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Abstract: In the present paper, we mainly focus on the symmetry of the solutions of a given PDE
via Lie group method. Meanwhile we transfer the given PDE to ODEs by making use of similarity
reductions. Furthermore, it is shown that the given PDE is self-adjoining, and we also study the
conservation law via multiplier approach.
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1. Introduction

When investigating the classification of the solutions of differential equations, Sophus
Lie introduced the notion of the continuous transformation group, which was named
the Lie group by the following people in memory of him. Afterwards, the application
of Lie groups has been developed by lots of mathematicians, such as Ovsiannikov [1],
Ibragimov [2], Olver [3] and Bluman et al. [4,5]. Symmetry is one of the intrinsic features
of a partial differential equation (PDE). Lie group analysis is one of the most powerful
methods to study the symmetry of their solutions. Based on the symmetries of a PDE,
many other properties of the equation, such as exact solutions to conservation laws can
be successively considered. In any case, another method to solve the nonlinear evolution
equation (such as Burgers equation) is to use Hopf cole transformation in a high order
spectral column setting [6,7].

The conservation laws (Cls) have drawn great attention from the mathematical physi-
cists. In the past few decades, many methods for dealing with the Cls were derived,
the most famous being Noether’s approach [8], multiplier approach and Ibragimov’s
method [9]. Moreover, Cls for nonlinearly self-adjoint systems can be constructed system-
atically by pairs of symmetries and adjoint symmetries. In particular, ref. [10] supplies
the most general connection between Cls and pairs of symmetries and adjoint symmetries
for non-self-adjoint systems. On the contribution of the Lie symmetry method, significant
studies have been performed on the integrability of the nonlinear PDEs, group classifi-
cation, optimal system, reduced solutions and conservation laws, such as [11–23], and
references therein.

In [24,25], a new completely integrable equation

mt =
1
2
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m2

)
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2
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)
x
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was proposed. It was shown that this equation has no smooth solitons and it has bi-
Hamiltonian structure and Lax pair. At the end of [25], Qiao introduced a more general PDE
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with a constant k ∈ R.
If k = 0, it is a trivial case; if k = −1, it is a linear case; if k = 1

2 , it is a Harry–Dym
case; if k = 2, it is reduced to (1). Unless explicitly stated, throughout this paper we always
assume k 6= 0,−1. Sakovich in [26] supplied a transformation which was used to derive
smooth soliton solutions of the new equation from the known rational and soliton solutions
of the old one. To the authors’ knowledge, the Lie symmetry analysis, self-adjointness and
conservation laws of (2) have not been studied. In this paper, we mainly focus on the above
aspects on (2) for k 6= 0,−1.

If we perform the transformation u(x, t) = 1
m(x,t) , Equation (2) is reduced to

ut +
k(k− 1)(k− 2)

2
uk−1u3

x +
3k(k− 1)

2
ukuxuxx +

k
2

uk+1uxxx −
k
2

uk+1ux = 0. (3)

From now on, we will focus on the study of Equation (2), which is equivalent to that
of Equation (2).

2. Lie Symmetries of Equation (2)

In this section, we shall investigate the Lie symmetry analysis of Equation (2).
First of all, let us consider the Lie group of point transformations

x∗ = x + εξ(x, t, u) + O(ε2),

t∗ = t + ετ(x, t, u) + O(ε2),

u∗ = u + εφ(x, t, u) + O(ε2),

(4)

with a small parameter ε� 1. The vector field associated with the above transformation
group of transformations can expressed as

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
, (5)

where ξ(x, t, u), τ(x, t, u) and φ(x, t, u) are coefficient functions of the vector field to
be determined.

Theorem 1. For the arbitrary real parameter k, if k 6= 0,−1, the complete group classification of
Equation (2) is as follows: (1) If k 6= 1

2 , the vector field of Equation (2) is

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 = −(k + 1)t

∂

∂t
+ u

∂

∂u
. (6)

(2) If k = 1
2 , the vector field of Equation (2) is

V1 = ∂
∂x , V2 = ∂

∂t , V3 = − 3
2 t ∂

∂t + u ∂
∂u ,

V4 = 1
2 ex ∂

∂x + exu ∂
∂u , V5 = − 1

2 e−x ∂
∂x + e−xu ∂

∂u .
(7)

Proof. The third prolongation of V is

pr(3)V = V + φx ∂
∂ux

+ φt ∂
∂ut

+ φxx ∂
∂uxx

+ φxt ∂
∂uxt

+ φtt ∂
∂utt

(8)

+φxxx ∂
∂uxxx

+ φxtt ∂
∂uxtt

+ φxxt ∂
∂uxxt

+ φttt ∂
∂uttt

,
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where the explicit expressions of unknown functions φt, φx, φxx, φxxx are as follows

φt = Dt(φ− ξux − τut) + ξuxt + τutt, (9)

φx = Dx(φ− ξux − τut) + ξuxx + τuxt, (10)

φxx = D2
x(φ− ξux − τut) + ξuxxx + τuxxt, (11)

φxxx = D3
x(φ− ξux − τut) + ξuxxxx + τuxxxt. (12)

In (9)–(12), Dx and Dt are both total derivatives with respect to x, t, respectively. We
denote the left hand side of Equation (2) by ∆. In view of pr(3)V(∆)|∆=0 = 0, we obtain

0 = φt + k(k−1)2(k−2)
2 uk−2φu3

x +
3k(k−1)(k−2)

2 uk−1φxu2
x

+ 3k2(k−1)
2 uk−1φuxuxxx +

3k(k−1)
2 ukφxuxx +

3k(k−1)
2 ukφxxux

+ k(k+1)
2 ukφuxxx +

k
2 uk+1φxxx − k(k+1)

2 ukφux − k
2 uk+1φx.

(13)

We substitute (9)–(12) into (8) and replace ut by

−
(

k(k− 1)(k− 2)
2

uk−1u3
x +

3k(k− 1)
2

ukuxuxx +
k
2

uk+1uxxx −
k
2

uk+1ux

)
whenever it appears in (13) and divide it into several cases to discuss it.

Firstly we assume k 6= 1, 2. By solving (13), one can get following forms for the
infinitesimal elements ξ, τ, φ:

τx = τu = 0, τ = τ(t),
ξu = 0, φuu = 0,
uτt + (k + 1)φ− 3uξx = 0,
uφu + uτt + kφ− 3uξx = 0,
2uφu + uτt + (k− 1)φ− 3uξx = 0.

(14)

If k 6= 1
2 , Equation (14) implies ξ = c, τ = −(k + 1)at + b, φ = au, which yields the

vector fields in (6).
If k = 1

2 , Equation (14) implies

ξ = 1
2 c1ex − 1

2 c2e−x + c4,
τ = − 3

2 c3t + c5,
φ = (c1ex + c2e−x + c3)u,

which yields the vector fields in (7).
Secondly, we assume k = 1 or k = 2, similar process yields the vector fields in (6).

It is necessary to check that the vector fields form a Lie algebra, respectively. Taking (7)
as an example,

[V1, V2] = 0, [V1, V3] = 0, [V1, V4] = V4, [V1, V5] = −V5,

[V2, V3] = −
3
2

V2, [V2, V4] = 0, [V2, V5] = 0, [V3, V4] = 0,

[V3, V5] = 0, [V4, V5] =
1
2

V1.

We denote this Lie algebra by L. If we drop the relation in (7) of V1, · · · , V5, it will
be an abstract Lie algebra. The vector fields corresponding to V1, · · · , V5 supply a Lie
algebra representation of L (see [27]). In addition, L can be decomposed as L = s⊕ n,
where s = span{V1, V4, V5} denotes the simple ideal of L, n = span{V2, V3} stands for the
nilpotent subalgebra of L.
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As we know, infinitesimal generators Vi generate the one-parameter transform groups,
by solving the following ordinary differential equations with the initial conditions:

dx∗
dε = ξ(x∗, t∗, u∗), x∗|ε=0 = x,

dt∗
dε = τ(x∗, t∗, u∗), t∗|ε=0 = t,
du∗
dε = φ(x∗, t∗, u∗), u∗|ε=0 = u,

it follows the case k 6= 1
2

G1 : (x, t, u) 7−→ (x + ε, t, u), (15)

G2 : (x, t, u) 7−→ (x, t + ε, u), (16)

G3 : (x, t, u) 7−→ (eεx, e−(k+1)εt, eεu), (17)

and case k = 1
2

G1 : (x, t, u) 7−→ (x + ε, t, u), (18)

G2 : (x, t, u) 7−→ (x, t + ε, u), (19)

G3 : (x, t, u) 7−→
(
eεx, e−

3
2 εt, eεu

)
, (20)

G4 : (x, t, u) 7−→
(

x− ln(2− εex) + ln 2, t,
4u

(2− εex)2

)
, (21)

G5 : (x, t, u) 7−→
(

x + ln(2− εe−x)− ln 2, t,
4u

(2− εe−x)2

)
. (22)

Remark 1. Any solution of Equation (2) when k 6= 1
2 is invariant under the operation of G1, G2, G3

and their products in (15)–(17).
Any solution of Equation (2) when k = 1

2 is invariant under the operation of G1–G5 and their
products in (18)–(22).

Remark 2. If k 6= 1
2 , Equation (2) is also invariant under the operation of the prolongations of

V1–V3. We take V3 as an example, since the prolongations of V1 and V2 are trivial.

pr(3)V3(∆) = (k + 2)∆.

Remark 3. If k = 1
2 , Equation (2) is invariant under the operation of the prolongations of V1–V5.

For instance
pr(3)V4(∆) = ex∆, pr(3)V5(∆) = e−x∆.

3. Similarity Reductions for Equation (2)

In this section, we shall construct the similarity variables so as to deal with the
symmetry reduction, which transfer the PDE into ODE. Considering the fact that the vector
fields of k 6= 1

2 and k = 1
2 are partly the same, we shall discuss them together.

(1) For the generator V1, we assume ζ = t, u = f (ζ) and obtain the trivial solution
f = c, where c is an arbitrary nonzero constant.

(2) For the linear combination V2, we have

u = f (ζ), (23)

where ζ = x. Substituting (23) into Equation (2), we can get

(k− 1)(k− 2) f ′3 − 3(k− 1) f f ′ f ′′ + f 2 f ′′′ − f 2 f ′ = 0, (24)

where f
′
= d f

dζ .
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(3) For the generator V3, we have

u = t−
1

k+1 f (ζ), (25)

where ζ = x. Substituting (25) into Equation (2), we arrive at

− 1
k + 1

f +
k(k− 1)(k− 2)

2
f k−1 f ′3 − 3k(k− 1)

2
f k f ′ f ′′ +

k
2

f k+1 f
′′′ − k

2
f k+1 f

′
= 0, (26)

where f
′
= d f

dζ .
(4) For the generator V4, we have

u = f (ζ)e2x, (27)

where ζ = t. By substituting (27) into Equation (2), we get the trivial solution f = c, where
c is an arbitrary nonzero constant.

(5) For the generator V5, we have

u = f (ζ)e−2x, (28)

where ζ = t, we get the trivial solution f = c, where c is an arbitrary nonzero constant.

The ODEs (24) and (26) hold for arbitrary k, including
1
2

, but the similarity reductions

of V4 and V5 only belong to the equation when k =
1
2

.

In the above, we sketch the graphs of f (ξ) in Equations (24) and (26) and 3D-plot of
u(x, t) in Equations (23)–(26) under initial conditions f (0) = 3

2 , f (1) = 1, f ′(0) = 0. Please
refer to Figures 1–6.
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ζ
)

k = 10, 7.5, 5, 1.5, 0.2,
          −0.2, −1.5, −5, −7.5, −10

Figure 1. The graph of f (ξ) given by Equation (24) as k near 0.
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Figure 2. The graph of f (ξ) given by Equation (24) as k approaching −∞ and +∞.
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Figure 3. The graph of u(x, t) given by Equations (23) and (24) for k = 0.5.
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Figure 4. The graph of u(x, t) given by Equations (23) and (24) for k = 2.
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Figure 5. The graph of f (ξ) given by Equation (26) as k near 0.
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Figure 6. The graph of u(x, t) given by Equations (25) and (26) for k = 35.

4. Nonlinear Self-Adjointness and Conservation Law

For given PDEs
Rβ(x, u, u(1), · · · , u(k)) = 0, (29)

define the Euler–Lagrange operator

δ

δuα
≡ ∂

∂uα
+

∞

∑
j=1

(−1)jDi1 · · ·Dij

∂

∂uα
i1···ij

, α = 1, 2, · · · , m, (30)

and the formal Lagrangian

L =
m

∑
β=1

vβRβ(x, u, u(1), · · · , u(k)). (31)

The adjoint equations is given by

(Rα)∗(x, u, u(1), · · · , u(k)) =
δL
δuα

= 0, α = 1, 2, · · · , m, v = v(x). (32)

Theorem 2. The differential Equation (2) is self-adjoining if and only if k 6= 1.
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Proof. It is obvious that α = 1 and Rα(x, u, u(1), · · · , u(k)) = ∆(x, t, u, ut, ux, uxx, uxxx). The
formal Lagrangian is

L = v
(

ut +
k(k− 1)(k− 2)

2
uk−1u3

x +
3k(k− 1)

2
ukuxuxx +

k
2

uk+1uxxx −
k
2

uk+1ux

)
. (33)

Substituting it into δ
δu = 0, we have the adjoint equation of Equation (2)

k(k− 1)(k− 2)uk−2vu3
x − k

2 uk+1vxxx − 3kuk−1vxu2
x + 3k(k− 2)uk−1vuxuxx

+ k
2 uk+1vx − 3kukvxxux − 3kukvxuxx − vt = 0.

(34)

By means of[
k(k− 1)(k− 2)uk−2vu3

x − k
2 uk+1vxxx − 3kuk−1vxu2

x + 3k(k− 2)uk−1vuxuxx
+ k

2 uk+1vx − 3kukvxxux − 3kukvxuxx − vt
]
|v=ϕ(x,t,u) = λ∆,

we have

ϕ =

{
(c1ex + c2e−x + c3)u−2, if k 6= 1,
0, if k = 1,

(35)

which completes the proof.

We will now investigate the conservation law for Equation (2) by multiplier. For the
differential Equation (29) with β = 1, we suppose Λ = Λ(x, u) is its multiplier and Ti’s are
its conserve vectors, then Λ satisfies the property

DiTi = ΛE. (36)

By (35) and (36), we have[
(c1ex + c2e−x + c3)u−2][ut +

k(k−1)(k−2)
2 uk−1u3

x +
3k(k−1)

2 ukuxuxx
+ k

2 uk+1uxxx − k
2 uk+1ux

]
= Dx

[
c1

(
k(k−1)

2 uk−2exu2
x +

k
2 uk−1exuxx − k

2 uk−1exux

)
+c2

(
k(k−1)

2 uk−2e−xu2
x +

k
2 uk−1e−xuxx +

k
2 uk−1e−xux

)
+c3

(
k(k−1)

2 uk−2u2
x +

k
2 uk−1uxx − 1

2 uk
)]

+Dt
[
− (c1ex + c2e−x + c3)u−1].

Therefore the conserved vectors for Equation (2) are

Tx
1 = k(k−1)

2 uk−2exu2
x +

k
2 uk−1exuxx − k

2 uk−1exux, Tt
1 = −exu−1,

Tx
2 = k(k−1)

2 uk−2e−xu2
x +

k
2 uk−1e−xuxx +

k
2 uk−1e−xux, Tt

2 = −e−xu−1,
Tx

3 = k(k−1)
2 uk−2u2

x +
k
2 uk−1uxx − 1

2 uk, Tt
3 = −u−1.

5. Discussion

We suggest a more general PDE:

mt = c
(

1
mk

)
xxx
− a
(

1
m

)
x
− b
(

1
mk

)
x
, (37)

with k ∈ R and bc 6= 0. If a = 0, b = c =
1
2

, it becomes Equation (2). The Lie symmetry
and similarity reductions and the soliton solutions can be researched in the near future.
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6. Conclusions

1. In this paper, the vector fields which make the equation under consideration symme-
try are obtained. The Lie algebras and Lie transformation groups are performed. Moreover,
it is pointed out that the vector fields supply a representation of the Lie algebra.

2. By the similarity reductions the equation under consideration is transferred to ODEs.
3. It is shown that the equation under consideration is nonlinear adjoint if and only if

k 6= 1. The conserved vectors are obtained by multiplier method.
4. The vector fields generate the equation under consideration supply a representation

of a Lie algebra. However, for a given finitely dimensional Lie algebra, such as nine types
of simply Lie algebras, how to get its representation via vector fields? If we have already
obtained the vector fields, can we get the differential equation which generates the vector
field? If the differential equation is obtained, is it unique? All of them are the aims that we
will study in the near future.
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