was realized in the school
environment or dormitory, depending on the PMTs’ preferences. There was an opportunity
to discuss the PMTs hypotheses amongst their peers during the whole week. Validation
of the PMTs hypotheses started during the presentation of their solutions in the lesson.
There was discussion among the PMTs themselves and between the PMTs and teachers.
The institutionalization of any new knowledge was up to the teacher.

During the teaching, we were also observing the students’ behaviour, their attitude
towards the organization of work in the lessons. It, of course, varied from student to
student. Most girls were discouraged because of computers. In the Table 11 most common
solution by PMTs is shown (in both pre-test and post-test).

Table 11. Most common solution of chosen task from pre-test and post-test.

Pre-Test

Sum of deposits: 12× 100 = 1200
Conunting with tax 19% 2.3 %× 0.19 = 0.44%

Interest rate after taxation 2.3 %− 0.44 % = 1.86%
Value of the interest add to the account 1200× 0.0186 = 22.356 EUR

At the end of year 1200 + 22.356 =22.356 EUR
Piggy bank money 12× 100 = 1200 EUR

Post-Test

Sum of deposit and interest (in EUR) in three months separately, so in the one quarter:
January: 100 + 100× 1

12 ×
2.3
100 × 0.81 = 100.155

February: 100 + 100× 2
12 ×

2.3
100 × 0.81 = 100.311

March: 100 + 100× 3
12 ×

2.3
100 × 0.81 = 100.446

July: 100 + 100× 6
12 ×

2.3
100 × 0.81 = 100.932

Total sum: 100 + 100× 0.81
(

1
12 + 2

12 + . . . + 12
12

)
= 1212.11

Piggy bank money: 12× 100 = 1200 EUR

To analyse the data, we used the same graphical representation of the possible paths
to a solution as in phase 1. From the pre-test and post-test results of each PMT, we could
see that they tried to use learned procedures and apply presented mechanisms to solve
the tasks after attending the FM module. However, it was not always correct. One of the
possible reasons could be the didactical contract [40], the students’ effort to apply obtained
knowledge in any way. However, the higher level of task 1 in the post-test compared to the
pre-test could be why only 4 students got the correct answer to the question. In general, we
can say that following the FM module students can apply the methods and tools of FM but
with some issues. Their knowledge of FM was not institutionalized during the FM course.

This phase of our study focused on developing CK and TCK, but there should be a
balance between developing future teachers’ CK and their PCK. The question was, what
approaches on the part of teacher educators can help future teachers to develop all aspects
of their knowledge for teaching (knowledge of math, ways of teaching math and ways in
which students learn math) at the same time.

5.3. Phase 3: Financial Literacy of PMTs and Real-Life Experiences

Even though this phase is not directly connected to the implementation of DT into
PMTs preparation, it has a crucial role in the identification of how real-life experiences
could affect our view of the world. In the specific cases, it could show PMTs that real-
life experiences are an integral part of their future pupils’ knowledge, affecting pupils’
perception of mathematics concepts. This has a strong connection to PCK and TPACK in
PMTs preparation.

The aim was to determine how the PMTs’ awareness, understanding and experience
about FM outside school learning situations influenced their participation in school activ-
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ities as they became acquainted with formal mathematical principles and conventional
mathematical notations. After four lessons in FM focused on understanding the basic
financial mechanisms, the PMTs were tested. The test’s main purpose was to determine
the level of understanding of the financial terms and mechanisms. The results of the test
showed that the PMTs’ knowledge was insufficient. In fact, their knowledge of financial
mathematics appeared to be extremely poor. (see phases 1 and 2)

As a result, we changed the intervention, taking new approaches to demonstrate
the mechanism. We selected one task for each mechanism and analysed it in detail from
two points of view: mathematical (how to solve it and why it works) and didactical (the
most common misconceptions of students and when to use specific kinds of example,
etc.) We selected the test tasks similarly as in phase 1 and phase 2 (to cover the most used
mechanisms of FM everyone should be familiar with).

The PMTs’ perplexed and negative reactions to the teaching of FM led us to consider
the PMTs existing experiences in our experiment. To understand the PMTs’ awareness of
and experiences with financial products and impact PMTs’ experiences on their solutions of
school tasks, we used questionnaire survey. PMTs were asked about their income, bank and
savings accounts, loans, their source of financial information (such as television, internet,
press, school, family environment and community of friends). We did not ask PMTs for
personal information like the precise amount of money they have. The questions were very
general, like Do you have a regular income? If yes, select all possibilities: pocket money,
part-time job, full-time job, etc.

We required them to self-reflect on their FM knowledge. We assumed that students
with personal experiences with financial products would have better results in the school
test from FM (tasks focused on saving accounts and loan products). Therefore, we chose
these two methods of collecting data to find out the answer to our research question: What
is the influence of experience on PMTs financial literacy?

Our classroom research involved 16 PMTs (aged 22–28) attending the last two years of
university-level studies. We therefore assumed that they would be able to connect their
“everyday” thinking properly with “school” mathematical models.

We examined how mathematical ideas from FM are represented differently in the
school and outside the school. Most of the PMTs had big difficulties understanding the
terms and terminology used in the tasks (e.g., “annuity—it is probably the interest”,
“principal is probably something totally unimportant and pointless which can be calculated
from the first two cells”, etc.). We also found out that the PMTs who had opened a savings
account did not necessarily understand how it really worked. 31.25% of the students had
applied for a bank loan (or students’ fund loan) in the past but they had no idea why they
paid the amounts they paid and how the bank calculated the annuity. Furthermore, their
understanding of how money is valorised is largely unreal.

As can be observed in Table 12, the easiest task for students was an application of
income tax knowledge {u1_dan} and the mechanism of a short-term loan {u2_roc}. Students
obtained good results also in the task {u2_urok} which required an understanding of the
difference between interest rate and interest. Our findings indicate that students are not
familiar with the monthly interest mechanism {u1_mes} and with the annuity term {u3}.
In addition, approximately 50% of students were able to apply their knowledge of annual
payment {u4_splatka} and of debt payment {u4_dlh}. The problem in this task concerned
the meaning of principal {u4_istina}.
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Table 12. Means and standard deviations for financial knowledge of solved tasks.

u1_dan - u1_mes - u2_roc - u2_urok

Average SD - Average SD - Average SD - Average SD

0.81 0.4 - 0.06 0.25 - 0.82 0.4 - 0.75 0.44

u3 - u4_splatka - u4_dlh - u4_istina

Average SD - Average SD - Average SD - Average SD

0.06 0.25 - 0.44 0.51 - 0.5 0.52 - 0.13 0.34

For the analysis of the collected data (both test and questionnaire), the hierarchical
clustering of variables and Gras’ implicative statistical method was also conducted by
using a computer software called C.H.I.C. (Classification Hiérarchique, Implicative et
Cohésitive) [73]. We used this software because it fulfilled our requirements for the data
analysis we required. These methods of analysis determine the similarity of hierarchical
connections and the implicative relations of the variables, respectively [74]. For the needs
of this study, four similarity diagrams (like in Figure 12) of the PMTs responses to the
tasks of the test and questionnaire were produced. The similarity diagrams allow for the
arrangement of the tasks into clusters according to the homogeneity by which they were
handled by the students.

Figure 12. Similarity tree, example of evaluation of data (source: [75]).

Figure 12 presents the similarity diagram of the students’ responses to the tasks u4
(concerning long-term loans) influenced by their everyday experiences (answers from
questionnaire’s items). In the diagram two significantly related clusters are identified. The
first cluster describes students’ working experiences {1c} and {3c}. The second cluster is
comprised of two significantly related subgroups. The first subgroup describes the relation
between students’ experiences with loans ({5b}, {5f}) and knowledge about what annual
payment consists of {u4_splatka} and how to pay off debt {u4_dlh}). This subgroup has
significant similarity to knowledge concerning the meaning of principal {u4_istina}.

Comparisons of the students’ test results and answers to the questionnaire show that
they are strongly influenced by the family and media (TV, internet, social media, etc.). 25%
of the PMTs thought that information from school is partially or mostly sufficient and 50%
of them thought the same about information from the media.

Our analysis implies that everyday experience has a direct impact on the students’
ability to solve FMs’ tasks. Therefore, we can consider our assumption of the research that
“students with personal experience with financial products are likely to have better results
in the school test from FM” to be correct.
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This phase of the research helped us to better understand the relationship between
students’ everyday experiences and their skills concerning FM in the lessons. On one hand,
this finding should help us improve the preparation of the courses for PMTs, to change the
approach to the students regarding their experiences with “everyday” knowledge and also
help us prepare a guideline for how to start with FM at the secondary school level. On the
other hand, results showed our PMTs how everyday experiences influence their perception
of mathematics. Therefore, they should think about it when teaching in their future career
as mathematics teachers.

6. Discussion

We presented two streams of our research concerning the implementation of DT
into PMTs preparation, implementation of DT into the theoretical subject (Calculus) and
implementation into an applied mathematics’ subject (Financial Mathematics).

Concerning Calculus: The format of the lectures and exercises remained the same as
described in the 2nd phase of the research (see Section 4.2) in the following years (we have
been collecting data since the year 2012). We needed to be more focused on several types of
tasks solved in the lessons. Therefore, we used Revised Blooms Taxonomy [76] to identify
the cognitive and knowledge dimension we should focus on for the tasks solved in the
lessons (yellow shaded region) and in the tests (red shaded region) as shown in Figure 13.

Figure 13. Cognitive and Knowledge dimension (source: [64]).

We also looked at the PMTs’ misconceptions which played a role in creating barriers
that prevented understanding of the Calculus concepts [77], geometrical perspective as the
introduction in the limit process [65] and the PMTs’ misconception in understanding the
definition of a limit of a sequence [66].

Concerning Financial Mathematics: When the new teacher preparation study program
started in 2014, we shifted Financial Mathematics to the subject “Didactics of Mathematics”
and “Methods of solving mathematical tasks”. The PMTs also started to develop TPACK
alongside TCK. The PMTs’ work as described above (preparation of lessons with the
integration of DT in solving Financial Mathematics’ tasks) include a project as well as
experiences. The use of DT in these lessons was more natural for two reasons (from our
point of view). Firstly, students were more experienced (they were studying for a Master’s
degree, not a Bachelor’s). Secondly, they appreciated the power of using specific software
for presentation, collaboration and explanation (based on discussions in the lessons).

In general, we observed several differences when implementing DT into these two
kinds of subjects. First, the PMTs were more willing to use DT in Financial Mathematics
than in Calculus lessons. There could be several reasons for this. Financial mathematics
was taught as a part of a didactical subject, so there was a clear connection to school
Mathematics and the PMTs usually felt comfortable and familiar with the topic. On
the other hand, Calculus was, for most of them, too theoretical, “far” from the school
Mathematics and difficult to understand (based on the results of an internal evaluation of
the educational process by students, held every examination period of the year). Another
problem could be in the curriculum. Before the year 2014, students had 5 semesters of
getting to know different DT resources. After the year 2014, new subjects concerning using
DT were added to the PMTs curriculum. This programme will not continue beyond the
writing of this paper. A new study programme will be prepared for 2021–2022 reflecting
the findings from our research. Changes in PMTs attitudes after implementing DT into
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their curricula was also observed by Ndlovu et al. [78]. They recommended that educators
should integrate DT as early as possible in initial teacher education curricula. Kendal and
Stacey [79] pointed, “the teacher who stressed understanding moved away from using
CAS, whilst the teacher who stressed rules, adopted it more” (ibid, p. 143). Therefore, both
teacher educators’ beliefs and how the DT is used are crucial and influence the results.

Second, in both streams, we identified a group of PMTs who were “afraid” of comput-
ers. Even when year by year the level of DT skills of PMTs increases, the willingness to
use DT stagnates (we assumed the direct proportion here). Students with lower DT skills
responded when questioned that they are “tired of using DT” because they are “forced to
use it almost everywhere”. Students with at least average DT skills were more willing to
use DT in lessons or for home preparation. This research topic changed in 2020 due to the
world-wide pandemic caused by the COVID-19 virus. Distance learning forced all PMTs
(and all other students in Slovakia) to work with DT every day. They had to learn how
to use new kinds of software, become familiar with new communication environments,
discover and learn how to share their ideas in a digital world with less effort and time, etc.
The subgroup of PMTs with low (or lower) DT skills struggled with this shift into the digital
world. Drijvers et al. [80] identified six orchestration types from which Discuss-the-screen
and Explain-the-screen were technological variants of regular teaching practices most
teachers are familiar with. We used these approaches too in both streams of our research.

Third, in both cases, there was a strong correlation between the PMTs’ level of DT skill
and their activity in the lessons, particularly in part focused on modelling mathematical
situations. The PMTs with lower DT skills were more observant and then began to be
more active in exercises. Their questions were more connected to procedural skills than the
understanding of concepts and why procedures work. Looking at the PMTs activity, other
phenomena arise. Many PMTs had significant misconceptions of a function concept. That
could be one reason for the mistakes they made when modelling situations concerning the
limit process. There were 2 PMTs in 2012 who believed the software so much that they
considered the graph of y = 2|x| as being same as y = 2|x|. In the beginning, we assumed
that it was only a notation problem in DT. However, when we asked them how we can be
sure that the shown graph is a graph of the function we are talking about, they answered
that it was true because the software drew it that way. What was alarming was that the
number of students with little knowledge of functions was increasing year by year. In 2019
more than half of the PMTs had no idea about elementary functions and their properties.
They relied on the result provided by the chosen software. Ferrara et al. [81] declared, “the
use of CAS appears helpful to clarify problem solving strategies, but the adoption of higher
order mathematical conceptions behind procedures seems to be limited” (p. 245).

Fourth, in both cases, there was no significant difference in procedural skills. Chappel
and Kilpatrick [20] declared the same result on the sample of more than 300 students of
calculus. However, similarly, “students enrolled in the concept-based learning environment
scored significantly higher than the students enrolled in the procedure-based learning
environment” (ibid, p. 17). This phenomenon was observed on FM lessons too. Petrášková
and Hašek [82] implemented smart documents and interactive sheets in PMTs preparation
had the same result in FM. However, they stated that PMTs who used DT in the lessons had
twice higher ability to apply the knowledge of FM in practical tasks. Implementation of DT
also increases TCK. The access to “all I need” to solve the task encourage PMTs to work.

Fifth, we observed a marginal benefit in both streams of our research. Introvert PMTs
were more engaged with using DT. A similar result is presented in [83].

7. Conclusions

In this paper we presented two threads (or streams) of research made of groups of
PMTs since 2008. We do not say that these have been the only research done in this time
period. We wanted to point out differences in the implementation of DT into the PMTs’
preparation of different types of lessons (theoretical and applied) and their influence on
PMTs CK, TCK or TPACK. How the PMTs’ behaviour changed, how it helped to improve
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some of their skills (e.g., understanding of concept) but others remains at the same level
(e.g., calculations).

New questions were raised by our which remain open:

• How to find out if the DT helps the students to understand? Some connected questions
to the stated one: How to measure PMTs understanding? What was the role of teacher
personality?

• How to find out if the DT helps the students to obtain more durable knowledge?
• Are the results of the test influenced by DT or by the change of the teacher’s approach?

More large-scale research in this area is needed, both in theoretical and applied subjects
in the preparation of PMTs.
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pp. 390–400.

29. Chong, C.-K.; Puteh, M.; Goh, S.-C. Framework to Integrate Spreadsheet into the Teaching and Learning of Financial Mathematics.
Electron. J. Math. Technol. 2015, 9, 92–106.

30. Drábeková, J.; Švecová, S. Some notes on the financial literacy of the Slovak students—Case study. MERAA 2015, 2, 68–72.
[CrossRef]

31. Fajkus, M. A simple model of an economical problem in the Mathematica environment. Trendy Vzdělávání 2016, 9, 56–62.
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