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Abstract: Networked systems control is a known problem complicated because of the need to work
with large groups of elementary agents. In many applications, it is impossible (or difficult) to
validate agent movement models and provide sufficiently reliable control actions at the elementary
system components level. The evolution of agent subgroups (clusters) leads to additional uncertainty
in the studied control systems. We focus on new decentralized control methods based on local
communications in complex multiagent dynamical systems. The problem of intelligence in a complex
world is considered in connection to multiagent network systems, including a system named airplane
with feathers, load balancing, and the multisensor-multitarget tracking problem. Moreover, the new
result concerning the emergency of intelligence in a group of robots is provided. All these methods
follow the paradigm of the direct reaction of each element (agent) of the system to its sensory data of
current situation observations and the corresponding data from a limited number of its neighbors
(local communications). At the same time, these algorithms achieve a mutual goal at the macro
level. All of the considered emergent intelligence appearances inspire the necessity to “rethink” the
previously recognized concepts of computability and algorithm in computer science.

Keywords: emergent artificial intelligence; multiagent technologies; consensus; robot

1. Introduction

Consistently appearing in the modern age, multifaceted problems encourage recon-
sidering the role of computer-based tools and methods in various applications. Many
contradictory purposes and approaches are naturally being combined, in this connotation,
giving rise to the need to establish novel mobile artificial intelligence generation. Smart
embedded computing devices will soon be able to resolve many tasks not imagined in
the recent past. Thus, two main directions in artificial intelligence evolution crystallize in
the late twentieth century. There are intentions to construct methods aiming to attain a
specific result and the brain activity modeling within generalization and self-organization
in social communication.

However, the traditional perception of the computer structure is continually changing.
These circumstances lead to revolutionary transformations in the application and program-
ming of computational devices. This innovative computing paradigm initiates changes in
the computer’s architecture toward concurrent asynchronous interacting dynamical sys-
tems (functional elements). Stochastic, hybrid, asynchronous, and cluster types of system
conduct become more evident and dominant with the absence of rigid centralization and
dynamic classification of related models.

Elementary computational elements (gates) are currently approaching the atom scale
in their sizes, so that at this gradation, the quantum laws become increasingly crucial.
Simultaneously, due to Heisenberg’s uncertainty principle, precise answers about a current
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system state cannot be principally reached. Therefore, the upcoming computing system
hybridization is understood as a necessity to operate with combinations of continuous
and discrete processes, including considering the evolution of the continuous patterns and
possible switch from one model to another.

Noticeable computing devices’ performance and miniaturization unavoidably suggest
dealing with “transient” processes. A crucial limitation of the classical computation model
is a partition into isolated bits of the memory.

Principally, reducing the clock cycle time (strobe impulse) and the distances between
bits makes it impossible to isolate bits due to the quantum mechanical laws [1]. It looks
natural, in the future, to switch from primitive operations with the classical bits to opera-
tions outlined by specific micro-dynamic models operating with the related fragments. A
usage denial of unified, simple computing elements leads to problems with performance
of different stage-managed components of significantly distinct physical characteristics.
This single “tact” event is expressed as unsolvability of the continuum Zermelo—Fraenkel
hypothesis [2].

Model grouping in the known multiagent systems consuming the agents’ connections
topology time evolution is an incredible tool for studying complex stochastic systems.
Here, the agent notion may correspond to some dynamical model (a system component)
or a specific set of models. Without rigid centralization, these structures can successfully
treat complex problems by splitting them into modules reallocating the agents’ dynamical
partitions. Such a system can effectively perform under significant uncertainties, demon-
strating so-named “emergent intelligence”. This notion signifies an intellectual resonance
or a swarm intelligence consisting of the manifestation of unexpected properties of the
whole system not inherent to any simple element.

The critical feature of emergent intelligence consists of the dynamics and unpredictabil-
ity of the decision-making process. In practice, this means that the solution is achieved at
the expense of hundreds and thousands of untraceable interactions. The desirable protocols
are generated and executed by the agents themselves. At each step, they ponder the system
inputs and respond to unpredictable events such as delays and crashes. Thus, emergent
intelligence is a new superior unique factor arising, as it were, “out of thin air” due to many
hidden or explicit conditions spontaneously appearing and disappearing in the system.

The rest of this paper is organized as follows. Section 1 provides a review of related
works. The main idea behind this paper and the correlation between intelligence and
multiagent network systems are introduced in Section 2. Some examples of multiagent
network systems are shown in Section 3. The main new result concerning the emergency
of intelligence in a group of robots is provided in Section 4. Section 5 concludes the paper.

Related Works

The phenomenon of the emergence of order from chaos is a popular research field.
Due to the development of computer technology, the topic has actively been studied within
the problem of mobile group interaction (particularly, a group/swarm of robots) [3]. One
of the most critical issues in the communication systems theory is picking or creating a pro-
cedure capable of adapting to a permanently changing environment using centralized and
decentralized algorithms. Problems of control and distributed interaction in dynamic net-
work systems have attracted significant attention in the last decade due to the widespread
applications of the multiagent systems methodology in fields such as control [4,5], dis-
tributed sensor networks [6], and mobile robotics [7]. Unlike the classical attitude, when a
search is implemented for some (deterministic) algorithm discovering the best solution, in
multiagent technologies the solution is automatically obtained as a result of the interactions
of many independent targeted software modules (agents). The traditional methods are
often inapplicable in actual practice, such as resolving the enterprise management problem
in an unpredictable dynamic environment of modern business, requiring a huge settlement
volume. On the whole, distributed systems are increasingly used parallelly, dividing a
batch of tasks between several computing threads (devices) [8–11]. Moreover, real-world



Mathematics 2021, 9, 1314 3 of 15

problems lead to restrictions on communications channels in the strategies intended to
solve this type of problem effectively [12].

The intelligence needed for solving specific problems interpreted as “complexity”
is considered in our model according to [13] in two aspects. The first one is related to
subjective complexity appearing in a person’s mind due to its limited abilities for the
perception of the actual problems. The factual complexity causes the second one. These
types are inherently different but can often coexist together, leading to distinguishing,
sometimes contradictory, interpretations of complexity and complex systems apportioning,
for example, the “ontological” and the “semiotic” simplicity-complexity. The “ontological”
one is more associated with the complexity of the material (physical) world.

The relationship between the mentioned types of complexity determines the systemic
continuum in which the concept of “intelligence” is generated, so that the traditional
interpretation of intelligence as a sum of locally owned cognitive apparatus of a person
abilities (instrumental capabilities of an artificial system in case of artificial intelligence)
has to be changed by general integral properties, conditioned by the environment and the
system operating. Indeed, the functions and abilities of a system existing and coexisting in
an environment can be useless and may be harmful in another environment. Intelligence is
determined, to a large extent, by the control degree on a system in a particular environment.

2. Motivation

The present vital tendencies in computer technologies suggest the permanent devel-
opment and application of artificial intelligence methods. The people’s way of thinking is
currently radically different from that of a computer strictly following a predefined arrange-
ment of operations. This circumstance means that a human can behave in problematic
situations adequately and adapt to the environment changing through active imagination
and “to learn from mistakes”. Such as for an ant colony, typical swarm behavior can clarify
new approaches connected to multiagent technologies and randomized algorithms. On the
other hand, every single ant does not demonstrate smartly proper functioning, but an ant
colony exhibits surprising performance considered to the same extent as intelligent. As
was mentioned earlier, such manifestation of emergent intelligence expresses a system’s
unexpected properties as a whole but not features of its elements. This summarizing effect
of “intellectual resonance” is called “swarm intelligence” [14], where an agent group is
comparable to a team composed of members who cooperate in the decision-making process.

Consider the ant algorithm suggested in [15]. Suppose a bounded area containing the
anthill and the food source and deem, for simplicity, a hypothetical colony of “artificial
ants” composed of two ant types. The first one, “the mother”, is responsible for the general
strategies and producing new worker artificial ants. In the second worker ants category,
they strive for two objectives: discovering food and bringing it home. The food delivery
process is crucial in the colony living processes. Traditionally, in a centralized approach
(the primary device), some artificial super brain controls everything and everyone. If it
has super abilities, it is possible to exploit space satellite data to allocate the delivery. As a
result, the described system could be too complicated and expensive. Although there is
another significant drawback. If something went wrong during the mission, the strategy
must be promptly updated that suggests involving substantial computational resources.

In this regard, it seems likely to enquire if it is feasible to build a much simpler system
resolving the assigned task without attributes such as space satellite data, supercomputing,
maps, GPS navigation, and actual communication with the super brain? Sure, we desire that
this structure stills perform well even under future unforeseen conditions. A multiagent
approach could be a “cheaper” version of such a system. In this connotation, “the mother”
is responsible for producing the worker ants without being the super brain, and each one
of the worker ants is responsible for at least two missions:

• to find food;
• to bring it to the anthill.
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It is additionally assumed that we study a grid area with reasonably small square cells
such that a worker ant can relocate just in one unit at any given time at the same instance as

• marking the path with pheromones;
• discovering neighboring cells marked by the freshest pheromones.

This model operates with two kinds of pheromones. The first type marks cells during
moving out without food, while the second during moving out with food. Such a system
appears to be much cheaper and more feasible than the centralized one, being semi-optimal
under unpredictable uncertainties [15]. A crucial circumstance is that there is no need to
wait for an ant returning with information on the nourishment location because we assume
that the information comes immediately back via the created by the ant chain.

Let us suppose that a new way of food supply is needed since the anthill neighborhood
is destroyed through some catastrophic event. A strategy intended to resolve this problem
can consist of ants spreading in all possible directions chosen, for example, randomly (a
randomized strategy). Let us explain an example shown in Figure 1. Line A shows the
situation when there are no obstacles on the way from the anthill to the food. On line B,
the barrier (obstacle) appears. For example, it can be a fallen stone. In this case, ants start
to avoid the obstacles in two ways, as shown in line C. After some time, according to the
algorithm described in [15], all ants start to move only as is illustrated in line D since it is
the shortest way. This scheme makes it possible to discover and optimize new food paths.
Thus, the system possesses emergent intelligence properties.

Figure 1. An illustration of an ant colony conduct. Lines A, B, C and D show different time stages.

Multiagent behavior can also manifest itself in the communities of other organisms,
i.e., bacteria. A recent scientific breakthrough revealed (see, for example, [16]) that bacteria
can interconnect with each other. This fact has radically changed the general perception
of the existence of the simple organisms inhabiting the world. Bacteria apply signaling
molecules to measure population concentration. Nowadays, the term “quorum sensing”
(QS) describes the process of signaling molecules, allowing a single cell to sense bacteria’s
cell density. In nature, different kinds of bacteria located in the same environment use
diverse signaling molecules that make it possible to converse with other various types of
bacteria. Today, these quorum-sensing systems are intensively studied for various bacteria
categories. Recently, extraordinary advances in understanding the genetics, genomics,
biochemistry, and signal diversity of QS were achieved, including information about the
connections between QS and bacterial sociality [17]. The behavior and evolution of these
bacteria communities are comprehended as natural examples of multiagent systems be-
cause the interactions between bacteria occur locally and bacterial density can be measured
with no need to gather the whole data in one data center. These bacteria solve the global
task (to measure the density of the population) using only local communications (QS) and,
overall, this is an example of multiagent technologies.

Another essential application of self-organization arises in DNA (deoxyribonucleic
acid) computing. Aiming to explain the concept of DNA computing, we consider a known
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combinatorial problem of finding a Hamiltonian path in a graph. As is well known, the
Hamiltonian path problem consists of discovering a path in an undirected or directed
graph precisely visiting each node once and starting with a given vertex and ending with
another specified one. The most popular branch-and-bound method can hardly be used
in many situations due to its exponentially growing complexity. The DNA computations
based on the principles of self-organization inherent in nature [18] are able to resolve such
problems in linear time-consuming.

We remind that the DNA molecules usually form a double helix consisting of nu-
cleotides containing a phosphate group, a sugar group, and a nitrogen base. There are four
different nucleotides: adenine (“A”), thymine (“T”), guanine (“G”), and cytosine (“C”). In
the helix, the nucleotides join in pairs according to a fundamental complementarity rule:
“A” is always opposite to “T”, and “G” is always opposite to “C” [19]. DNA computing
allows modeling in a biological laboratory dealing with double-stranded DNA, which is
able to “split” into two separate strands (by heating) or to do the reverse action annealing
with the help of the particular enzyme ligase.

Let us consider a directed graph G = (N , E) with |N | = n nodes. Random DNA
sequences consisting of 20 nucleotides represent nodes (vertexes). An edge is associated
with DNA sequence obtained as concatenation of the complement of the second half of the
starting node and the complement of the first half of the finishing node.

For example, if the first node has the DNA code

TCAGTACCAG TACAGTCACA

complement : (AGTCATGGTC ATGTCAGTGT),

where A is adenine, T is thymine, G is guanine, C is cytosine, the second node has the
DNA code

TAGGTATGCT CAGATAAAGG

complement : (ATCCATACGA GTCTATTTCC),

and there is an edge from the first node to the second, then that edge is coded by

ATGTCAGTGT ATCCATACGA.

This procedure is repeated with every available edge. Note that the directions of DNA
strands are ignored for simplicity.

Further, all described DNA representations are created in a lab and mixed in a single
annealing reaction connecting the molecules according to the complementary rule. All
available pathways are simultaneously in parallel created in one probe. An example of a
short molecule is shown in Figure 2.

Figure 2. An example of a molecule after annealing.

An analogy with multiagent technologies is undoubtedly evident in this process. By
forming strands and units into massive DNA molecules, as if they were agents within
a cascade process, nucleotides provide a solution to the problem. The subsequent steps
intend to check if the molecules encoding the Hamiltonian path are within the strand or not.
The time consumption of DNA computing results from local interactions and clustering
growing linearly as the number of nodes. Subsequently, in [20], this characteristic is
compared with the same one appearing in the branch-and-bound method. It turns out
that DNA computing performs much better for the adjacency matrix sparsity parameters
equaling 0.85, 0.9, and 0.8 and the number of graph nodes arising from 37, 43, and 45,
respectively.
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3. Multiagent Network Systems

Creating an emergent intelligence system suggests many efforts compared to tradi-
tional elaboration, but its maintenance is significantly cheaper. Moreover, the multiagent
systems are considerable reliable because being significantly decentralized across the strong
hierarchy organized traditional architecture. This fact causes priority for their massive
applications in the business area, where the “actors” theory has appeared as an essential
alternative to the conventional business models.

This section considers several illustrative dynamic network systems composed of
intelligent collaborating sensors (agents). Without loss of generality, agents in the network
system are numbered. Given a network consisting of n nodes, let the interaction between
nodes be described by the directed graph GA = (N , E), where N = {1, . . . , n} is a set of
nodes (vertices) and E ⊆ N ×N is a set of edges. Denote by i ∈ N an identifier of i-th
node and (j, i) ∈ E if there is a directed edge from node j to node i. The latter means that
node j is able to transmit data to node i. For a node i ∈ N , the set of neighbors is defined
as N i = {j ∈ N : (j, i) ∈ E}. The in-degree of i ∈ N equals |N i|. Here and after, | · | is the
cardinality of a set, and the identifier of i-th node is used as a superscript and not as an
exponent. Let ∀i ∈ N N̄ i

t ⊂ N i be a subset of agents, which send information to agent i at
time instant t (its neighbors). The complexity of all presented methods is proportional to
the cardinality of this subset of agents |N̄ i

t |.

3.1. Airplane with Feathers

Control of turbulence is a known hardly treated problem. From a conventional
standpoint, this problem appears to be very difficult because unpredictable changes in
the current environment do not allow application control action prepared during a long
process. An alternative framework consists of using a set of agents as an investigation
system possessing complexity comparable to one of the studied phenomena. This section
aims to demonstrate that adaptation in complex systems to external disturbances can
be made similarly to multiagent systems with internal self-organization. This approach
is illustrated with a special experimental testbed. Similarly to the earlier anthill model,
there is no central powerful computational unit (super brain), and each element is a cheap
computational unit communicating only with its neighbors.

Starting to deal with discussed in this subsection problem, we firstly cover the air-
plane wings with hundreds of small rotating units endowed by pressure sensors. This
idea is bio-inspired cause all birds have feathers and all sharks have similar scales. The
system’s key feature is a massive amount of local feedback where each feather’s orientation
changes according to comparison with pressure deviations of neighbors. If the sum of
pressure moments deviations of neighbors is positive, then the feather rotates, increasing
the pressure; otherwise, it rotates to decrease pressure.

Initially, all plates are under the same pressure. If turbulence occurs, then they undergo
different wind pressure. To solve the problem of equating the influence we apply a so-called
Local Voting Protocol to disturb forces on different plates of the wing and transforming
airplane flow to a mode close to laminar. It has a multiagent structure and processes in a
real-time fashion.

Let xi
t be the deviation of the integrated pressure force on the “feather” ai, i ∈ N , at

time instant t. Each “feather” at time instant t sends the following information about its
state to the neighbors N̄ i

t :
yi

t = xi
t + ξ i

t, (1)

where ξ i
t is a noise.

Consider the Local Voting Protocol. Here, the control for each node is defined as a
weighted sum of the differences between information about its state and information about
the state of its neighbors:

ui
t = α ∑

j∈Ni
t

bi,j
t (yj

t − yi
t), (2)
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where α is the step-size parameter, bi,j
t are the weights. The consensus is reached when

xi
t ≈ xj

t for all i, j ∈ N .
Each feather gets the data from its own pressure sensor and communicates with neigh-

bors receiving information about their plates’ current pressure. Then it compares its own
pressure with pressures on neighbors. If its pressure is less than the summary comparison,
the feather changes its angles to increase the pressure. Otherwise, the angles are changed
to decrease the pressure. As a result, the whole system comes to a consensus [21].

In the intermediate stages, clusters with similar behavior of the feathers are formed.
Even if the system cannot come to a consensus, cluster control is still a much easier task
than managing a considerable array of heterogeneous elements. Many simulations show
the typical process of equalizing the pressures [22].

3.2. Load Balancing

Multiagent technology allows solving, on a finite time horizon, a typically hard prob-
lem of load balancing. In a huge network, multiagent technology can resolve this problem
reasonably compared to the traditional mathematical optimization tools consuming Local
Voting Protocol. Let N = {1, . . . , n} be a set of agents (nodes) with states

xi
t =

qi
t

pi
t
, (3)

where qi
t is a task queue length of agent i, i ∈ N and pi

t is an agent i productivity.
The dynamics of each agent i, i ∈ N is described by

qi
t+1 = qi

t − pi
t + zi

t + ui
t, (4)

where zi
t is the new job received by agent i at time t, ui

t is the result of jobs redistribution
between agents, which is obtained by using the selected protocol of jobs redistribution.
Each agent i ∈ N at time t can receive noisy observations about its own and its neighbor’s
queue length:

yi,j
t = qj

t + ξ
i,j
t ; j = i or j ∈ N i

t , (5)

where ξ
i,j
t are noises. The agent also receives information about productivity pi

t and about
its neighbors’ productivities pj

t, j ∈ N̄ i
t . The objective is to balance the load such that the

overall implementation time Tt = maxi∈N xi
t can be minimized.

An approximate consensus problem in a decentralized stochastic dynamic network
with incomplete information about the states of nodes, delaying in measurements, and a
changing connections structure is discussed in [23]. A solution can be found there using the
mentioned earlier protocol with non-vanishing steps. In a situation of a switching topology,
noisy, and delayed information about agent states, this protocol is also suitable. In [6], the
problem of optimizing the protocol parameters is studied. In [23], general theoretical results
are applied to the load balancing problem in stochastic dynamic networks with incomplete
information and changing configuration. There, a network of 1024 agents connected in
the circle is considered, and the number of incoming jobs. An agent’s assigning of the
next job is performed randomly following the uniform distribution. In addition, there
are n (number of all nodes) randomly changing connections between agents on each
iteration. The performance of the adaptive multiagent strategy with the redistribution
of jobs among “connected” neighbors is significantly better than the performance of the
strategy without redistribution.

The optimal distributed node scheduling in a multihop wireless network is discussed
in [24]. The proposed algorithm tries to semi-equalize the load (defined as the ratio of
the queue length over the number of allocated slots) through slot reallocation based on
local information exchange. The approach stems from the fact that the shortest delivery
time or delay occurs for the load being semi-equalized throughout the network. It is also
demonstrated that with Local Voting, the network system converges asymptotically toward
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the optimal scheduling. Simulation results show that the proposed algorithm achieves
better performance than other distributed algorithms in terms of average delay, maximum
delay, and fairness [24].

3.3. Multisensor-Multitarget Tracking Problem

Consider a distributed network system of n sensors collaborating to track m targets.
Decentralized algorithms have many advantages over centralized algorithms, especially
when agents only can exchange information locally with their neighbors [25]. The main
difference is that decentralized algorithms assume only local interaction between sensors,
while the centralized algorithms require governing data to a fusion center. If positions
of all m targets need to be computed, then m(d− 1) measurements have to be collected
simultaneously, where d is the space dimension. Such a procedure is often impractical.
There is no mutual data processing or communication center in a decentralized approach,
so the information exchange and all computations are performed in a decentralized way
(Figure 3). However, besides topological constraints (each sensor can interact only to a
few adjacent nodes of a network), communication between sensors can be restricted due
to, e.g., the limited capacity of communication channels, delays, and data distortions. A
possible solution to the multisensor-multitarget tracking problem, in this case, is to apply
a distributed stochastic approximation procedure to track the targets and Local Voting
Protocol to exchange the target position assessments [6]. Such an approach appears to be
workable even in the case of random, independent choice of sensors tracking at a particular
time instant.

Figure 3. Sensor i, i ∈ N estimates the state of target l at time instant t. The sensor also collects the
distances to the same target measured by its neighbors j1, j2 ∈ N̄ i

t ⊂ N i.

3.4. Synchronization in Networks of Kuramoto Oscillators

Yoshiki Kuramoto proposes a straightforward yet versatile nonlinear model [26]. This
approach appears to be a successful tool for an appropriate description of various biological
systems [26] and robotics [27] describing oscillatory dynamics of coupled oscillators, affect-
ing each other. Dynamics a network of n agents with one degree of freedom the following
describes each one (often called a phase of an oscillator) system of differential equations:

θ̇i
t = wi + ∑

j∈N i

Ki,j sin(θ j
t − θi

t), (6)

where θi
t is a phase of agent i, i ∈ N , Ki,j is a weighted adjacency matrix of the network, and

wi is a natural frequency. Agents have to synchronize their frequencies (θ̇i
t = θ̇

j
t, ∀i, j ∈ N )

or phases (θi
t = θ

j
t, ∀i, j ∈ N ) under certain conditions on wi and Ki,j.

A new approach proposed in [28] to treat complex multiagent systems makes it
possible to analyze processes such as local agent interactions synchronization and clustering
from a new standpoint. For example, mesoscopic control inputs for clusters associate with
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an algorithm of microscopic local interactions between agents, described by the Kuramoto
model [28].

Agents’ group synchronization arises during their local interactions. A clusterization
process acts much faster in comparison to the usual system lifecycle when the control
objectives are established by the system behavior within considerable time intervals. If
these periods are longer than the time needed for partition forming, then the created
clusters can be considered as new meso-scale objects with dynamics in the so-called “slow
time”, ignoring the short-term effects. These objects are called “mesoscopic” because
their live scale lies between the entire system (macro-level) and the individual agent’s
(micro-level) time levels [28]. Comprehensive models of complex systems with many
simple components (agents) are hardly controlled because of their large dimension and
technological obstacles arising in this context of barely resolved tasks. A system cannot
suitably track the individual agents’ traffic due to their small sizes and the high-frequency
control effects. New mesoscopic variables (clusters) can work with smaller amounts of
inputs, assigning them separately to each cluster.

4. Robots Communication without Routing

The central new upshot of this paper is a novel decentralized algorithm developed
in the general frame of the emerging intelligence, where robots as a whole system avoid
obstacles without gathering data about the whole field. Each one of these robots is a simple
device with a limited number of technical tools. Control of the robot community is based
on algorithms implementing group movement in an unspecified area, e.g., locations and
shapes of obstacles are unknown in advance together with a possible direction. There is no
camera with a general view and no traditional navigation system for motion tracking.

Self-organization of the system is provided by applying computationally efficient
autonomous navigation algorithms (such as the consensus Local Voting Protocol) [29]. A
vital ingredient is a paradigm suggesting an immediate response of a robot (agent) to the
data about the current situation collected by itself and a sufficiently small number of its
neighbors (local communications). At the macro level, these algorithms can guarantee, in
some extension, achieving the overall purpose.

We study problems of space robots aligning without traditional navigation sources.
A typical framework suggests increasing the number of sensors aiming to gather more
relevant information. It obviously leads to more complicated arrangements assuming
meaningful implementation outlays.

4.1. Swarm of Wheeled Robots

We consider a group of wheeled robots with the mission of moving to a given light
source when each robot has only two driving wheels and one ball bearing capable of
moving forward, backward, left, right, rotate in place to the left and the right. It also
has four light sensors, one rangefinder observing the front side towards the movement
direction, two cheap microcomputers, and a communication unit (see Figure 4). The robot’s
movement is implemented by the rotation of the motors set by the control signal. The
robot’s length, height, and width are less than 10 cm each.

Figure 4. Scheme of a robot with 3 wheels, 2 servo motors connected to two wheels, 4 light sensors,
1 distance-sensor observing the front side towards the movement direction, and 1 magnetometer.
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Missions are performed as follows.

1. In the beginning, all robots stand along one wall in a room where obstacles with a
height exceeding three times the height of the robots are randomly placed.

2. One or two light sources are located at other walls, and the robots start to move in the
direction of a light source when one of them turns on. If there are two light sources,
they are never turned on at the same time: if one is turned on, the other immediately
turns off.

3. Each robot has a collision-avoidance system. Robots start splitting into groups when
they try to overcome obstacles (see Figure 5).

4. The direction of moving may be changed if one light source turns off and another one
turns on.

5. The mission completes when all robots gather near a luminous light source.

Figure 5. Movement of a swarm from point A to point B using the Local Voting Protocol.

Each robot has no information about its and its neighbors’ locations in any global
coordinate system. A robot has its own local orthogonal coordinate system with the origin
at the center of mass, and the first axis is directed along with the movement of the robot.
The second axis is orthogonal to first one and directed from left to right. The last axis is
orthogonal to the plane defined by two first axes and has direction to up. The location of
the four light sensors in the base plane is given in Figure 4. A distance sensor is situated at
the front of a robot, measuring a distance to obstacle with the first axis when it is in a range
from 10 to 100 cm. The magnetometer of each robot determines the angle between the first
axes and the direction to the Nord.

As before, denote by N i
t a set of all neighboring agent of an agent i at time instant

t and by N̄ i
t (N̄ i

t ⊂ N i
t ) the set of neighbors whose data the robot i will receive over the

network. The maximal number of elements N̄ i
t is selected based on the performance of

the data transmission module, but it cannot be more that N i
t . If |N̄ i

t | = |N i
t |, then the

data of all neighbors are taken into account; if |N̄ i
t | < |N i

t |, then the neighbors are chosen
randomly. There are several algorithms intended to the searching technique used to detect
and select the nearest neighbor (see [30]). In this work, we apply the following approach
employing the strength of the received signals:

1. sort all visible signals according to the power level from highest to lowest;
2. cut off those neighbors whose signal strengths are lower than a certain threshold;
3. select the prespecified number of neighbors randomly;
4. receive the data from these neighbors.

If there is no light source, then robots do not move. Otherwise, each robot travels
with a given speed in the source direction, intending to reach it, bypassing encountered
obstacles. More precisely, let dmin > 10, dmax < 100 and be fixed numbers, α ∈ [0, 1] and
β ∈ [0, 1] be common predefined parameters of navigation protocols for each robot, and φ
be the operator of vector rotation by angel 0.1π. The distance-sensor measures the distance
di

t to the nearest obstacle (along the axis of the motion), and the light sensors provide the
data li,p

t , p = 0, 1, 2, 3, about illuminations. Each light sensor is oriented to the direction of
corresponding corners and has a range 0.75π. At each time instant t, robot i calculates a
path direction vector si

t to the light source by light sensors data and magnetometer data
(azimuth—the angle between the first axes and direction to the Nord). Let m0, m1, m2, m3 be
an order of the light sensors p = 0, 1, 2, 3 according to decreasing order of light power li,p

t .
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Path direction si
t is calculated by the magnetometer data and the proportional difference

between two largest values of light values (li,m0
t and li,m1

t ) with the corresponding shift to
the sector defined by m0 and m1. For example, if the most significant light values are equal,
then the robot moves straightforward.

The weighted actual path direction vector ri
t of robot i at time instant t defines with a

weight equals the mean of the rotation speed of two wheels. Depending on the distance
to the obstacle di

t and the front light sensors values li,0
t , li,3

t , each robot i computes its own
confidence parameter qi

t (a potential of its chosen direction):

qi
t = (1− β)

(
1−

∣∣∣∣∣ li,0
t − li,3

t

li,0
t + li,3

t

∣∣∣∣∣
)
+ β

min{di
t, dmax}

dmax
, (7)

which indicates the influence of the data light and range sensors for confidence. The case
β = 0 excludes the impact on the certainty of the data of obstacle sensor, and the case
β = 1 excludes the data of light sensors. Weighted actual path direction ri

t and confidence
qi

t are state parameters of robot i, which it broadcasts in the network. Robot i receives
from neighbors their states rj

t, qj
t, j ∈ N̄ i

t . Based on the whole obtained information, the
robot chooses the next movement direction ri

t+1, which is selected according to one of three
possible scenarios depending on the value di

t of the distance sensor, which are listed below.

1. If di
t ≥ dmax, then there are no visible obstacles along the path direction, and the final

path direction is calculated as follows:

ri
t+1 = si

t(1− δi
tγ

i
t) + α

γi
t

|N̄ i
t |

∑
j∈N̄ i

t

rj
tq

j
t − ri

tq
i
t, (8)

where
δi

t =
α

|N̄ i
t |

∑
j∈N̄ i

t

qj
t − qi

t, γi
t = 1/(qi

t + δi
t).

2. If dmin < di
t < dmax, then robot i makes correction rotation R by ±φ to previously

computed si
t. The sign of rotation is selected based on appropriate comparisons

light sensors data. After that, the new path direction ri
t+1 is computed by the same

formula (8) with updated value si
t := Rsi

t.
3. If di

t ≤ dmin, then the robot goal is to find a direction of movement in which di
t > dmin,

and it does not use data from neighbors and light sensors. In this mode, the robot
randomly selects the direction of rotation and rotates in place until the distance
di

t ≤ dmin is more than dmin.

The described algorithm demonstrates that each robot operates according to a well-
defined procedure without knowing its location and the location of its neighbors in the
global system. A robot is only aware of its neighbors’ states, their path direction, and
confidence correcting their own path direction resting upon these data. An idea of this
algorithm is shown in Figure 6. An example of three robots group exhibits that the robot
moving last bypasses obstacles along the optimal route. Note that it does not recognize
these obstacles but is guided only by its neighbors’ data (Figure 6).
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Figure 6. Example of three robots group movement.

4.2. Simulation Results

The system is simulated in the Webots simulator [31] on a laptop with an AMD Ryzen
5 4600HS processor, Geforce 1650 graphics card, 4 GB memory, 24 GB RAM, and SSD.

There is an area of 40 × 22 squares (rectangle cells) and one light source located at its
border (Figure 7). A robot fits one square. Two obstacles are randomly placed on the field.
The height of these obstacles exceeds the size of a single robot by 5 times, and the width by
9 times. Obstacles cover 50% of the sight line of the light source.

Figure 7. Initial simulation state. Robots are depicted as red rectangles, obstacles as gray circles.

A group of 10 identical robots is considered. Each robot either stands still or moves
at a given speed vi(t) measured as the number of squares per unit time. The speed vi(t)
changes by ±1 per clock cycle and can reach a maximum value of 2. The number of the
neighbors at each time instant t |N̄ i

t | is 5. The aim of each robot is to move towards the
light source, avoiding collisions with obstacles.

The uniform robot controller algorithm presented in Section 4.1 is implemented in the
Python programming language. The same type of controller is used for all robots. As was
said before, robots do not know their location and the configuration of the obstacles and
receive data of their nearest neighbors’ states. Data transmission in a group is implemented
using a receiver/transmitter system. To control the number of neighbors at receiving
devices, the visibility zone is limited to 2 squares. The obstacles are observable at a distance
of 3 squares.

The scenario for the experiment is as such.

1. Robots stand in a row at the same wall.
2. One light source is turned on the opposite side.
3. Robots start moving towards the light source and avoid obstacles.
4. The experiment is finished when all robots reach the opposite wall.
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The step-size parameter α plays an essential role in the algorithm. Therefore, we check
its possible values lying in the interval [0, 1] with step 0.05 and start point 0 and evaluate
the appropriate times needed for all robots to reach the opposite wall. For the purity aim,
for each given value of α, ten experiments are provided, and the average time is calculated.

Figure 8 shows the simulation results with different values of α. α = 0.8± 0.05 can be
recognized as the optimal value. During the simulation, it is found that at high values of
the parameter α, the robots begin to rely too much upon the noisy data received from their
neighbors and even turn away from a light source. At lower values of α, the robots are
guided mostly by their own sensors and choose non-optimal trajectories to avoid obstacles.
As a result, they do not benefit from working in a group. At the optimal value, the robots
do not interfere with each other and work in a group to achieve a common goal.

Figure 8. Dependence of the experiment time on step-size parameter α.

The simulation results are shown in Figure 9. The left part of the figure provides
the robot movement without the usage of the Local Voting Protocol. In this case, robots
move considering only the knowledge of the direction to the source and the distance to the
obstacle. It is clearly observed that some of the robots might collide in a small number of
next steps. The right part of this figure demonstrates the robot movement according to the
novel algorithm provided in Section 4.1 with optimal step-size α = 0.8. The robots avoid
collisions with the obstacles and between themselves as they use the Local Voting Protocol
to obtain the data from their neighbors.

Figure 9. Screenshots of the simulations. The robots are depicted as red rectangles, obstacles as
gray circles. The left side presents the simulation without Local Voting Protocol (α = 0). In this
case, robots do not keep the distance between them. The right side presents the simulation with
step-size parameter α = 0.8 of the algorithm from Section 4.1, where the robots keep the distance and
avoid collisions.

It is important to mention that the Local Voting Protocol for related resource allocation
problems was previously considered and evaluated in [32]. The current article is intended
to describe the functionality of approach modifications. Theoretical investigations of the
problem are planned to be published in future works.
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5. Conclusions

The method proposed in the article is distinguished by its simplicity of implemen-
tation and potentially low cost. Alternative techniques suggested in the literature are
based on the idea of the SLAM (simultaneous localization and mapping) type and require
significantly more considerable information amounts from sensors together with massive
computation resources. It leads to high systems complexity preventing obtaining a solution
at a suitable time.

The appearance of emergent intelligence in the discussed examples encourages the
essential “rethink” of the common notion of algorithms computability, which is traditionally
considered the feasibility of implementing a given function as a combination of meanings
from a basic set. Many practical problems can hardly be resolved by algorithmic fashion
with a reasonable time conducting “brute force”-like approaches for checking almost every
suitable input. A more widespread technique now is using networked systems with
asynchronous nodes consisting of

{sensors, actuators, computing units}

which can be considered as a set of models. If the network complexity is similar to the
complexity of a solving problem, then this problem can be appropriately treated for a finite
(not huge) time. Applying the emergent intelligence methodology makes it possible to
propose new perspectives for the study of such systems. The considered examples also
exhibit appearance of the mentioned self-organization schemes in multiagent arrangements,
aspiring to cluster structures.
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