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Abstract: The main aim of the paper is to establish the crossing numbers of the join products of the
paths and the cycles on n vertices with a connected graph on five vertices isomorphic to the graph
K1,1,3 \ e obtained by removing one edge e incident with some vertex of order two from the complete
tripartite graph K1,1,3. The proofs are done with the help of well-known exact values for the crossing
numbers of the join products of subgraphs of the considered graph with paths and cycles. Finally, by
adding some edges to the graph under consideration, we obtain the crossing numbers of the join
products of other graphs with the paths and the cycles on n vertices.
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1. Introduction

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge
set E(G) is the minimum possible number of edge crossings in a drawing of G in the plane.
(For the definition of a drawing, see also Klešč [1].) One can easily verify that a drawing
with the minimum number of crossings (an optimal drawing) is always a good drawing,
meaning that no two edges cross more than once, no edge crosses itself, and also no two
edges incident with the same vertex cross. Let D (D(G)) be a good drawing of the graph G.
We denote by crD(G) the number of crossings among edges of G in the drawing D.

Let Gi and Gj be two edge-disjoint subgraphs of G. We denote, by crD(Gi, Gj), the
number of crossings between the edges of Gi and edges of Gj, and, by crD(Gi) and crD(Gj),
the number of crossings among edges of Gi and of Gj in D, respectively. For any three
mutually edge-disjoint subgraphs Gi, Gj, and Gk of G by Klešč [1], the following equa-
tions hold:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

The problem of reducing the number of crossings is interesting in many areas. One of
the most popular areas is the implementation of the VLSI layout, which has revolutionized
circuit design and had a strong impact on parallel computing. Crossing numbers were
also studied to improve the readability of hierarchical structures and automated graphs.
The visualized graph should be easy to read and understand. For the sake of clarity of
the graphical drawings, the reduction of crossings is likely the most important. Therefore,
the investigation on the crossing number of simple graphs is a classical, but very difficult
problem. Garey and Johnson [2] proved that determining cr(G) is an NP-complete problem.
Throughout the proofs of paper, we will also use the Kleitman’s result [3] on the crossing
numbers of the complete bipartite graphs Km,n in the form

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, with min{m, n} ≤ 6.
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The join product of two graphs Gi and Gj, denoted Gi + Gj, is obtained from vertex-
disjoint copies of Gi and Gj by adding all edges between V(Gi) and V(Gj). For |V(Gi)| = m
and |V(Gj)| = n, the edge set of Gi + Gj is the union of the disjoint edge sets of the graphs
Gi, Gj, and the complete bipartite graph Km,n. Let Pn and Cn be the path and the cycle on n
vertices, respectively, and let Dn denote the discrete graph (sometimes called empty graph) on
n vertices.

Again, using Kleitman’s result [3], the crossing numbers for the join product of two
paths, the join product of two cycles, and also for the join product of a path and a cycle
were determined by Klešč [4]. Notice that a lot of the exact values for crossing numbers
of G + Dn, G + Pn, and of G + Cn for arbitrary graph G at most on four vertices were
estimated in [5,6]. The crossing numbers of the join product of many graphs G on five and
six vertices with Pn and Cn were also investigated in [1,7–15].

The crossings numbers of the join products of the paths and the cycles with all
graphs of order at most four have been well-known for a long time, and therefore it is
understandable that our immediate goal is to establish the exact values for the crossing
numbers of G + Pn and of G + Cn also for all graphs G of order five. Especially the results
of G6 + Pn, G9 + Pn, G11 + Pn, G14 + Pn and of G6 + Cn, G9 + Cn, G11 + Cn, G14 + Cn can be
used to determine the crossing number of the join product of the most complicated graph
K5 with the path and the cycle on n vertices. For this purpose, we present a new technique
regarding the use of knowledge from the subgraphs whose values of crossing numbers are
already known. Due to several possible isomorphisms, the results on the smaller graphs
are important to confirm the validity of many conjectures, e.g., Corollary 7.

Let G11 be the connected graph on five vertices isomorphic to the graph K1,1,3 \ e
obtained by removing one edge e incident with some vertex of order two from the complete
tripartite graph K1,1,3, and let V(G11) = {v1, v2, . . . , v5}. The crossing number of G11 + Dn
was determined for any n ≥ 1 by Staš [12] using the properties of cyclic permutations,
where Dn denotes the discrete graph on n vertices. The main aim of the paper is to establish
the crossing numbers of the join products G11 + Pn and G11 + Cn, where Pn and Cn are the
path and the cycle on n vertices, respectively.

The proofs are done with the help of a lot of well-known exact values for the crossing
numbers of the join products of five subgraphs of G11 with paths and cycles. These
subgraphs are indexed in the order originally designated by Klešč [16] (except in the case
of the graph G0, because it is disconnected), and their planar drawings are presented
in Figure 1.

G2

G5

G3G0

G7

Figure 1. Planar drawings of five graphs G0, G2, G3, G5, and G7, which are subgraphs of the
graph G11.
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The results in Theorems 2 and 3, and in Corollaries 5 and 6 have already been claimed
by Li [17] and by Yue et al. [18], respectively. Since these papers do not appear to be
available in English, we were unable to verify these results. Clancy et al. [19] also placed an
asterisk on a number of the results in their survey to essentially indicate that the mentioned
results appeared in journals, which do not have a sufficiently rigorous peer-review process.
In certain parts of the presented proofs, it is also possible to simplify the procedure with
the help of software generating all cyclic permutations of five elements and its description
can be found in Berežný and Buša [20].

2. Cyclic Permutations and Possible Drawings of G11

We consider the join product of the graph G11 with the discrete graph Dn, which yields
that the graph G11 + Dn consists of just one copy of G11 and of n vertices t1, t2, . . . , tn. Here,
each vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of the graph G11. Let Ti, 1 ≤ i ≤ n,
denote the subgraph that is uniquely induced by the five edges incident with the fixed
vertex ti. This means that the graph T1 ∪ · · · ∪ Tn is isomorphic to the complete bipartite
graph K5,n and

G11 + Dn = G11 ∪ K5,n = G11 ∪
( n⋃

i=1

Ti
)

. (1)

Throughout the paper, we also use the same definitions and notation for the good
drawings D of the graphs G11 + Pn and G11 + Cn as in [13,14]. The graph G11 + Pn contains
G11 + Dn as a subgraph, and therefore let P∗n denote the path induced on n vertices of
G11 + Pn not belonging to the subgraph G11. The path P∗n consists of the vertices t1, t2, . . . , tn
and of the edges {ti, ti+1} for i = 1, 2, . . . , n− 1, and thus

G11 + Pn = G11 ∪ K5,n ∪ P∗n = G11 ∪
( n⋃

i=1

Ti
)
∪ P∗n . (2)

Similarly, the graph G11 + Cn contains both G11 + Dn and G11 + Pn as subgraphs. Let
C∗n denote the subgraph of G11 + Cn induced on the vertices t1, t2, . . . , tn. Therefore,

G11 + Cn = G11 ∪ K5,n ∪ C∗n = G11 ∪
( n⋃

i=1

Ti
)
∪ C∗n. (3)

Let D be a good drawing of the graph G11 + Dn. The rotation rotD(ti) of a vertex ti in
the drawing D is the cyclic permutation that records the (cyclic) counter-clockwise order
in which the edges leave ti, see [21]. We use the notation (12345) if the counter-clockwise
order the edges is incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We emphasize
that a rotation is a cyclic permutation; that is, (12345), (23451), (34512), (45123), and (51234)
denote the same rotation. Thus, 5!/5 = 24 different rotD(ti) can appear in a drawing of the
graph G11 + Dn.

By rotD(ti), we understand the inverse permutation of rotD(ti). In the given drawing
D, all subgraphs Ti, i = 1, . . . , n of the graph G11 + Dn are divided into three mutually
disjoint subsets depending on how many times the edges of the subgraph Ti cross the
edges of G11 in the considered drawing D. For i = 1, . . . , n, Ti ∈ RD if crD(G11, Ti) = 0,
and Ti ∈ SD if crD(G11, Ti) = 1. Every other subgraph Ti crosses the edges of G11 at least
twice in D. Clearly, this idea of dividing all subgraphs Ti into three mentioned subsets will
be also retained in all drawings of the graphs G11 + Pn and G11 + Cn.

Due to arguments in the proofs of Theorems 2 and 3, at least one of the sets RD
and SD must be nonempty in any optimal drawing D of G11 + Pn and of G11 + Cn. For
Ti ∈ RD ∪ SD, let Fi denote the subgraph G11 ∪ Ti, i ∈ {1, 2, . . . , n}, of G11 + Dn, and let
D(Fi) be its subdrawing induced by D.

According to the Lemmas 1 and 3, we suppose only two possible non isomorphic
planar good subdrawings of G11 as shown in Figure 2, and where the vertex notation of
the graph G11 will be explained later.
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Figure 2. Two possible non isomorphic planar drawings of the graph G11. (a) The planar drawing
of G11 with five vertices in one region; (b) the planar drawing of G11 with at most four vertices in
one region.

3. The Crossing Number of G11 + Pn

Lemma 1. For n ≥ 2, if D is any good drawing of the join product G11 + Pn with crD(G11) ≥ 1,
then there are at least n(n− 1) + 1 crossings in D.

Proof. Let us consider any good drawing D of G11 + Pn with crD(G11) ≥ 1. In the rest of
the paper, suppose that let v1, v3, and v2 be the vertex notation of two vertices of degree
two and of one vertex of degree three in the considered good subdrawing of the graph
G11, respectively. Since no two edges incident with the same vertex cross, there is at
least one crossing on the edge v1v2 or v2v3 in the subdrawing of G11 induced by D. By
removing both these edges from the graph G11, we obtain a subgraph isomorphic to the
graph G2. The exact value for the crossing number of the graph G2 + Pn is given in [12],
i.e., cr(G2 + Pn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
= n(n − 1), which yields that there are at least

n(n− 1) + 1 crossings in D.

As the same argument with the removing of the edges v1v2 and v2v3 from the graph
G11 can be also applied for two possible planar subdrawings of G11 in D, the proof of
Corollary 1 can be omitted.

Corollary 1. Let D be any good drawing of the join product G11 + Pn, n ≥ 2, with crD(G11) = 0
and also with the vertex notation of G11 given in Figure 2a or Figure 2b. If any of the edges v1v2 or
v2v3 is crossed in D, then there are at least n(n− 1) + 1 crossings in the drawing D.

In the proof of Theorem 2, several parts are based on the previous Lemma 1, Corollary 1,
and on the following theorem presented in [12].

Theorem 1 (See [12] Corollary 1). cr(G11 + Dn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 1.

The exact values of the crossing numbers for many small graphs can be calculated
using an algorithm located on a website http://crossings.uos.de/ (accessed on 10 October
2020). This system also generates verifiable formal proofs, like those described by Chimani
and Wiedera [22]. However, the capacity of this system is unfortunately limited.

Lemma 2. cr(G11 + P2) = 3 and cr(G11 + P3) = 7.

Theorem 2. cr(G11 + Pn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 = n(n− 1) + 1 for n ≥ 2.

Proof. In Figure 3, the edges of K5,n cross each other 4
⌊ n

2
⌋⌊ n−1

2
⌋

times, each subgraph
Ti, i = 1, . . . ,

⌈ n
2
⌉

on the right side does not cross the edges of G11, and each subgraph
Ti, i =

⌈ n
2
⌉
+ 1, . . . , n on the left side crosses the edges of G11 exactly twice. The path P∗n

crosses G11 once, and thus 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 crossings appear among the edges of the

http://crossings.uos.de/


Mathematics 2021, 9, 1277 5 of 13

graph G11 + Pn in this drawing. Thus, cr(G11 + Pn) ≤ n(n− 1) + 1. Lemma 2 confirms this
result for n = 2 and n = 3. We prove the reverse inequality by induction on n. Now, let us
suppose that for some n ≥ 4, there is a drawing D for which

crD(G11 + Pn) < n(n− 1) + 1, (4)

and that

cr(G11 + Pm) = m(m− 1) + 1 for any 2 ≤ m < n. (5)

v
5

v
2

v
1

v
4

v
3

t1
_⌈ ⌉t n
2

_⌈ ⌉t n
2
+1tn

Figure 3. The good drawing of G11 + Pn with n(n− 1) + 1 crossings.

Since the graph G11 + Dn is a subgraph of G11 + Pn, by Theorem 1, the edges of
G11 + Pn are crossed exactly n(n− 1) times, and therefore, no edge of the path P∗n is crossed
in D. In addition, all vertices ti of the path P∗n have to be placed in the same region
of the considered good subdrawing of G11. By Lemma 1, we can only suppose planar
subdrawings of the graph G11 induced by D, that is, crD(G11) = 0. If r = |RD| and s = |SD|,
the assumption (5) together with cr(K5,n) = 4

⌊ n
2
⌋⌊ n−1

2
⌋

enforces that there are at least
⌈ n

2
⌉

subgraphs Ti whose edges cross the edges of G11 at most once in D. More precisely:

crD(G11) + crD(G11, K5,n) ≤ 2
⌊n

2

⌋
,

i.e.,

0 + 0r + 1s + 2(n− r− s) ≤ 2
⌊n

2

⌋
. (6)

This implies that 2r + s ≥ 2
⌈ n

2
⌉
. Now, we will show that, in all subcases, a contradic-

tion with the assumption (4) can be obtained:
Case 1: We suppose the drawing with the vertex notation of G11 in such a way as

shown in Figure 2a. Since the set RD ∪ SD is nonempty and no edge of the path P∗n is
crossed in the drawing D, all vertices ti of P∗n are placed in the region of subdrawing
D(G11) with five vertices v1, v2, v3, v4, and v5 of G11 on its boundary. By Klešč and
Staš [11], it was proved that cr(G0 + Pn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
, and thus there are at most⌊ n

2
⌋

crossings on three edges v1v5, v3v5, and v4v5 in D. This, also with Corollary 1, enforces
that r ≥ n−

⌊ n
2
⌋
=
⌈ n

2
⌉
, because each subgraph Tk 6∈ RD crosses some of these three edges

at least once.
As the set RD is nonempty, our aim is to list all possible rotations rotD(ti) existing

in D if no edge of Ti cross any edge of G11. Since there is only one subdrawing of Fi \ v5
represented by the subrotation (1234), we have only two ways to obtain the subdrawing of
the subgraph Fi depending on which region the edge tiv5 is placed in. We denote these two
possibilities by A1 and A3, and they are represented by the cyclic permutations (12345)
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and (12354), respectively (in order to comply with the same notation as in [12]). One can
easily determine, in five possible regions of D(G11 ∪ Ti), that crD(G11 ∪ Ti, Tk) ≥ 3 holds
for any subgraph Tk, k 6= i. Thus, by fixing the subgraph G11 ∪ Ti, we have

crD(G11 + Pn) = crD(K5,n−1) + crD(K5,n−1, G11 ∪ Ti) + crD(G11 ∪ Ti)

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(n− 1) + 0,

where 4
⌊ n−1

2
⌋⌊ n−2

2
⌋
+ 3(n− 1) ≥ n(n− 1) + 1 is true only for n even. For n odd, without

a loss of generality on based their symmetry, let us also consider that the number of all
subgraphs with the configuration A1 is at least as much as the number of all subgraphs
with the configuration A3, and let Ti ∈ RD be such a subgraph with the configuration A1
of Fi. As r ≥

⌈ n
2
⌉
≥ 3 for n at least 5, there is at least one subgraph T j ∈ RD, j 6= i with

rotD(tj) = rotD(ti), which yields that crD(G11 ∪ Ti, T j) ≥ 0 + 4 = 4. This allows us to add
at least one crossing in the following inequalities

crD(G11 + Pn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(n− 1) + 1 ≥ n(n− 1) + 1.

Both subcases confirm a contradiction with the assumption in D.
Case 2: We consider the planar drawing of G11 in D given in Figure 2b. As no face is

incident to all vertices in D(G11), there is no possibility to obtain a subdrawing of G11 ∪ Ti

for a Ti ∈ RD. As r = 0, each subgraph Ti crosses the edges of G11 exactly once using the
inequality (6). If all vertices ti of the path P∗n are placed in the region of D(G11) with four
vertices v1, v2, v3, and v5 of G11 on its boundary, then the edge v1v5 must be crossed by
each subgraph Ti ∈ SD by Corollary 1.

This contradicts the fact that there are, at most,
⌊ n

2
⌋

crossings on the edge v1v5 using
the already well-known result from the previous case by [11]. Finally, if all vertices ti are
placed in the region of D(G11) with four vertices v1, v2, v4, and v5 of G11 on its boundary,
then only one of the edges v1v5 and v2v5 can be crossed by any subgraph Ti ∈ SD again
by Corollary 1. The authors in [10,11] proved that cr(G5 + Pn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

and
cr(G7 + Pn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
+ 1, respectively, and thus there are at most

⌊ n
2
⌋
+
⌊ n

2
⌋
− 1

crossings on the pair of edges v1v5 and v2v5. These facts imply a contradiction with s = n.
We have shown, in all cases, that there are at least n(n− 1) + 1 crossings in each good

drawing D of the graph G11 + Pn. The proof of Theorem 2 is done.

4. The Crossing Number of G11 + Cn

Let Sm denote the star on m + 1 vertices. Using the results of Klešč et al. [9], the
crossing numbers of the graphs Sm + Cn for m = 3, 4, 5 and n ≥ 3 were established. Hence,
the exact value for the crossing number of the graph G2 + Cn is given by n(n − 1) + 2.
Given the use of arguments similar to those in the proof of Lemma 1, the proofs of Lemma 3
and Corollary 2 can be omitted.

Lemma 3. For n ≥ 3, if D is any good drawing of the join product G11 + Cn with crD(G11) ≥ 1,
then there are at least n(n− 1) + 3 crossings in D.

Corollary 2. Let D be any good drawing of the join product G11 + Cn, n ≥ 3, with crD(G11) = 0
and also with the vertex notation of G11 given in Figure 2a or Figure 2b. If any of the edges v1v2 or
v2v3 is crossed in D, then there are at least n(n− 1) + 3 crossings in the drawing D.

Two vertices ti and tj of the graph G11 + Dn are said to be antipodal in a drawing of
G11 + Dn if the considered subgraphs Ti and T j do not cross. A drawing with no antipodal
vertices is antipode-free. Clearly, this antipode-free property is also retained in all drawings
of the graph G11 + Cn.
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Lemma 4. For n > 2, let D be a good and antipode-free drawing of the join product G11 + Dn
with crD(G11) = 0 and also with the vertex notation of the graph G11 given in Figure 2a. Let
Ti ∈ RD be a subgraph such that Fi has the configuration A1, i.e., rotD(ti) = (12345), and
let there be no crossing on the edges v1v2 and v2v3 in D. If there is a subgraph Tk ∈ SD with
crD(Ti, Tk) = 2, then

(a) crD(G11 ∪ Ti ∪ Tk, Tl) ≥ 6 holds for any subgraph Tl ∈ RD, l 6= i; and
(b) crD(G11 ∪ Ti ∪ Tk, Tl) ≥ 6 holds for any subgraph Tl 6∈ RD, l 6= k such that the edge v1v5

of G11 is not crossed by the edges of Tl .

Proof. Let us consider the configuration A1 of the subgraph Fi. If there is a subgraph
Tk ∈ SD such that crD(Ti, Tk) = 2, then the considered vertex tk has to be placed in
the quadrangular region of D(G11 ∪ Ti) with exactly three vertices v3, v4, and v5 of G11 on
its boundary. This enforces that the edges v3v5 or v4v5 of the graph G11 must be crossed by
the edges tkv2 or tkv1, respectively. For more, see also the two mentioned subdrawings of
the graph G11 ∪ Ti ∪ Tk in Figure 4.

v
5

v
2

v
1

v
4v

3

(a) (b)

t
i

t
k

v
5

v
2

v
1

v
4v

3

t
i

t
k

Figure 4. Two possible subdrawings of G11 ∪ Ti ∪ Tk for Tk ∈ SD with crD(Ti, Tk) = 2, where
Ti ∈ RD with the configuration A1 of Fi. (a) The subdrawing in which the edge v3v5 of G11 is
crossed by the edge tkv2 ; (b) the subdrawing in which the edge v4v5 of G11 is crossed by the
edge tkv1.

(a) Let Tk ∈ SD be a subgraph with crD(Ti, Tk) = 2. If we suppose the drawing of
subgraph Tk as shown in Figure 4a, then rotD(tk) = (13254). For Tl ∈ RD with
l 6= i, the possible configurations A1 and A3 are uniquely represented by the cyclic
permutations (12345) and (12354), respectively. Using the distances between two
cyclic permutations, we are able to determine the minimum numbers of crossings
of Tl with the subgraphs Ti and Tk in the first two columns of Table 1. The smallest
value in the last column of Table 1 gives the required minimum number of crossings.
Of course, the same idea for the case of rotD(tk) = (14235) forces the same result.

Table 1. All possibilities of the subgraph Fl for Tl ∈ RD, l 6= i with crD(Ti, Tk) = 2 and Tk ∈ SD.

conf(Fl) crD(T i, T l) crD(Tk, T l) crD(T i ∪ Tk, T l) crD(G11 ∪ T i ∪ Tk, T l)

A1 4 2 6 6
A3 3 3 6 6

(b) For l 6= k, let Tl 6∈ RD be a subgraph with respect to the restriction that the edges of Tl

does not cross the edges v1v2, v2v3, and v1v5 of the graph G11. Since the considered
drawing D is antipode-free and Tl can cross only some of edges v2v5, v3v5, and
v4v5 of G11, one can easily determine, in all possible regions of the subdrawing
D(G11 ∪ Ti ∪ Tk), that crD(G11 ∪ Ti ∪ Tk, Tl) ≥ 6 is fulfilling for such a subgraph Tl .
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Again, using the algorithm on the website http://crossings.uos.de/ accessed on
10 October 2020, we can also determine the crossing numbers of two small graphs in
Lemma 5.

Lemma 5. cr(G11 + C3) = 9 and cr(G11 + C4) = 15.

Theorem 3. cr(G11 + Cn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 3 = n(n− 1) + 3 for n ≥ 3.

Proof. Figure 5 shows the drawing of the graph G11 + Cn with exactly n(n− 1) + 3 cross-
ings. Thus, cr(G11 + Cn) ≤ n(n− 1) + 3. By Lemma 5, the result holds for n = 3 and n = 4.
We prove the reverse inequality by induction on n. Now, let us suppose that, for some
n ≥ 5, there is a drawing D for which

crD(G11 + Cn) < n(n− 1) + 3, (7)

and that

cr(G11 + Cm) = m(m− 1) + 3 for any integer 3 ≤ m < n. (8)

v
5

v
2

v
1

v
4

v
3

t1
_⌈ ⌉t n
2

_⌈ ⌉t n
2
+1tn

Figure 5. The good drawing of G11 + Cn with n(n− 1) + 3 crossings.

Since the graph G11 + Dn is also a subgraph of G11 + Cn, also by Theorem 1, the edges
of G11 + Cn are crossed at least n(n− 1) times. Therefore, at most two edges of the cycle C∗n
can be crossed in D, and this also implies that the vertices ti of C∗n have to be placed at most
in two different regions of D(G11). Moreover, by Theorem 2, there is at most one crossing
on each edge of C∗n. By Lemma 3, we can only suppose two possible planar subdrawings
of the graph G11 induced by D. All our assumptions on D with cr(K5,n) = 4

⌊ n
2
⌋⌊ n−1

2
⌋

enforce that

crD(G11) + crD(G11, K5,n) ≤ 2
⌊n

2

⌋
+ 2,

i.e.,

0 + 0r + 1s + 2(n− r− s) ≤ 2
⌊n

2

⌋
+ 2, (9)

if we use the notation r = |RD| and s = |SD| again. This forces that 2r + s ≥ 2
⌈ n

2
⌉
− 2,

and if r = 0, then s ≥ 2
⌈ n

2
⌉
− 2. Again, we will suppose all possibilities of obtaining some

subgraph Ti ∈ RD ∪ SD in order to obtain a contradiction with the assumption (7) in all
considered subcases in D:

Case 1: We consider the planar drawing of G11 in D with the vertex notation in
such a way as shown in Figure 2a. We claim that the drawing D must be antipode-free.
For a contradiction, suppose that crD(Tk, Tl) = 0 for two different subgraphs Tk and

http://crossings.uos.de/


Mathematics 2021, 9, 1277 9 of 13

Tl . If at least one of Tk and Tl , say Tk, does not cross G11, it is not difficult to check in
Figure 2a that the subgraph Tl must cross the edges of G11 ∪ Tk at least twice, that is,
crD(G11, Tk ∪ Tl) = crD(G11, Tl) ≥ 2. Moreover, the Kleitman’s result [3] for cr(K5,3) = 4
implies that each Tm, m 6= k, l crosses the edges of the subgraph Tk ∪ Tl at least four times.
Consequently, for the number of crossings in D holds:

crD(G11 + Cn) = crD(G11 + Cn−2) + crD(K5,n−2, Tk ∪ Tl) + crD(G11, Tk ∪ Tl)

+crD(Tk ∪ Tl) ≥ (n− 2)(n− 3) + 3 + 4(n− 2) + 2 + 0 = n(n− 1) + 3.

This contradiction with (7) confirms that D is antipode-free. The authors in [11] also
proved that cr(G0 + Cn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
+ 1, and therefore there are at most

⌊ n
2
⌋
+ 1

crossings on three edges v1v5, v3v5, and v4v5 in D. This, also with Corollary 2, implies
that r ≥ n−

(⌊ n
2
⌋
+ 1
)
=
⌈ n

2
⌉
− 1 provided by each subgraph Tk 6∈ RD crosses some of

these three edges at least once. Thus, for any Ti ∈ RD, the vertex ti have to be placed in the
region of D(G11) with all five vertices of the graph G11 on its boundary.

Let us turn to the possibility of an existence of vertex tj of the cycle C∗n in some region
of D(G11) with three vertices of G11 on its boundary, that is, two different edges of C∗n cross
one of the edges v1v5 or v3v5 in D again by Corollary 2. Since there are two additional
crossings on one of these two edges of the graph G11, the mentioned result [11] enforces
r ≥

⌈ n
2
⌉
+ 1 ≥ 4 for n at least 5. Let D

′
be the subdrawing of G11 + Dn induced by D

without the edges of C∗n.
Clearly, the subdrawing D

′
is some optimal drawing of the graph G11 + Dn with

exactly n(n − 1) crossings. Therefore, we can apply the similar idea as in the proof of
Theorem 2, because crD′ (G11 ∪ Ti, Tk) ≥ 3 holds for any two different subgraphs Ti, Tk

with Ti ∈ RD. Again, without a loss of generality, let us also consider that the number of
all subgraphs with the configuration A1 is at least as much as the number of all subgraphs
with the configuration A3, and let Ti ∈ RD be such a subgraph with this configuration A1
of Fi. Then, by fixing the subgraph G11 ∪ Ti, we have

crD′ (G11 + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(n− 1) + 1 ≥ n(n− 1) + 1.

This contradiction with the optimality of the subdrawing D
′

of G11 + Dn confirms
that all vertices ti of the cycle C∗n are placed in the region of D(G11) with five vertices v1,
v2, v3, v4, and v5 of G11 on its boundary. By [11], we already know that there are, at most,⌊ n

2
⌋
+ 1 crossings on the three edges v1v5, v3v5, and v4v5 in D. In the rest of the paper,

based on their symmetry, let the edge v1v5 be crossed, at most, as many times as the edge

v3v5, that is, there are at most
⌊ b n

2 c+1
2
⌋

crossings on the edge v1v5 in D. We denote, byMD,
the nonempty subset ofM = {A1,A3} consisting of all configurations existing in D. Now,
two possible subcases may occur:

(a) A1 ∈ MD. For Ti ∈ RD with the configuration A1 of Fi, there is the possibility of
obtaining a subdrawing of G11 ∪ Ti ∪ Tk in which crD(Ti, Tk) = 2 holds for some
Tk ∈ SD. For this case by Lemma 4, the edges of the graph G11 ∪ Ti ∪ Tk are crossed
by each subgraph Tl , l 6= i, k at least six times except in cases where the edge v1v5 of
G11 is crossed by the edges of Tl . Thus, by fixing the subgraph G11 ∪ Ti ∪ Tk, we have

crD(G11 + Cn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(n− 2)−

⌊ b n
2 c+ 1

2

⌋
+ 3 ≥ n(n− 1) + 3.

This also contradicts the assumption of D, and therefore, in the next part, suppose
that crD(G11 ∪ Ti, Tk) ≥ 4 holds for each Tk ∈ SD. Notice that if r ≥ 3 and there
are two different subgraphs Ti, T j ∈ RD such that Fi and Fj have configurations A1
and A3, respectively, then crD(Ti ∪ T j, Tk) ≥ 3 + 4 = 7 is fulfilling for any Tk ∈ RD,
k 6= i, j and crD(G11 ∪ Ti ∪ T j, Tk) ≥ 5 holds for any Tk 6∈ RD. Therefore, in such
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a contemplated case, by fixing the graph G11 ∪ Ti ∪ T j, we receive the following
contradiction with the assumption in D

crD(G11 + Cn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 7(r− 2) + 5(n− r) + 3

≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5n+ 2r− 11 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 5n+ 6− 11 ≥ n(n− 1)+ 3.

Further, if there is a subgraph Tk 6∈ RD ∪ SD such that crD(G11 ∪ Ti, Tk) = 3, then
the edges v3v5 and v4v5 of the graph G11 are crossed by the edges tkv2 and tkv1,
respectively, which yields by the result in [11] that r ≥

⌈ n
2
⌉
≥ 3 for n at least 5. Finally,

if eitherMD = {A1,A3} and r = 2 orMD = {A1}, by fixing the subgraph G11 ∪ Ti,
we have

crD(G11 + Cn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(n− 1) + 1 + 1 + 1 ≥ n(n− 1) + 3.

(b) MD = {A3}. Let Ti be any subgraph from the nonempty set RD. Then, crD(Ti, Tk) ≥
4 holds for each subgraph Tk ∈ RD, k 6= i provided by rotD(ti) = rotD(tk). Moreover,
we can easily verify in five possible regions of D(G11 ∪ Ti) that crD(G11 ∪ Ti, Tk) ≥ 4
is fulfilling for any Tk 6∈ RD, if the edge v1v5 of G11 is not crossed by the edges of Tk.
Thus, by fixing the subgraph G11 ∪ Ti, we have

crD(G11 + Cn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(n− 1)−

⌊ b n
2 c+ 1

2

⌋
+ 0 ≥ n(n− 1) + 3.

All these subcases confirm a contradiction with the assumption in D.

Case 2: We assume the planar subdrawing of G11 with the vertex notation given
in Figure 2b. The set RD is empty, and therefore there are at least 2

⌈ n
2
⌉
− 2 subgraphs

Ti ∈ SD using the inequality (9). The authors in [10,11] also proved that cr(G5 + Cn) =
4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
+ 2 and cr(G7 + Cn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
+ 2, and therefore there are at

most
⌊ n

2
⌋

crossings on each of the edges v1v5 and v2v5, respectively. Since each subgraph
Ti crosses some edge of the cycle v1v2v5v1 at least once in D(G11 ∪ Ti), and none of the
edges v1v2 and v2v3 can be crossed in D due to Corollary 2, each of the edges v1v5 and
v2v5 is crossed exactly

⌊ n
2
⌋

times. This also enforces that n must be even and all vertices ti
of the cycle C∗n are placed in the region of D(G11) with four vertices v1, v2, v4, and v5 of
G11 on its boundary.

Now, let us turn to list all possible rotations rotD(ti) that can appear in the drawing
D if the edges of the graph G11 are crossed by the edges of Ti just once. For Ti ∈ SD,
based on the previous discussion, there is only one possible subdrawing of Fi \ {v3, v5}
represented by the subrotation (142). This offers four ways of obtaining the subdrawing of
Fi depending on which of two edges of the graph G11 can be crossed by the edge tiv3 and
in which region of D(Fi \ v5) the edge tiv5 is placed.

We denote these four possibilities by B1, B2, B3, and B4 with the corresponding cyclic
permutations (13542), (14532), (13452), and (15432), respectively. For any Ti ∈ SD with
the configuration of either B3 or B4 of Fi, the reader can easily verify in five possible regions
of D(G11 ∪ Ti) that crD(G11 ∪ Ti, Tk) ≥ 3 holds for each subgraph Tk with k 6= i. Moreover,
crD(G11 ∪ Ti, Tk) ≥ 4 is fulfilling for each subgraph Tk, k 6= i if the edges tiv3 and tkv3
cross the same edge of G11. Thus, by fixing the subgraph G11 ∪ Ti having the configuration
either B3 or B4, we obtain

crD(G11 + Cn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4
(⌊n

2

⌋
− 1
)
+ 3
⌊n

2

⌋
+ 1 ≥ n(n− 1) + 3.

This also contradicts the assumption (7) of D. Finally, suppose that there is no sub-
graph Ti ∈ SD with the configuration B3 and B4 of Fi. As s ≥ n − 2 ≥ 4 for n even
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of at least 6, there are two different subgraphs Ti, T j ∈ SD such that Fi and Fj have the
configurations B1 and B2, respectively. The minimum number of interchanges of adjacent
elements of (13542) required to produce the cyclic permutation (14532) = (12354) is one.
Thus, the subgraph T j must cross the edges of Ti at least 1+ 2m times for some nonnegative
integer m and crD(Ti ∪ T j, Tk) ≥

⌊ 5
2
⌋⌊ 5−1

2

⌋
− 1 = 3 is also fulfilling for each subgraph Tk,

k 6= i, j, for more see Woodall’s results [23]. These properties of the cyclic permutations
imply that crD(G11 ∪ Ti ∪ T j, Tk) ≥ 1 + 1 + 4 = 6 holds for any Tk ∈ SD, k 6= i, j, and
crD(G11 ∪ Ti ∪ T j, Tk) ≥ 2 + 3 = 5 is also true for any Tk 6∈ SD. Hence, by fixing the
subgraph G11 ∪ Ti ∪ T j, we have

crD(G11 + Cn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(s− 2) + 5(n− s) + 2 + 1 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+5n + s− 9 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 5n + (n− 2)− 9 ≥ n(n− 1) + 3.

We have shown, in all cases, that there are at least n(n− 1) + 3 crossings in each good
drawing D of the graph G11 + Cn. This completes the proof of Theorem 3.

5. Some Consequences of the Main Result

In Figure 6, let G14 be the connected graph of order five obtained from G11 by adding
the edge v3v4 in the subdrawing in Figure 2a. Since we can add this edge v3v4 to the graph
G11 without additional crossings in Figures 3 and 5, the drawings of the graphs G14 + Pn
and G14 +Cn with exactly n(n− 1)+ 1 and n(n− 1)+ 3 crossings are obtained, respectively.
Further, the graph G11 is some subgraph of G14, and therefore, cr(G14 + Pn) ≥ cr(G11 + Pn)
and cr(G14 + Cn) ≥ cr(G11 + Cn). Therefore, the following results are obvious.

G6 G9 G14

Figure 6. Three graphs G6, G9, and G14.

Corollary 3. cr(G14 + Pn) = n(n− 1) + 1 for n ≥ 2.

Corollary 4. cr(G14 + Cn) = n(n− 1) + 3 for n ≥ 3.

Similarly, in Figure 6, let G9 be the graph obtained from G11 by adding the edge
v3v4 and by removing the edge v2v3 from the subdrawing in Figure 2a, which yields the
good drawing of G9 + Cn with exactly n(n− 1) + 2 crossings from the optimal drawing
of G11 + Cn in Figure 5. As G2 is a subgraph of the graph G9, we have cr(G9 + Cn) ≥
cr(G2 + Cn) = n(n − 1) + 2 due to the result by Klešč et al. [9]. Let G6 be the graph
obtained from G11 by removing the edge v2v3 from the subdrawing in Figure 2a, that is,
cr(G9 + Cn) ≥ cr(G6 + Cn) ≥ cr(G2 + Cn).

Corollary 5. cr(G6 + Cn) = n(n− 1) + 2 for n ≥ 3.

Corollary 6. cr(G9 + Cn) = n(n− 1) + 2 for n ≥ 3.

Notice that Staš [12] also established the results of cr(G6 + Pn) = cr(G9 + Pn) =
n(n− 1) as some consequences of cr(G2 + Dn) = n(n− 1). Finally, Staš and Valiska [14]
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conjectured that the crossing numbers of Wm + Pn are given by (Z(m)− 1)
⌊ n

2
⌋
+ Z(m +

1)Z(n) + n + 1, for all m ≥ 3 and n ≥ 2, and where Wm denotes the wheel on m + 1 vertices
and the Zarankiewicz’s number Z(n) =

⌊ n
2
⌋⌊ n−1

2
⌋

is defined for all positive integers n.
Recently, this conjecture was proven for W3 + Pn and W4 + Pn by Klešč and Schrötter [6]
and by Staš and Valiska [14], respectively.

On the other hand, the graphs Wm + P2 and Wm + P3 are isomorphic to the join product
of the cycle Cm with the cycle C3 and with the graph K4 \ e obtained by removing one edge
from K4, respectively. The exact values for the crossing numbers of the graphs Cm + Cn and
K4 \ e + Cm are given by Klešč [4,5], respectively, and so the graphs Wm + P2 and Wm + P3
confirm the validity of this conjecture. Since the graph Wm + P4 is isomorphic to the graph
G14 + Cm, we establish the validity of this conjecture also for the graph Wm + P4.

Corollary 7. cr(Wm + P4) = m(m− 1) + 3 for m ≥ 3.

6. Conclusions

We suppose that similar forms of discussions can be used to estimate the unknown
values of the crossing numbers of the remaining graphs on five vertices with a much
larger number of edges in the join products with the paths, and also with the cycles. We
expect the same for other symmetric graphs of order six. Berežný and Staš [24] determined
the crossing number of W5 + Dn. Using this result, it would also be useful to confirm
the conjecture mentioned in Section 5 for the graph W5 + Pn in the form cr(W5 + Pn) =
6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 3

⌊ n
2
⌋
+ 1 for n ≥ 2.
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1. Klešč, M. The crossing numbers of join of the special graph on six vertices with path and cycle. Discret. Math. 2010, 310, 1475–1481.

[CrossRef]
2. Garey, M.R.; Johnson, D.S. Crossing number is NP-complete. SIAM J. Algebraic. Discret. Methods 1983, 4, 312–316. [CrossRef]
3. Kleitman, D.J. The crossing number of K5,n. J. Comb. Theory 1970, 9, 315–323. [CrossRef]
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