
mathematics

Article

A Comparative Study among New Hybrid Root Finding
Algorithms and Traditional Methods

Elsayed Badr 1,2,* , Sultan Almotairi 3,* and Abdallah El Ghamry 4

����������
�������

Citation: Badr, E.; Almotairi, S.;

Ghamry, A.E. A Comparative Study

among New Hybrid Root Finding

Algorithms and Traditional Methods.

Mathematics 2021, 9, 1306. https://

doi.org/10.3390/math9111306

Academic Editor: Ioannis Dassios

Received: 29 April 2021

Accepted: 3 June 2021

Published: 7 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Scientific Computing Department, Faculty of Computers & Artificial Intelligence, Benha University,
Benha 13518, Egypt

2 Higher Technological Institute, 10th of Ramadan City, Embassies District, Nasr City, Cairo 11765, Egypt
3 Department of Natural and Applied Sciences, Community College Majmaah University,

Al-Majmaah 11952, Saudi Arabia
4 Computer Science Department, Faculty of Computers & Artificial Intelligence, Benha University,

Benha 13518, Egypt; abdallah17163@fci.bu.edu.eg
* Correspondence: badrgraph@gmail.com (E.B.); almotairi@mu.edu.sa (S.A.)

Abstract: In this paper, we propose a novel blended algorithm that has the advantages of the
trisection method and the false position method. Numerical results indicate that the proposed
algorithm outperforms the secant, the trisection, the Newton–Raphson, the bisection and the regula
falsi methods, as well as the hybrid of the last two methods proposed by Sabharwal, with regard to
the number of iterations and the average running time.

Keywords: hybrid method; trisection; bisection; false position; Newton–Raphson; secant; dynamical systems

1. Introduction

There are many sciences (mathematics, computer science, dynamical systems in
engineering, agriculture, biomedical, etc.) that require finding the roots of non-linear
equations. When there is not an analytic solution, we try to determine a numerical solution.
There is not a specific algorithm for solving every non-linear equation efficiently.

There are several pure methods for solving such problems, including the pure, meta-
heuristic and blended methods. Pure methods include classical techniques such as the
bisection method, the false position method, the secant method and the Newton–Raphson
method, etc. Metaheuristic methods use metaheuristic algorithms such as particle swarm
optimization, firefly, and ant colony for root finding, whereas blended methods are hybrid
combinations of two classical methods.

There is not a specific method for solving every non-linear equation efficiently. In
general, we can see more details about classical methods in [1–4] and especially for the
bisection and Newton–Raphson methods in [5–8]. Other problems such as minimization,
target shooting, etc. are discussed in [9–14].

Sabharwal [15] proposed a novel blended method that is a dynamic hybrid of the
bisection and false position methods. He deduced that his algorithm outperformed pure
methods (bisection and false position). On the other hand, he observed that his algorithm
outperformed the secant method and the Newton–Raphson method according to the
number of iterations. Sabharwal did not analyze his algorithm according to the running
time, but he was satisfied with the iterations number only. Perhaps there is a method
that has a small number of iterations, but the execution time is large and vice versa. For
this reason, the iteration number and the running time are important metrics to evaluate
the algorithms. Unfortunately, most researchers have not paid attention to the details
of finding the running time. Furthermore, they did not discuss and did not answer the
following question: why does the running time change from one run to another on the
used software package?

Mathematics 2021, 9, 1306. https://doi.org/10.3390/math9111306 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7666-1169
https://orcid.org/0000-0003-2050-5236
https://doi.org/10.3390/math9111306
https://doi.org/10.3390/math9111306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111306
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9111306?type=check_update&version=1

Mathematics 2021, 9, 1306 2 of 15

The genetic algorithm was used to compare among the classical methods [9–11] based
on the fitness ratio of the equations. The authors deduced that the genetic algorithm
is more efficient than the classical algorithms for solving the functions x2 − x − 2 [12]
and x2 + 2 x − 7 [11]. Mansouri et al. [12] presented a new iterative method to determine
the fixed point of a nonlinear function. Therefore, they combined ideas proposed in the
artificial bee colony algorithm [13] and the bisection method [14]. They illustrate this
method with four benchmark functions and compare results with others methods, such as
artificial bee colony (ABC), particle swarm optimization (PSO), genetic algorithm (GA) and
firefly algorithms.

For more details about the classical methods, hybrid methods and the metaheuristic
approaches, the reader can refer to [16,17].

In this work, we propose a novel blended algorithm that has the advantages of the
trisection method and the false position algorithm. The computational results show that
the proposed algorithm outperforms the trisection and regula falsi methods. On the other
hand, the introduced algorithm outperforms the bisection, Newton–Raphson and secant
methods according to the iteration number and the average of running time. Finally, the
implementation results show the superiority of the proposed algorithm on the blended
bisection and false position algorithm, which was proposed by Sabharwal [15]. The results
presented in this paper open the way for presenting new methods that compete with
traditional methods and may replace them in software packages.

The rest of this work is organized as follows: The pure methods for determining
the roots of non-linear equations are introduced in Section 2. The blended algorithms
for finding the roots of non-linear equations are presented in Section 3. In Section 4, the
numerical results analysis and statistical test among the pure methods and the blended
algorithms are provided. Finally, conclusions are drawn in Section 5.

2. Pure Methods

In this section, we introduce five pure methods for finding the roots of non-linear
equations. These methods are the bisection method, the trisection method, the false
position method, the secant method and the Newton–Raphson method. We contribute to
implementing the trisection algorithm with equal subintervals that overcomes the bisection
algorithm on fifteen benchmark equations as shown in Section 3. On the other hand,
the trisection algorithm also outperforms the false position method, secant method and
Newton–Raphson method partially, as shown in Section 3.

2.1. Bisection Method

We assume that the function f (x) is defined and continuous on the closed interval [a, b],
where the signals of f (x) at the ends (a and b) are different. We divide the interval [a, b] into
two halves, where x = a+b

2 , if f (x) = 0; then, x becomes a solution for the equation f (x) = 0.
Otherwise, (f (x) 6= 0) and we can choose one subinterval [a, x] or [x, b] that has different
signals of f (x) at its ends. We repeat dividing the new subinterval into two halves until
we reach the exact solution x where f (x) = 0 or the approximate solution f (x) ≈ 0 with
tolerance, eps. The value of eps closes to zero as shown in Algorithm 1 and other algorithms.

The size of the interval was reduced by half at each iteration. Therefore the value eps
is determined from the following formula:

eps =
b− a

2n (1)

where n is the number of iterations. From (1), the number of iterations is found by

n =

⌈
log2(

b− a
eps

)

⌉
(2)

Mathematics 2021, 9, 1306 3 of 15

Algorithm 1. Bisection(f, a, b, eps).

Input: The function f (x),
The interval [a, b] where the root lies in,
The absolute error (eps).

Output: The root (x),
The value of f (x)
Numbers of iterations (n),
The interval [a, b] where the root lies in

n := 0
while true do

n := n + 1
x := (a + b)/2
if |f (x)| <= eps.

return x, f (x), n, a, b
else if f (a) * f (x) < 0

b := x
else

a := x
end (while)

The bisection method is a bracketing method, so it brackets the root in the interval
[a, b], and at each iteration, the size of the interval [a, b] is halved. Accordingly, it reduces
the error between the approximation root and the exact root for any iteration. On the other
hand, the bisection method works quickly if the approximate root is far from the endpoint
of the interval; otherwise, it needs more iterations to reach the root [17].

Advantages and Disadvantages of the Bisection Method

The bisection method is simple to implement, and its convergence is guaranteed. On
the other hand, it has a relatively slow convergence, it needs different signs for the function
values of the endpoints, and the test for checking this affects the complexity in the number
of operations.

2.2. Trisection Method

The trisection method is like the bisection method, except that it divides the interval
[a, b] into three subintervals, while the bisection method divides the interval [a, b] into two
partial periods. Algorithm 2 divides the interval [a, b] into three equal subintervals and
searches for the root in the subinterval that contains different signs of the function values
at the endpoints of this subinterval.

If the condition of termination is true, then the iteration has finished its task; otherwise,
the algorithm repeats the calculations.

In order to divide the interval [a, b] into equal three parts by x1 and x2, we need to
know the locations of x1 and x2 as the following:

As shown in Figure 1, since
x1 − a = b - x2 (3)

x2 − x1 = x1 − a (4)

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 17

If the condition of termination is true, then the iteration has finished its task; other-

wise, the algorithm repeats the calculations.

In order to divide the interval [a, b] into equal three parts by x1 and x2, we need to

know the locations of x1 and x2 as the following:

As shown in Figure 1, since

x1 − a = b – x2

(3)

x2 − x1 = x1 − a

(4)

By solving Equation (3) and Equation (4),

Figure 1. How to divide the interval [a, b] into three subintervals.

We get

1

2

3

a b
x

And

2

2

3

b a
x

The size of the interval [a, b] decreases to a third with each repetition. Therefore, the

value eps is determined from the following formula:

3n

b a
eps

 (5)

where n is the number of iterations. From (5) the number of iterations is found by

3log ()
b a

n
eps

 (6)

When we compare Equations (2) and (6), we conclude that the iterations number of

the trisection algorithm is less than the iterations number of the bisection algorithm. We

might think that the trisection algorithm is better than the bisection algorithm since it

requires a few iterations. However, it might be the case that one iteration of the trisection

algorithm has an execution time greater than the execution time of one iteration of the

bisection algorithm. Therefore, we will consider both execution time and the number of

iterations to evaluate the different algorithms.

Algorithm 2 Trisection(f, a, b, eps)

Input: The function f(x),

The interval [a, b] where the root lies in,

The absolute error (eps).

Output: The root (x),

The value of f(x)

Numbers of iterations (n),

The interval [a, b] where the root lies in

Figure 1. How to divide the interval [a, b] into three subintervals.

By solving Equations (3) and (4),
We get

x1 =
2a + b

3

Mathematics 2021, 9, 1306 4 of 15

And
x2 =

2b + a
3

The size of the interval [a, b] decreases to a third with each repetition. Therefore, the
value eps is determined from the following formula:

eps =
b− a

3n (5)

where n is the number of iterations. From (5) the number of iterations is found by

n =

⌈
log3(

b− a
eps

)

⌉
(6)

When we compare Equations (2) and (6), we conclude that the iterations number of
the trisection algorithm is less than the iterations number of the bisection algorithm. We
might think that the trisection algorithm is better than the bisection algorithm since it
requires a few iterations. However, it might be the case that one iteration of the trisection
algorithm has an execution time greater than the execution time of one iteration of the
bisection algorithm. Therefore, we will consider both execution time and the number of
iterations to evaluate the different algorithms.

Algorithm 2. Trisection(f, a, b, eps).

Input: The function f (x),
The interval [a, b] where the root lies in,
The absolute error (eps).

Output: The root (x),
The value of f (x)
Numbers of iterations (n),
The interval [a, b] where the root lies in

n := 0
while true do

n := n + 1
x1 := (b + 2*a)/3
x2 := (2*b + a)/3
if |f (x1)| < |f (x2)|

x := x1
else

x := x2
if |f (x)| <= eps

return x, f (x), n, a, b
else if f (a) * f (x1) < 0

b := x1
else if f (x1) * f (x2) < 0

a := x1
b := x2

else
a := x2

end (while)

Advantages and Disadvantages of the Trisection Method

The trisection method has the same advantages and disadvantages of the bisection
method, in addition to being faster than it, as shown in Tables 1–9.

2.3. False Position (Regula Falsi) Method

There is no unique method suitable for finding the roots of all nonlinear functions.
Each method has advantages and disadvantages. Hence, the false position method is a

Mathematics 2021, 9, 1306 5 of 15

dynamic and fast method when the nature of the function is linear. The function f (x), whose
roots are in the interval [a, b] must be continuous, and the values of f (x) at the endpoints of
the interval [a, b] have different signs. The false position method uses two endpoints of the
interval [a, b] with initial values (r0 = a, r1 = b). The connecting line between the two points
(r0, f (r0)) and (r1, f (r1)) intersects the x-axis at the next estimate, r2. Now, we can determine
the successive estimates, rn from the following relationship

rn = rn−1 −
f (rn−1)(rn−1 − rn−2)

f (rn−1)− f (rn−2)
(7)

for n ≥ 2.
Remark: The regula falsi method is very similar to the bisection method. However,

the next iteration point is not the midpoint of the interval but the intersection of the x-axis
with a secant through (a, f (a)) and (b, f (b)).

Algorithm 3 uses the relation (7) to get the successive approximations by the false
position method.

Algorithm 3. False Position(f, a, b, eps).

Input: The function (f),
The interval [a, b] where the root lies in,
The absolute error (eps).

Output: The root (x),
The value of f (x)
Numbers of iterations (n),
The interval [a, b] where the root lies in

n := 0
while true do

n := n + 1;
x = a − (f (a)*(b − a))/(f (b) − f (a))
if |f (x)| <= eps

return x, f (x), n, a, b
else if f (a) * f (x) < 0

b := x
else

a := x
end (while)

Advantages and Disadvantages of the Regula Falsi Method

It is guaranteed to converge, and it is fast when the function is linear. On the other
hand, we cannot determine the iterations number needed for convergence. It is very slow
when the function is not linear.

2.4. Newton–Raphson Method

This method depends on a chosen initial point x0. This point plays an important role
for Newton–Raphson method. The success of the method depends mainly on the point x0,
and then the method may converge to its root or diverge based on the choice of the point
x0. Therefore, the first estimate can be determined from the following relation.

x1 = x0 −
f (x0)

f ′(x0)
(8)

The successive approximations for the Newton–Raphson method can be found from
the following relation:

xi+1 = xi −
f (xi)

f ′(xi)
(9)

Mathematics 2021, 9, 1306 6 of 15

such that the f ′(xi) is the first derivative of the function f (x) at the point xi.
Algorithm 4 uses the relation (9) to get the successive approximations by the Newton–

Raphson method.

Algorithm 4. Newton(f, xi, eps).

This function implements Newton’s method.
Input: The function (f),

An initial root xi,
The absolute error (eps).

Output: The root (x),
The value of f (x)
Numbers of iterations (n),

g(x) := f ’(x)
n = 0
while true do

n := n + 1
xi = xi − f (xi)/g(xi)
if |f (x)| <= eps

return xi, f (xi), n
end (while)

Advantages and Disadvantages of the Newton–Raphson Method

It is very fast compared to other methods, but it sometimes fails, meaning that there is
no guarantee of its convergence.

2.5. Secant Method

Just as there is the possibility of the Newton method failing, there is also the possibility
that the secant method will fail. The Newton method uses the relation (9) to find the
successive approximations, but the secant method uses the following relation:

xi+1 = xi −
xi − xi−1

f (xi)− f (xi−1)
f (xi) (10)

Algorithm 5 uses the relation (10) to get the successive approximations by the secant method.

Algorithm 5. Secant(f, a, b, eps).

This function implements the Secant method.
Input: The function (f),

Two initial roots: a and b,
The absolute error (eps).

Output: The root (x),
The value of f (x)
Numbers of iterations (n),

n := 0
while true do

n := n + 1
x := b − f (b)*(b − a)/(f (b) − f (a))
if |f (x)| <= eps

return x, f (x), n
a := b
b := x

end (while)

Advantages and Disadvantages of the Secant Method

It is very fast compared to other methods, but it sometimes fails, meaning that there is
no guarantee of its convergence.

Mathematics 2021, 9, 1306 7 of 15

3. Hybrid Algorithms

In this section, instead of pure methods such as the bisection method, the trisec-
tion method, the false position method, the secant method and the Newton–Raphson
method, we propose a new hybrid root-finding algorithm (trisection–false position), which
outperforms the algorithm (bisection-false position) that was proposed by Sabharwal [15].

3.1. Blended Bisection and False Position

Sabharwal [15] proposed a new algorithm that has the advantages of both the bisection
and the false position methods. He built a novel hybrid method, Algorithm 6, which
overcame the pure methods (bisection and false position).

Algorithm 6. blendBF(f, a, b, eps).

This function implements the blended method of bisection and false position methods.
Input: The function (f),

The interval [a, b] where the root lies in,
The absolute error (eps).

Output: The root (x), The value of f (x); Numbers of iterations (n),
The interval [a, b] where the root lies in

n := 0
a1 := a
a2 := a
b1 := b
b2 := b
while true do

n := n + 1
xB := (a + b)/2
xF := a − (f (a)*(b − a))/(f (b) − f (a))
if |f (xB)| < |f (xF)|

x := xB
else

x := xF
if |(fx)| <= eps

return x, f (x), n, a, b
if f (a)*f (xB) < 0

b1 := xB
else

a1 := xB
if f (a) * f (xF) < 0

b2 := xF
else
a2 := xF
a := max(a1, a2);
b := min(b1, b2)

end (while)

Advantages and Disadvantages of the Blended Algorithm

It is guaranteed to converge, and it is efficient more than the classical methods but it
sometimes takes a long time to get root.

3.2. Blended Trisection and False Position

We exploit the superiority of the trisection over the bisection method (as shown in
Section 4) in order to present a new hybrid method (Algorithm 7) that overcomes the hybrid
method presented by Sabharwal [15]. The blended method (trisection–false position) is
based on calculating the segment line point in the false position method and also calculating
two points that divide the interval [a, b] in the trisection method and then choosing the best
of them, which converges to the approximating root. The number of iterations n(eps) of

Mathematics 2021, 9, 1306 8 of 15

the proposed hybrid method is less than or equal to min{nf(eps), nt(eps)}, where nf(eps) and
nt(eps) are the number of iterations of the false position method and the trisection method,
respectively. Algorithm 7 outperforms all the classical methods (Tables 1–9).

Algorithm 7. blendTF(f, a, b, eps).

This function implements the blended method of trisection and false position methods.
Input: The function (f); The interval [a, b] where the root lies in,

The absolute error (eps).
Output: The root (x), The value of f (x), Numbers of iterations (n),

The interval [a, b] where the root lies in
n = 0; a1 := a; a2 := a; b1 := b, b2 := b
while true do

n := n + 1
xT1 := (b + 2*a)/3
xT2 := (2*b + a)/3
xF := a − (f (a)*(b − a))/(f (b) − f (a))
x := xT1
fx := fxT1
if |f (xT2)| < |f (x)|

x := xT2
if |f (xF)| < |f (x)|

x := xF
if |f (x)| <= eps

return x, f (x), n, a, b
if fa * f (xT1) < 0

b1 := xT1
else if f (xT1) * f (xT2) < 0

a1 := xT1
b1 := xT2

else
a1 := xT2

if fa*f (xF) < 0
b2 := xF;

else
a2 := xF;
a := max(a1, a2) ; b := min(b1, b2)

end (while)

Advantages and Disadvantages of the Blended Algorithm (The Proposed Algorithm)

It is guaranteed to converge, and it is more efficient than the classical methods and
the blended algorithm that was proposed in [15], as shown in Tables 1–9.

4. Computational Study

The numerical results of the pure methods bisection method, trisection method, false
position method, secant method and Newton–Raphson method are proposed. In addition
to the computational results for the hybrid methods, the bisection–false position and
trisection–false position are proposed. We compare the pure method and the hybrid
method with the proposed hybrid method according to the number of iterations and CPU
time. We used fifteen benchmark problems for this comparison, as shown in Table 1. We
ran each problem ten times, and then we computed the average of CPU time and the
number of iterations.

Mathematics 2021, 9, 1306 9 of 15

Table 1. Fifteen benchmark problems.

No. Problem Intervals References

P1 x2 − 3 [1, 2] Harder [18]
P2 x2 − 5 [2, 7] Srivastava [9]
P3 x2 − 10 [3, 4] Harder [18]
P4 x2 − x− 2 [1, 4] Moazzam [10]
P5 x2 + 2x− 7 [1, 3] Nayak [11]
P6 x3 − 2 [0, 2] Harder [18]
P7 xex − 7 [0, 2] Callhoun [19]
P8 x− cos(x) [0, 1] Ehiwario [6]
P9 x sin(x)− 1 [0, 2] Mathews [20]

P10 x cos(x) + 1 [−2, 4] Esfandiari [21]
P11 x10 − 1 [0, 1.3] Chapra [17]
P12 x2 + ex/2 − 5 [1, 2] Esfandiari [21]
P13 sin(x)sinh(x) + 1 [3, 4] Esfandiari [21]
P14 ex − 3x− 2 [2, 3] Hoffman [22]
P15 sin(x)− x2 [0.5, 1] Chapra [17]

Table 2. Comparison among pure methods and blended algorithms according to iterations, AppRoot, error and interval bounds.

Method Iter. AppRoot Error LowerB UpperB

Bisection 19 2.0000019073486328 0.0000057220495364 1.9999961853027344 2.0000076293945313
Trisection 1 2.0000000000000000 0.0000000000000000 1.0000000000000000 4.0000000000000000

FalsePosition 15 1.9999983893881288 0.0000048318330195 1.9999959734735644 4.0000000000000000
Secant 6 2.0000000786432022 0.0000002359296127 na na

NewtonRaphson 5 2.0000000006984919 0.0001373332926100 na na
Hybrid [15] 2 2.0000000000000000 0.0000000000000000 1.5000000000000000 2.5000000000000000
OurHybrid 1 2.0000000000000000 0.0000000000000000 1.0000000000000000 4.0000000000000000

Table 3. Solutions of fifteen problems by the bisection method.

Problem

Bisection Method

Iter Average
CPU Time Approximate Root Function Value Lower Bound Upper Bound

P1 44 0.514839 1.7320508075688963 0.0000000000000000 1.7320508075688394 1.7320508075689531
P2 44 0.339006 2.2360679774997720 0.0000000000000000 2.2360679774994878 2.2360679775000563
P3 44 0.330300 3.1622776601683995 0.0000000000000000 3.1622776601683427 3.1622776601684564
P4 45 0.339274 2.0000000000000284 0.0000000000000000 1.9999999999999432 2.0000000000001137
P5 48 0.413062 1.8284271247461916 0.0000000000000086 1.8284271247461845 1.8284271247461987
P6 49 0.373710 1.2599210498948743 0.0000000000000054 1.2599210498948707 1.2599210498948779
P7 46 0.381111 1.5243452049841437 −0.0000000000000075 1.5243452049841153 1.5243452049841721
P8 44 0.345850 0.7390851332151556 −0.0000000000000085 0.7390851332150987 0.7390851332152124
P9 46 0.556300 1.1141571408719244 −0.0000000000000079 1.1141571408718960 1.1141571408719528

P10 45 0.454494 2.0739328090912181 −0.0000000000000074 2.0739328090910476 2.0739328090913887
P11 44 0.338134 1.0000000000000058 0.0000000000000000 0.9999999999999318 1.0000000000000795
P12 48 0.379392 1.6490132683031895 −0.0000000000000028 1.6490132683031860 1.6490132683031931
P13 48 0.390438 3.2215883990939425 −0.0000000000000056 3.2215883990939389 3.2215883990939460
P14 46 0.354950 2.1253911988111298 −0.0000000000000007 2.1253911988111156 2.1253911988111440
P15 45 0.359546 0.8767262153950668 −0.0000000000000048 0.8767262153950526 0.8767262153950810

Mathematics 2021, 9, 1306 10 of 15

Table 4. Solutions of fifteen problems by the trisection method.

Problem

Trisection Method

Iter Average CPU
Time Approximate Root Function Value Lower Bound Upper Bound

P1 26 0.292349 1.7320508075688856 0.0000000000000000 1.7320508075680989 1.7320508075692791
P2 28 0.311319 2.2360679774997863 0.0000000000000000 2.2360679774993493 2.2360679775000047
P3 28 0.312939 3.1622776601683911 0.0000000000000000 3.1622776601683040 3.1622776601684350
P4 1 0.011161 2.0000000000000000 0.0000000000000000 1.0000000000000000 4.0000000000000000
P5 29 0.330426 1.8284271247461907 0.0000000000000036 1.8284271247461616 1.8284271247462491
P6 30 0.341553 1.2599210498948719 −0.0000000000000062 1.2599210498948623 1.2599210498948914
P7 31 0.349806 1.5243452049841439 −0.0000000000000049 1.5243452049841375 1.5243452049841473
P8 29 0.326833 0.7390851332151560 −0.0000000000000078 0.7390851332151415 0.7390851332151852
P9 28 0.773690 1.1141571408719348 0.0000000000000066 1.1141571408717601 1.1141571408720223

P10 28 0.316154 2.0739328090912146 0.0000000000000007 2.0739328090906901 2.0739328090914770
P11 26 0.297432 1.0000000000000393 0.0000000000000000 0.9999999999995278 1.0000000000010620
P12 26 0.299995 1.6490132683031904 0.0000000000000012 1.6490132683024035 1.6490132683035839
P13 31 0.360716 3.2215883990939425 −0.0000000000000056 3.2215883990939407 3.2215883990939456
P14 28 0.323873 2.1253911988111311 0.0000000000000065 2.1253911988110437 2.1253911988111747
P15 29 0.334640 0.8767262153950647 −0.0000000000000025 0.8767262153950502 0.8767262153950720

Table 5. Solutions of fifteen problems by the false position method.

Problem

False Position Method

Iter Average CPU
Time Approximate Root Function Value Lower Bound Upper Bound

P1 12 0.134719 1.7320508075688599 0.0000000000000000 1.7320508075686347 2.0000000000000000
P2 46 0.510051 2.2360679774997747 0.0000000000000000 2.2360679774997609 7.0000000000000000
P3 14 0.155169 3.1622776601683644 0.0000000000000000 3.1622776601682516 4.0000000000000000
P4 34 0.382718 1.9999999999999558 0.0000000000000000 1.9999999999998894 4.0000000000000000
P5 20 0.556411 1.8284271247461896 −0.0000000000000027 1.8284271247461874 3.0000000000000000
P6 40 0.455044 1.2599210498948719 −0.0000000000000062 1.2599210498948701 2.0000000000000000
P7 29 0.330403 1.5243452049841437 −0.0000000000000075 1.5243452049841419 2.0000000000000000
P8 11 0.124456 0.7390851332151551 −0.0000000000000092 0.7390851332150500 1.0000000000000000
P9 6 0.078088 1.1141571408719306 0.0000000000000008 1.0997501702946164 1.1141571408730828

P10 12 0.138026 2.0739328090912146 0.0000000000000007 2.0739328090912039 2.5157197710146586
P11 127 1.447224 0.9999999999999812 0.0000000000000000 0.9999999999999755 1.3000000000000000
P12 15 0.176429 1.6490132683031899 −0.0000000000000008 1.6490132683031871 2.0000000000000000
P13 44 0.507856 3.2215883990939416 0.0000000000000063 3.2215883990939407 4.0000000000000000
P14 44 0.504918 2.1253911988111285 −0.0000000000000079 2.1253911988111267 3.0000000000000000
P15 16 0.185620 0.8767262153950552 0.0000000000000080 0.8767262153950091 1.0000000000000000

Table 6. Solutions of fifteen problems by Newton’s method.

Problem
Newton’s Method

Iter Average CPU Time Approximate Root Function Value

P1 6 0.240500 1.7320508075688774 0.0000000000000000
P2 5 0.186819 2.2360679774997898 0.0000000000000000
P3 5 0.185136 3.1622776601683795 0.0000000000000000
P4 7 0.244393 2.0000000000000000 0.0000000000000000
P5 6 0.214349 1.8284271247461901 −0.0000000000000002
P6 Fail
P7 14 0.436972 1.5243452049841444 0.0000000000000002
P8 6 0.214512 0.7390851332151607 0.0000000000000001
P9 Fail
P10 14 0.439575 −4.9171859252871322 0.0000000000000011
P11 Fail
P12 6 0.221387 1.6490132683031902 0.0000000000000002
P13 6 0.221157 3.2215883990939420 0.0000000000000004
P14 5 0.191465 2.1253911988111298 0.0000000000000017
P15 9 0.306000 0.8767262153950625 0.0000000000000000

Mathematics 2021, 9, 1306 11 of 15

Table 7. Solutions of fifteen problems by the secant method.

Problem
Secant Method

Iter Average CPU Time Approximate Root Function Value

P1 6 0.068071 1.7320508075688772 0.0000000000000000
P2 7 0.077763 2.2360679774997898 0.0000000000000000
P3 5 0.055822 3.1622776601683764 0.0000000000000000
P4 8 0.089142 2.0000000000000000 0.0000000000000000
P5 6 0.066767 1.8284271247461907 0.0000000000000036
P6 10 0.114367 1.2599210498948716 −0.0000000000000073
P7 9 0.101345 1.5243452049841444 0.0000000000000002
P8 6 0.067514 0.7390851332151607 0.0000000000000001
P9 5 0.073486 1.1141571408719304 0.0000000000000004
P10 8 0.091206 2.0739328090912150 −0.0000000000000003
P11 Fail
P12 6 0.069605 1.6490132683031902 0.0000000000000002
P13 8 0.093442 3.2215883990939420 0.0000000000000004
P14 7 0.081160 2.1253911988111298 −0.0000000000000007
P15 7 0.080784 0.8767262153950625 −0.0000000000000000

Table 8. Solutions of fifteen problems by the hybrid method bisection-false position.

Problem

Bisection-False Position Method

Iter Average CPU
Time Approximate Root Function Value Lower Bound Upper Bound

P1 8 0.121232 1.7320508075688772 0.0000000000000000 1.7320508075688001 1.7350578402209837
P2 10 0.148720 2.2360679774997889 0.0000000000000000 2.2360679774993639 2.2439291539836148
P3 7 0.103442 3.1622776601683702 0.0000000000000000 3.1622776601625873 3.1721597778622157
P4 2 0.030053 2.0000000000000000 0.0000000000000000 1.5000000000000000 2.5000000000000000
P5 5 0.074941 1.8284271247461901 −0.0000000000000002 1.8284271247430004 1.8284271247493797
P6 9 0.137275 1.2599210498948723 −0.0000000000000041 1.2599210498939839 1.2611286403176987
P7 11 0.165907 1.5243452049841444 0.0000000000000002 1.5243452049841386 1.5260333371087631
P8 8 0.120322 0.7390851332151607 0.0000000000000001 0.7390851332151470 0.7422270732175922
P9 6 0.101488 1.1141571408719302 0.0000000000000001 1.1132427327642707 1.1141571408719768

P10 10 0.150611 2.0739328090912150 −0.0000000000000003 2.0739328090911866 2.0789350033373930
P11 12 0.184145 0.9999999999999999 0.0000000000000000 0.9999999999999305 1.0003433632829859
P12 8 0.123939 1.6490132683031895 −0.0000000000000028 1.6490132683026435 1.6531557562694839
P13 9 0.139654 3.2215883990939420 0.0000000000000004 3.2215883990939242 3.2224168881395068
P14 9 0.139775 2.1253911988111289 −0.0000000000000055 2.1253911988104042 2.1275191334463157
P15 7 0.107493 0.8767262153950581 0.0000000000000048 0.8767262153886712 0.8772684454348731

Table 9. Solutions of fifteen problems by the hybrid method trisection-false position.

Problem

Trisection-False Position Method

Iter Average CPU
Time Approximate Root Function Value Lower Bound Upper Bound

P1 7 0.131418 1.7320508075688772 0.0000000000000000 1.7320508075687824 1.7324926951584967
P2 8 0.149270 2.2360679774997894 0.0000000000000000 2.2360679774987138 2.2373661277171197
P3 6 0.111231 3.1622776601683777 0.0000000000000000 3.1622776601623102 3.1638711488008444
P4 1 0.018535 2.0000000000000000 0.0000000000000000 1.0000000000000000 4.0000000000000000
P5 7 0.131906 1.8284271247461901 −0.0000000000000002 1.8284271247461521 1.8288267084339278
P6 8 0.152130 1.2599210498948730 −0.0000000000000009 1.2599210498938187 1.2602675857311345
P7 7 0.131670 1.5243452049841444 0.0000000000000002 1.5243452049840662 1.5244112793655715
P8 7 0.131345 0.7390851332151607 0.0000000000000001 0.7390851332151193 0.7396432352779715
P9 5 0.213409 1.1141571408719326 0.0000000000000035 1.1126440519145675 1.1141571409109841

P10 8 0.150378 2.0739328090912150 −0.0000000000000003 2.0739328090912079 2.0745363211703700
P11 9 0.170638 1.0000000000000000 0.0000000000000000 0.9999999999999090 1.0000567349034972
P12 6 0.115872 1.6490132683031897 −0.0000000000000018 1.6490132683015255 1.6496393349802922
P13 7 0.135481 3.2215883990939420 0.0000000000000004 3.2215883990931498 3.2217303732361522
P14 7 0.134990 2.1253911988111298 −0.0000000000000007 2.1253911988110636 2.1254846670968397
P15 5 0.096275 0.8767262153950616 0.0000000000000010 0.8767262151142412 0.8767286917958327

Mathematics 2021, 9, 1306 12 of 15

We used MATLAB v7.01 Software Package to implement all the codes. All codes were
run under 64-bit Window 8.1 Operating System with Core(TM)i5 CPU M 460 @2.53GHz,
4.00 GB of memory.

Dataset and Evaluation Metrics

There are different ways to terminate the numerical algorithms such as the abso-
lute error (eps) and the number of iterations. In this paper, we used the absolute error
(eps = 10−14) to terminate all the algorithms. Perhaps there is a method that has a small
number of iterations, but the execution time is large and vice versa. For this reason, the
iteration number and the running time are important metrics to evaluate the algorithms.
Unfortunately, most researchers did not pay attention to the details of finding the running
time. Furthermore, they did not discuss and did not answer the following question: why
does the running time change from one run to another with the used software package?
Therefore, we ran every algorithm ten times and calculated the average of the running time
to obtain an accurate running time and avoid the problems of the operating systems.

In Table 2, the abbreviations AppRoot, Error, LowerB and UpperB are used to denote
the approximation root, the difference between two successive roots, lower bound and
upper bound, respectively. Table 2 shows the performance of all classical methods and
blended algorithms for solving the Problem 4. It is clear that both the trisection and the
proposed blended algorithm (trisection-false position) outperformed the other algorithms.
Because it is not accurate enough to make a conclusion from one function, we used fifteen
benchmark functions (Table 1) to evaluate the proposed algorithm.

Ali Demir [23] proved that the trisection method with k-Lucas number works faster
than the bisection method. From Tables 3 and 4 and Figure 2, it is clear that the trisection
method is better than the bisection method with respect to the running time for all problems
except for problem 9. On the other hand, the trisection method determined the exact root
(2.0000000000000000) of problem 4 after one iteration, but the bisection method found
the approximate root (2.0000000000000284) after 45 iterations. Figure 3 shows that the
trisection method always has fewer iterations than the bisection method. We can determine
the number of iterations for the trisection method by n =

⌈
log3(

b−a
eps)

⌉
and the number of

iterations for the bisection method by n =
⌈

log2(
b−a
eps)

⌉
. The authors [6,11] explained that

the secant method is better than the bisection and Newton–Raphson methods for problem
8. It is not accurate to draw a conclusion from one function [15], so we experimented on
fifteen benchmark functions. From Table 7, it is clear that the secant method failed to solve
problem 11.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 17

termine the number of iterations for the trisection method by
3log ()

b a
n

eps

 and the

number of iterations for the bisection method by
2log ()

b a
n

eps

. The authors [6,11]

explained that the secant method is better than the bisection and Newton–Raphson

methods for problem 8. It is not accurate to draw a conclusion from one function [15], so

we experimented on fifteen benchmark functions. From Table 7, it is clear that the secant

method failed to solve problem 11.

Figure 2. A comparison among 7 methods on 15 problems according to the number of iteration.

Figure 3. A comparison among 7 methods on 15 problems according to the CPU time.

From Tables 5–7, we deduce that the proposed hybrid algorithm (trisection-false

position) is better than the Newton–Raphson, false-position and secant. The Newton–

Raphson method failed to solve problems P6, P9 and P11, and the secant method failed to

solve P11.

0

10

20

30

40

50

60

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Bisection

Trisection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Bisection

Trisection

Figure 2. A comparison among 7 methods on 15 problems according to the number of iteration.

Mathematics 2021, 9, 1306 13 of 15

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 17

termine the number of iterations for the trisection method by
3log ()

b a
n

eps

 and the

number of iterations for the bisection method by
2log ()

b a
n

eps

. The authors [6,11]

explained that the secant method is better than the bisection and Newton–Raphson

methods for problem 8. It is not accurate to draw a conclusion from one function [15], so

we experimented on fifteen benchmark functions. From Table 7, it is clear that the secant

method failed to solve problem 11.

Figure 2. A comparison among 7 methods on 15 problems according to the number of iteration.

Figure 3. A comparison among 7 methods on 15 problems according to the CPU time.

From Tables 5–7, we deduce that the proposed hybrid algorithm (trisection-false

position) is better than the Newton–Raphson, false-position and secant. The Newton–

Raphson method failed to solve problems P6, P9 and P11, and the secant method failed to

solve P11.

0

10

20

30

40

50

60

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Bisection

Trisection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Bisection

Trisection

Figure 3. A comparison among 7 methods on 15 problems according to the CPU time.

From Tables 5–7, we deduce that the proposed hybrid algorithm (trisection-false
position) is better than the Newton–Raphson, false-position and secant. The Newton–
Raphson method failed to solve problems P6, P9 and P11, and the secant method failed to
solve P11.

From Figure 4 and Tables 8 and 9, it is clear that the proposed blended algorithm
(trisection–false position) has fewer iterations than the blended algorithm (bisection–false
position) [15] on all the problems except problem 5 (i.e., according to the number of
iterations, the proposed algorithm achieved 93.3% of fifteen problems but Sabharwal’s
algorithm achieved 6.6%).

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 17

From Figure 4 and Tables 8 and 9, it is clear that the proposed blended algorithm

(trisection–false position) has fewer iterations than the blended algorithm (bisection–false

position) [15] on all the problems except problem 5 (i.e., according to the number of iter-

ations, the proposed algorithm achieved 93.3% of fifteen problems but Sabharwal’s algo-

rithm achieved 6.6%).

Figure 4. A comparison among 7 methods on 15 problems according to the number of iterations.

From Figure 5 and Tables 8 and 9, it is clear that the proposed blended algorithm

(trisection–false position) outperforms the blended algorithm (bisection-false position)

[15] for eight problems versus seven problems (i.e., the proposed algorithm achieved

53.3% of fifteen problems but Sabharwal’s algorithm achieved 46.6%). On the other hand,

the trisection method determined the exact root (1.0000000000000000) of the problem 4

after nine iterations, but the bisection method found the approximate root

(0.9999999999999999) after 12 iterations.

Figure 5. A comparison among 7 methods on 15 problems according to the CPU time.

0

2

4

6

8

10

12

14

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Bisection-False

Trisection-False

0

0.05

0.1

0.15

0.2

0.25

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

Bisection-False

Trisection-False

Figure 4. A comparison among 7 methods on 15 problems according to the number of iterations.

From Figure 5 and Tables 8 and 9, it is clear that the proposed blended algorithm
(trisection–false position) outperforms the blended algorithm (bisection-false position) [15]
for eight problems versus seven problems (i.e., the proposed algorithm achieved 53.3%

Mathematics 2021, 9, 1306 14 of 15

of fifteen problems but Sabharwal’s algorithm achieved 46.6%). On the other hand, the
trisection method determined the exact root (1.0000000000000000) of the problem 4 after
nine iterations, but the bisection method found the approximate root (0.9999999999999999)
after 12 iterations.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 17

From Figure 4 and Tables 8 and 9, it is clear that the proposed blended algorithm

(trisection–false position) has fewer iterations than the blended algorithm (bisection–false

position) [15] on all the problems except problem 5 (i.e., according to the number of iter-

ations, the proposed algorithm achieved 93.3% of fifteen problems but Sabharwal’s algo-

rithm achieved 6.6%).

Figure 4. A comparison among 7 methods on 15 problems according to the number of iterations.

From Figure 5 and Tables 8 and 9, it is clear that the proposed blended algorithm

(trisection–false position) outperforms the blended algorithm (bisection-false position)

[15] for eight problems versus seven problems (i.e., the proposed algorithm achieved

53.3% of fifteen problems but Sabharwal’s algorithm achieved 46.6%). On the other hand,

the trisection method determined the exact root (1.0000000000000000) of the problem 4

after nine iterations, but the bisection method found the approximate root

(0.9999999999999999) after 12 iterations.

Figure 5. A comparison among 7 methods on 15 problems according to the CPU time.

0

2

4

6

8

10

12

14

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Bisection-False

Trisection-False

0

0.05

0.1

0.15

0.2

0.25

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

Bisection-False

Trisection-False

Figure 5. A comparison among 7 methods on 15 problems according to the CPU time.

5. Conclusions

In this work, we proposed a novel blended algorithm that has the advantages of the
trisection method and the false position method. The computational results show that the
proposed algorithm outperforms the trisection and regula falsi methods. On the other
hand, the introduced algorithm outperforms the bisection, Newton–Raphson and secant
methods according to the iteration number and the average running time. Finally, the
implementation results show the superiority of the proposed algorithm on the blended
bisection and false position algorithm, which was proposed by Sabharwal [15]. In future
work, we will do more numerical studies using benchmark functions to evaluate the
proposed algorithm and ensure that it competes with the traditional algorithms to replace
it in software packages such as Matlab and Python. We will also propose some other hybrid
algorithms that may be better than the proposed algorithm such as the bisection–Newton–
Raphson method and trisection–Newton–Raphson.

Author Contributions: Conceptualization, E.B.; methodology, S.A.; software, A.E.G.; validation,
E.B.; formal analysis, E.B.; investigation, S.A.; resources, A.E.G.; data curation, A.E.G.; writing—
original draft preparation, E.B.; writing—review and editing, E.B.; visualization, E.B.; supervision,
E.B.; project administration, E.B.; funding acquisition, S.A. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Majmaah
University for funding this work under project number (R-2021-140).

Acknowledgments: The help from Higher Technological Institute, 10th of Ramadan City, Egypt for
publishing is sincerely and greatly appreciated. We also thank the referees for suggestions to improve
the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 1306 15 of 15

References
1. Hasan, A. Numerical Study of Some Iterative Methods for Solving Nonlinear Equations. Int. J. Eng. Sci. Invent. 2016, 5, 1–10.
2. Hasan, A.; Ahmad, N. Compartive study of a new iterative method with that Newtons Method for solving algebraic and

transcesental equations. Int. J. Comput. Math. Sci. 2015, 4, 32–37.
3. Khirallah, M.Q.; Hafiz, M.A. Solving system of nonlinear equations using family of jarratt methods. Int. J. Differ. Equ. Appl. 2013,

12, 69–83. [CrossRef]
4. Remani, C. Numerical Methods for Solving Systems of Nonlinear Equations; Lakehead University: Thunder Bay, ON, Canada, 2012; p. 13.
5. Lally, C.H. A faster, high precision algorithm for calculating symmetric and asymmetric. arXiv 2015, arXiv:1509.01831.
6. Ehiwario, J.C.; Aghamie, S.O. Comparative Study of Bisection, Newton-Raphson and Secant Methods of Root-Finding Problems.

IOSR J. Eng. 2014, 4, 1–7.
7. Ait-Aoudia, S.; Mana, I. Numerical solving of geometric constraints by bisection: A distributed approach. Int. J. Comput. Inf. Sci.

2004, 2, 66.
8. Baskar, S.; Ganesh, S.S. Introduction to Numerical Analysis; Department of Mathematics, Indian Institute of Technology Bombay

Powai: Mumbai, India, 2016.
9. Srivastava, R.B.; Srivastava, S. Comparison of numerical rate of convergence of bisection, Newton and secant methods. J. Chem.

Biol. Phys. Sci. 2011, 2, 472–479.
10. Moazzam, G.; Chakraborty, A.; Bhuiyan, A. A robust method for solving transcendental equations. Int. J. Comput. Sci. Issues 2012,

9, 413–419.
11. Nayak, T.; Dash, T. Solution to quadratic equation using genetic algorithm. In Proceedings of the National Conference on

AIRES-2012, Vishakhapatnam, India, 29–30 June 2012.
12. Mansouria, P.; Asadya, B.; Guptab, N. The Bisection–Artificial Bee Colony algorithm to solve fixed point problems. Appl. Soft Comput.

2015, 26, 143–148. [CrossRef]
13. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical func-tion optimization: Artificial Bee Colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
14. Burden, L.R.; Douglas, F.J. Numerical Analysis, Prindle, Weber & Schmidt, 3rd ed.; Amazon: Seattle, WA, USA, 1 January 1985.
15. Sabharwal, C.L. Blended Root Finding Algorithm Outperforms Bisection and Regula Falsi Algorithms. Mathematics 2019, 7, 1118.

[CrossRef]
16. Badr, E.M.; Elgendy, H. A hybrid water cycle-particle swarm optimization for solving the fuzzy underground water confined

steady flow. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 492–504. [CrossRef]
17. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill: Boston, MA, USA, 2015.
18. Harder, D.W. Numerical Analysis for Engineering. Available online: https://ece.uwaterloo.ca/~{}\{\}dwharder/NumericalAnaly-sis/

10RootFinding/falseposition/ (accessed on 11 June 2019).
19. Calhoun, D. Available online: https://math.boisestate.edu/~{}\{\}calhoun/teaching/matlab-tutorials/lab_16/html/lab_16.html

(accessed on 13 June 2019).
20. Mathews, J.H.; Fink, K.D. Numerical Methods Using Matlab, 4th ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2004;

ISBN 0-13-065248-2.
21. Esfandiari, R.S. Numerical Methods for Engineers and Scientists Using MATLAB; CRC Press: Boca Raton, FL, USA, 2013.
22. Joe, D.H. Numerical Methods for Engineers and Scientists, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001.
23. Demir, A. Trisection method by k-Lucas numbers. Appl. Math. Comput. 2008, 198, 339–345. [CrossRef]

http://doi.org/10.12732/ijdea.v12i2.931
http://doi.org/10.1016/j.asoc.2014.09.001
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.3390/math7111118
http://doi.org/10.11591/ijeecs.v19.i1.pp492-504
https://ece.uwaterloo.ca/~{}\{\}dwharder/NumericalAnaly-sis/10RootFinding/falseposition/
https://ece.uwaterloo.ca/~{}\{\}dwharder/NumericalAnaly-sis/10RootFinding/falseposition/
https://math.boisestate.edu/~{}\{\}calhoun/teaching/matlab-tutorials/lab_16/html/lab_16.html
http://doi.org/10.1016/j.amc.2007.08.039

	Introduction
	Pure Methods
	Bisection Method
	Trisection Method
	False Position (Regula Falsi) Method
	Newton–Raphson Method
	Secant Method

	Hybrid Algorithms
	Blended Bisection and False Position
	Blended Trisection and False Position

	Computational Study
	Conclusions
	References

