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Abstract: The software for spatial econometrics available in the R system for statistical computing
is reviewed. The methods are illustrated in a historical perspective, highlighting the main lines of
development and employing historically relevant datasets in the examples. Estimators and tests
for spatial cross-sectional and panel models based either on maximum likelihood or on generalized
moments methods are presented. The paper is concluded reviewing some current active lines of
research in spatial econometric software methods.
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1. Introduction

The term spatial econometrics was coined by the Belgian economist Jean Paelinck
in 1974 during an address to the Dutch statistical association. A few years later with
his famous book “Spatial Econometrics: Methods and Models” Luc Anselin was instru-
mental to lay down the foundation of the field [1]. His book was (and still is after many
years) a very well organized collection of tools for the analysis of spatial data. The use
of spatial econometrics in empirical applications was facilitated and extended by how
easily the methods and examples presented in [1] could be reproduced in SpaceStat soft-
ware. In the early years, most of the attention given to spatial econometrics was from
researchers in quantitative geography and regional science. Sessions of the North Ameri-
can Regional Science Association annual meetings were populated by research analyzing
regional data from a spatial econometric perspective. This was probably due also to
certain similarities between spatial econometrics and methods typically adopted in re-
gional science as for example Input-Output analysis. At the same time SpaceStat was
complemented by other tools such as the MATLAB spatial econometrics toolbox by LeSage
(http://www.spatial-econometrics.com/) and the package spdep in R. In recent years,
the field of spatial econometrics has experienced a rapid growth in conjunction with the
interest and attention received by researchers in mainstream economics and econometrics.
A multiplicity of methods and models have been developed for cross-sectional as well
as panel data [2–4]. Currently, spatial econometrics routines to estimate spatial models
are available from many commercial (and non commercial) software, as for example Stata
and the PySal module spreg [5]. R [6] is with no doubt the open source environment that
contains the richest variety of options.

The aim of this paper is to survey all the available spatial econometrics packages and
methods in R that deal with polygon spatial data, presenting the interested researchers
with an up-to-date and comprehensive review of methods in both the cross-sectional and
the panel data domains. All examples are meant to be replicable with resources from the
public domain, allowing the reader to immediately put the relevant method into practice.
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The rest of the paper is organized as follows: in Section 2 we present four data sets that
will be then used to illustrate the libraries introduced. Section 3 is entirely devoted to cross
sectional models and R libraries that deal with them. We present those libraries following
as close as possible the chronological order in which they appeared in R. Section 4 describes
static panel data model and the library splm, which implements maximum likelihood (ML)
and generalized moments (GM) estimation. Section 5 deals with further developments and
alternative methods and approaches both for cross-sectional and panel models. Section 6
concludes the paper.

2. Preliminaries and Data
2.1. Used Car Prices

In the 1960s, Hanna [7] wanted to examine the effects of regional differences in state
taxes and transportation charges on used car prices. The article lists data for the 48
coterminous US states and the District of Columbia. The data set was used by Hepple [8]
in developing ML estimation methods for spatial series, as cross-sectional spatial data were
then known. We may read a copy of the data, punched from the article and stored in a
GeoPackage file with the state boundaries, into R in this way:

> library(sf)
> used.cars < - st_read("Data and Shapes/hanna66.gpkg", quiet=TRUE)

Figure 1 shows why Hanna and Hepple saw the spatial nature of the problem: the
used car prices in 1960 of vehicles first sold 1955–1959 (standardized as described by
Hanna [7]) are lowest in Kentucky and in surrounding states northward towards Detroit.
The lower panel shows the transport costs, which are lowest in Michigan for obvious
reasons, because Detroit was then Motor City. State sales taxes are set by political decisions,
and were considered carefully by Hanna as a driver for differences in used car prices.
One might expect some leakage of demand for used cars across state boundaries; the
figure also shows some variation in sales taxes between neighbouring states that might
provoke leakage.

1960 USD
1,400 to 1,450
1,450 to 1,500
1,500 to 1,550
1,550 to 1,600
1,600 to 1,650
1,650 to 1,700

Transport costs Sales tax

1960 USD
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120
120 to 140
140 to 160
160 to 180

Figure 1. Composition of used car prices, US states. Upper panel, average used car prices in 1960
for cars that were new in 1955–1959 and graph of contiguous states shown in blue; lower panel left:
transport costs of new cars; right: state taxes on new cars.
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> library(spdep)
> nb <- poly2nb(used.cars)
> nb
Neighbour list object:
Number of regions: 49
Number of nonzero links: 218
Percentage nonzero weights: 9.07955
Average number of links: 4.44898
> lw <- nb2listw(nb, style="W")

The upper panel of Figure 1 also shows the graph of contiguous states, that is states
sharing at least one boundary point. Some links are counter-intuitive, such as Wisconsin-
Michigan, but here it is Upper Michigan that shares a boundary with Wisconsin. It is this
symmetric neigbour graph that forms the basis for measuring the relationships between
values at observations (here states) and aggregate values at neighbouring observations.

The aggregate values here are taken as the average of values in neighbouring states,
with edge weights summing to unity for each state, denoted by style="W" in the definition
of the list of weights object. Spatial weights matrices are typically very sparse, and while
formulae often show them as matrices, they are seldom used as dense matrices.

To get an impression of the level of spatial dependence in these variables, we may
use the approximate profile likelihood estimator [9,10] [APLE], which may be viewed
somewhat like a correlation coefficient between the values observed for each state and
the average values for neighbouring states. For the 1960 used car prices, APLE is 0.7579,
for transport costs unsurprisingly a little stronger: 0.8404. The coefficient for sales taxes is
negative: −0.3625, and for both transport costs and sales taxes taken together it is more
moderate: 0.5317.

2.2. Driving Under the Influence

One of the main advantages of GMM methods in space is that this technique is able to
handle additional endogenous variables (other than the spatial lag). For this reason we
choose to employ the simulated county data set US Driving Under the Influence (DUI) from
in [11–13] for our demonstration. The data for 3109 counties (excluding Alaska, Hawaii,
and US territories), was constructed simulating from variables in Powers and Wilson [14].
The counties were available from an ESRI Shapefile downloaded in 2102 from the US Cen-
sus. (https://www2.census.gov/geo/tiger/TIGER2008/tl_2008_us_county00.zip). The
dependent variable dui is defined as the alcohol-related arrest rate per 100,000 daily vehicle
miles traveled (DVMT). The regressors include police (measured in terms of number of
sworn officers per 100,000 DVMT); nondui (non-alcohol-related arrests per 100,000 DVMT);
vehicles (number of registered vehicles per 1000 residents), and dry (a dummy for coun-
ties that prohibit alcohol sale within their borders, about 10% of counties). An additional
dummy variable elect is 1 if a county government faces elections, 0 otherwise, and has
295 non-zero entries.

More than likely, the size of the police force is related with the alcohol-arrest rates.
Therefore, police is treated as an endogenous variable. [12] also assume that the dummy
variable elect make a proper instrument for police.

We first read the shape file and the list of neighbors. Then, the function nb2listw
serves to transform the neighbors into an actual (row-standardized) weights matrix.
The last three lines of code define the formulas. In particular, fm2 is the main formula
that relates dui to the explanatory variables from which police is excluded because of
endogeneity and is added separately. Finally, the last line of code below defines that the
variable elect should be used as instrument.

https://www2.census.gov/geo/tiger/TIGER2008/tl_2008_us_county00.zip
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> shape2 <- st_read("Data and Shapes/ccountyR.gpkg", quiet=TRUE)
> nblist_dui <- poly2nb(shape2)
> listw_dui <- nb2listw(nblist_dui, style="W")
> fm2 <- dui ˜ nondui + vehicles + dry
> endog2 <- ˜ police
> instruments2 <- ˜ elect

2.3. Rice Farming

The famous Econometrica paper of Case [15] has introduced spatial panel data to
a large audience and the mainstream profession. She applied a comprehensive spatial
panel data framework to the empirical analysis of rice production in Indonesia, a subject
panel data econometricians would come back to in more recent years. In another seminal
paper [16] 171 rice farms in Indonesia are observed over six growing seasons, three wet
and three dry, between 1975 and 1983. The farms are located in six different villages of the
Chimanuk River basin in West Java. Following Druska and Horrace [16], the proximity
matrix is constructed considering all the farms of the same village as neighbours.

Data and weights matrix are available in the splm package as, respectively, RiceFarms
and riceww; the spatial weights do not change over time, and are of size N × N, while
there are N × T observations.

> hldata(RiceFarms, package="splm")
> data(riceww, package="splm")
> ricelw <- mat2listw(riceww)

Druska and Horrace [16] estimated a production frontier equation where rice output
depends on the inputs: seed, urea, phosphate (tsp), labour hours (lab) and land (size); all
variables in logs but phosphate. Dummy variables are added for:the use of high yield
varieties of seed (high); for a mix of seed varieties (mixed); and for the use of pesticides.
Dummy variables are also included for each of the six villages, and for wet season (as
opposed to dry):

> ricefm <- log(goutput) log(seed) + log(urea) + phosphate +
+ log(totlabor) + log(size) + I(pesticide>0) +
+ I(varieties=="high") + I(varieties=="mixed") + # as.factor(region) +
+ I(as.numeric(time) %in% c(1,3,5))

As per Druska and Horrace [16], “[o]f the six villages included in the sample, two
are on the north coast of the island in an area with average altitudes of 10–15 m above
sea level. Another three villages are in an area (600–1100 m above sea level) in the central
part of West Java. The last village is in the center of the island with an average altitude
of 375 m. The infrastructure in the Cimanuk River Basin is fairly heterogeneous. Some of
the villages (in both high and lowland areas) lack reliable transportation systems, and
local roads are almost impassable in the wet (rainy) season. Other villages, located in close
proximity to province capital cities, are highly accessible along paved, all-weather roads.”
Therefore, both village-level heterogeneity and spatial correlation between farms belonging
to the same village can be expected. Of the two possible spatial effects, spatial dependence
in the errors is more likely, because of the similarity in idiosyncratic factors and climate
conditions between neighbouring farms; the inclusion in the model of a spatial lagged
response is harder to justify, as it seems unrealistic for one farm’s production to influence
those of neighbours.

2.4. Crime in North Carolina

The second panel data set considered is based on a well known economic model
of crime estimated by [17]. (The data are available from the website associated with
Baltagi’s book [18].) They use a panel data on 90 counties in North Carolina over the
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period 1981–1987. The empirical model relates the crime rate (lcrmrte) to a set of controls
for the return to legal activities, and to a number of deterrent variables (probability of
arrest, probability of conviction conditional on arrest, and probability of imprisonment
conditional on conviction). The crime rate variable is the ratio between an FBI index
that measures the number of crimes, and county population (i.e., crime per-capita in the
county). The ratio of arrest to offenses is a proxy for the probability of arrest (lprbarr);
the ratio of convictions to arrest is a proxy for the probability of conviction (lprbconv),
and, finally, the proportion of total convictions resulting in prison sentences is a proxy
for the probability of imprisonment (lprbpris). A measure of sanction severity (lavgsen)
measured by the average prison sentence length in days is included in the model as well.

All of the other variables are either observable county characteristic, or controls for
the relative return to legal activities. The relative returns to legal activities are captured by
the average weekly wage in the county in various sectors, such as construction (lwcon);
transportation, utilities, and communications (lwtuc); wholesale and retail trade (lwtrd);
finance, insurance, and real estate (lwfir); services (lwser); manufacturing (lwmfg); and
federal (lwfed), state (lwsta), and local government (lwloc). The dummy variable (urban)
controls for differences in participation in the legal sector that may occur between urban
and rural environment. A similar role is played by the density variable (ldensity) which
measures the ratio between county population and county land area.

It is well known that crime rates tend to change with demographic characteristics
of the population. The model incorporates the proportion of male population between
the ages of 15–24 (lpctymle), as well as the proportion of the population that is minority
(lpctmin). Finally, regional or cultural factors that may affect the crime rate are picked up
with the inclusion of a central and western dummies. Ref. [17] estimates the model both by
the between and the within estimators and find quite impressive differences. Since they are
concerned by the heterogeneity in their sample, they reject estimators that do not condition
on country effects. This decision is clearly based on the evidence of a Hausman test.

Additionally, ref. [17] are concerned about the endogeneity of police per-capita and
the probability of arrest. Hence those two variables are instrumented using per-capita tax
revenue and a mix of different offense types. The following lines of code read the data
and the shape file, generate a spatial weight matrix based on the five-nearest neighbours
criterion, and define the formulas to estimate the model.

> library("splm")
> data_cor <- read.csv("./Data and Shapes/cornwell.csv")
> shape4 <- st_read("Data and Shapes/north_carol.gpkg", quiet=TRUE)
> coord_NC <- st_centroid(st_geometry(shape4), of_largest_polygon=TRUE)
> nbnc_NC <- knn2nb(knearneigh(coord_NC, k = 5))
> nc_listw <- nb2listw(nbnc_NC, style="W")
> fm4 <- lcrmrte lprbconv + lprbpris + lavgsen +
+ ldensity + lwcon + lwtuc +
+ lwtrd + lwfir + lwser + lwmfg +
+ lwfed+ lwsta + lwloc + lpctymle + lpctmin +
+ west + central + urban+ d82 + d83 + d84 + d85 + d86 + d87
> endog4 = lprbarr + lpolpc
> instruments4 = ltaxpc + lmix

3. Cross Sectional Models

The general model presented in this section allows for endogeneity of (some of) the
regressors. The point of departure is the Cliff–Ord spatial model:

y = Yπ + Xβ + WXγ + λWy + u (1)

where y is an n × 1 vector of observations on the dependent variable, Y is an n × p
matrix of observations on p endogenous variables, X is a n × k matrix of observations
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on k exogenous variables, W is an n × n observed and non-stochastic spatial weight
matrix and, consequently, Wy is an n × 1 variable that is generally referred to as the
spatial lag of the dependent variable; π and β are corresponding parameters; and λ is the
spatial autoregressive coefficient. Given the presence of Y, the model can be viewed as a
representation of a single equation of a system of equations.

The error vector u follows a spatial autoregressive process of the form:

u = ρMu + ε (2)

where ρ is a scalar spatial autoregressive parameter, M is an n× n spatial weights matrix
that may or may not be the same as W, Mu is an n× 1 vector of observation on the spatially
lagged vector of residuals.

An alternative, more compact way to express the same model is:

y = Zδ + u (3)

where Z = [Y, X, Wy] is the set of all (endogenous and exogenous) explanatory variables,
and δ = [π>, β>, λ]> is the corresponding vector of parameters. Finally, the assumption
on which the ML relies is that ε ∼ N(0, σ2).

The general model (Equation (1)) may be restricted in various ways. Particularly in
ML applications, π is generally set to zero.

The spatial error model (SEM) is generated from the general model when
λ = γ = π = 0:

y = Xβ + u, u = ρMu + ε (4)

The spatial lag model (SLM) or spatial autoregressive model (SAR) is generated from
the general model when ρ = γ = π = 0:

y = Xβ + λWy + ε (5)

The spatial Durbin model (SDM) is generated from the general model when ρ = π = 0:

y = Xβ + WXγ + λWy + ε (6)

It is also possible to define the spatial error model with lags of the explanatory
variables (henceforth SDEM) when λ = π = 0:

y = Xβ + WXγ + u, u = ρMu + ε (7)

If the only restriction are γ = π = 0 we have a spatial autoregressive model with
autoregressive error term (SARAR):

y = Xβ + λWy + u, u = ρMu + ε (8)

Finally, the SARAR model can also include lagged explanatory variables. In this case
the only restriction on the general model is π = 0, that corresponds to the following speci-
fication:

y = Xβ + WXγ + λWy + u, u = ρMu + ε (9)

Over time, a characteristic of spatial lag models (and, by extension, of any model
including the spatially lagged response) has become clear: that, unlike the spatial error
model, the spatial dependence in the parameter λ feeds back. The interpretation of
marginal effects should therefore not be based on the fitted parameters β, but rather on
correctly formulated impact measures, as discussed in references given further on.
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The reason for the feedback lies with the data generation process of the spatial lag
model (and by extension in the general model). Rewriting:

y− λWy = Xβ + ε

(I− λW)y = Xβ + ε

y = (I− λW)−1Xβ + (I− λW)−1ε

where I is the n× n identity matrix. This means that the expected impact of a unit change
in an exogenous variable r for a single observation i on the dependent variable yi is no
longer equal to βr, unless λ = 0. The awkward n× n Sr(W) = ((I− λW)−1Iβr) matrix
term is needed to calculate impact measures for the spatial lag model, and similar forms
for other models including the general model, when λ 6= 0.

3.1. Initial Development in R: The spdep Package

Bivand and Gebhardt [19] discusssed initial approaches to handling and analysing
spatial data using R, based on a presentation at the 1998 European Reagional Science
Association (ERSA) Congress in Vienna. A specialist meeting in Santa Barbara in May
2002 turned out to be very fruitful, but the contribution covering R took a little while to
appear [20]; the meeting proceedings were online directly. Further discussion of spatial re-
gression for areal/lattice data was presented at the 2002 ERSA Congress in Dortmund and
published straight away [21]. The main traits of the development of spatial data handling
are described by Bivand [22]. The spdep package was first published on the Comprehen-
sive R Archive Network (CRAN) in March 2002, replacing and merging spweights and
sptests first available from September 2001, and the short-lived spsarlm package on CRAN
in February 2002. spdep inherited the ML estimation functions from spsarlm; there have
been other simpler implementations, for instance [23].

3.1.1. Spatial Dependence and the OLS Model

Initial concerns about the presence of spatial dependence in variables included in
standard Gaussian linear models concentrated on the interpretation of tests on regression
coefficients. Since positive spatial dependence may signal fewer effective degrees of
freedom, could one trust standard tests assuming that no spatial dependence was present?

Table 1 shows a small part of the findings of Smith and Lee [24], using the 49 coter-
minous states neighbour graph (Figure 1) and 10,000 draws. If both y and x show spatial
dependence, standard test assumptions should not be used. If either is free of spatial
dependence, standard test assumptions may be used. Here, we impose the levels of spatial
dependence, and also know the scheme used to do this. With empirical data, we do not
know where the spatial dependence is coming from, including the actual footprint of the
variables. While sales taxes are determined here by states, neither prices nor transport costs
are; they are aggregates.

Table 1. Simulation of the power of a t-test on the regression coefficient at the nominal level of 0.05
for uncorrelated y and x and spatial dependence for the response ρy and the covariate ρx, following
Smith and Lee [24].

ρx 0 ρx 0.2 ρx 0.5 ρx 0.8

ρy 0 0.0505 0.0504 0.0499 0.0502
ρy 0.2 0.0497 0.0561 0.0647 0.0802
ρy 0.5 0.0496 0.0647 0.1002 0.1625
ρy 0.8 0.0532 0.0848 0.1650 0.3134

Hepple [8] questioned whether the relationships described by Hanna held up when
spatial dependence was taken into account. He used the sum of transport costs and sales
taxes as the covariate, but we can also use the two covariates directly:
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> lm_obj1 <- lm(av55_59 ˜ I(transp + salesTax), used.cars)
> lm_obj2 <- lm(av55_59 ˜ transp + salesTax, used.cars)
> lm_obj3 <- lm(av55_59 ˜ offset(transp) + salesTax, used.cars)

Table 2 shows that the simpler model, summing the costs and taxes, appears to
perform less well than the model with two separate covariates. However, we know that
transport costs might be offset rather than fitted, so the third model implicitly imposes a
coefficient of unity on transport costs. McMillen [25] stresses the importance of considering
whether apparent spatial dependence is in fact engendered by model mis-specification,
such as the erroneous inclusion or omission of covariates, and the inappropriate functional
form of included covariates.

Table 2. Output of linear model estimates (standard error estimates in parentheses).

(1) (2) (3)

(Intercept) 1435.971 1404.473 1436.256
(27.178) (23.200) (11.515)

I(transp + salesTax) 0.686
(0.173)

transp 1.297
(0.189)

salesTax −0.073 −0.080
(0.211) (0.214)

σ2 3181.985 2139.748 2206.494

3.1.2. The Development of the Moran and LM Tests for Spatial Dependence (Error and Lag)

When Cliff and Ord [26,27] proposed an extension of the Moran’s I spatial autocorre-
lation test for regression residuals, there was already some confusion associated with the
choice facing analysts between the spatial error model and the spatial lag model. The test
was, like the Durbin–Watson test, based on testing a linear model against an alternative of
omitted spatial autocorrelation in the error term.

> moran1 <- lm.morantest(lm_obj1, lw, alternative="two.sided")
> moran2 <- lm.morantest(lm_obj2, lw, alternative="two.sided")
> moran3 <- lm.morantest(lm_obj3, lw, alternative="two.sided")

Table 3 shows that all of the fitted models appear to show significant spatial autocor-
relation in the error. Hepple [8] draws the same conclusion from a similar test, and fitted a
spatial error model. This test may also be used when a weighted linear model is used; here
no major differences are observed although the level of residual spatial autocorrelatiion is
not so strong when counts of cars held by households from the 1960 US Census are used
as weights.

Table 3. Tabulation of Moran’s I for regression residuals for three model specifications; alternative
hypothesis: spatially autocorrelated residuals.

(1) (2) (3)

Observed Moran I 0.5738 0.5385 0.5917
Expectation −0.0297 −0.0361 −0.0175

Variance 0.0089 0.0090 0.0094
Standard deviate 6.4071 6.0731 6.2897

Pr(z != 0) 1.4830e−10 1.2543e−09 3.1804e−10

Because Moran’s I for regression residuals gives no guidance in choosing between
spatial error and spatial lag models, ref. [28] and Anselin and Bera [29] introduced Lagrange
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multiplier (LM) tests. The re are five tests, a test for residual autocorrelation (LMerr) with a
robust version (RLMerr) for error dependence in the presence of spatial dependence in the
response, conversely LMlag for an omitted spatially lagged response with RLMlag robust
to the simulatneous presence of residual dependence, and the portmanteau test SARMA
which is the sum of LMlag and RLMerr or LMerr and RLMlag.

> LM1 <- lm.LMtests(lm_obj1, lw, test="all")
> LM2 <- lm.LMtests(lm_obj2, lw, test="all")
> LM3 <- lm.LMtests(lm_obj3, lw, test="all")

Table 4 shows the conventional probability values for the three models and the five
tests. While SARMA, LMlag and LMerr indicate strong autocorrelation mis-specification,
the contrasts between the robust RLMerr and RLMlag suggest that models (1) and (2) might
be suffering from an omitted spatially lagged response, while the picture for model (3) is
unclear. Until the last decade, it has been felt reasonable to use the balance between the
robust LM tests as a guide, because the spatial lag and spatial error models are not nested,
so cannot be tested against each other using likelihood ratio tests.

Table 4. Lagrange multiplier test probability values for five tests and three models.

(1) (2) (3)

LMerr 1.4160e−08 1.0208e−07 4.9702e−09
LMlag 1.5194e−10 6.4062e−09 8.8371e−09

RLMerr 0.839688 0.615013 0.015588
RLMlag 0.0028841 0.0176952 0.0296537
SARMA 1.2226e−09 4.2232e−08 3.5187e−09

3.1.3. Early ML Estimation

The ML estimation methods for spatial lattice regression models grew from develop-
ments in Cliff and Ord [26], soon afterwards refined in Ord [30]. In these and in [8,31],
short-cuts were sought but largely rejected, in favour of optimizing the appropriate like-
lihood function. The implementation in spdep uses line search over the single spatial
coefficient, calculating the other coefficients once that is found. The development in [26]
only addresses the simultaneous autoregressive (SAR) approach, but [32] and the rich
literature based on his work prefers to treat spatial lattice regression in a Markov random
field setting (conditional autoregressive, CAR), with spatially structured random effects
included in an otherwise aspatial model. Reference [33] summarizes these developments
and relates the SAR and CAR approaches.

The log-likelihood function for the spatial error model is:

`(β, ρ, σ2) = −N
2

ln 2π − N
2

ln σ2 + ln |I− ρW|

− 1
2σ2

[
(y− Xβ)>(I− ρW)>(I− ρW)(y− Xβ)

]
.

β may be concentrated out of the sum of squared errors term, for example as:

`(ρ, σ2) = −N
2

ln 2π − N
2

ln σ2 + ln |I− ρW|

− 1
2σ2

[
y>(I− ρW)>(I−QρQ>ρ )(I− ρW)y

]
where Qρ is obtained by decomposing (X− ρWX) = QρRρ.

The first published versions of the eigenvalue method for finding the Jacobian [30]
(p. 121) is:
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ln(|I− λW|) =
N

∑
i=1

ln(1− λζi)

where ζi are the eigenvalues of W.
One specific problem addressed by [30] (p. 125) is that of the eigenvalues of the

asymmetric row-standardized matrix W with underlying symmetric neighbour relations
cij = cji. If we write w = C1, where 1 is a vector of ones, we can get: W = CD,

where D = diag(1/w); by similarity, the eigenvalues of W are equal to those of: D
1
2 CD

1
2 .

From the very beginning in spdep, sparse Cholesky alternatives were available for cases in
which finding the eigenvalues of a large weights matrix would be impracticable.

The log-likelihood function for the spatial lag model is:

`(β, λ, σ2) = −N
2

ln 2π − N
2

ln σ2 + ln |I− λW|

− 1
2σ2

[
((I− λW)y− Xβ)>((I− λW)y− Xβ)

]
and by extension the same framework is used for the spatial Durbin model when [X(WX)]
are grouped together. The sum-of-squared errors (SSE) term in the square brackets is
found using auxilliary regressions e = y − (X>X)Xy and u = Wy − (X>X)XWy, and
SSE = e>e− 2λu>e + λ2u>u. The cross-products of u and e can conveniently be calcu-
lated before line search begins.

The spatial error model (SEM, Equation (4)) was fitted to Hanna’s data by Hepple [8];
here we separate the two covariates, but if estimated using the sum of the two,
the errorsarlm() function yields the same results at those reported in the article. All
the model estimation functions from the spdep package have been split out into spatial-
reg [34], mostly because most users need spdep for creating spatial neighbour objects
and for testing for autocorrelation. A separate model estimation package permits faster
development of the model fitting functions without disturbing other work. The model
fitting functions follow the structure for R functions of this kind, using a formula interface.
The list of weights object is required, and when no method is specified for the computation
of the log Jacobian to which we will return later, the eigenvalues of the spatial weights
matrix are used [30].

> library(spatialreg)
> sem_obj2 <- spatialreg::errorsarlm(av55_59 ˜ transp + salesTax,
+ used.cars, listw=lw)

While each iteration of the line search of SEM involves a regression, the spatial
lag model (SLM, Equation (5)), and the spatial Durbin model (SDM, Equation (6)) use
intermediate values from two pre-computed regressions in each iteration. Again, the imple-
mentations use the eigenvalues of the spatial weights matrix to compute the log Jacobian at
each iteration. Setting the Durbin= argument to TRUE adds the spatially lagged covariates,
omitting the lagged intercept when the spatial weights are row standardized.

> slm_obj2 <- spatialreg::lagsarlm(av55_59 ˜ transp + salesTax,
+ used.cars, listw=lw)
> sdm_obj2 <- spatialreg::lagsarlm(av55_59 ˜ transp + salesTax,
+ used.cars, listw=lw, Durbin=TRUE)

Table 5 shows the fitted model output as it would have been presented until about
10 years ago. All the spatial models improve the fit of the model compared with the aspatial
model in the first column. In addition, a Lagrange multiplier test of the residuals of the
SLM for spatial autocorrelation has a probability value of 0.1578 (SDM: 0.4471), neither
of which appear to indicate any further spatial patterning. Pace and LeSage [35] propose
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a Hausman test assessing whether SEM coefficients are as close to the OLS coefficients
as they should be in a well-specified model; the probability value here is 0.0293. Had
they been more different, one could find that the model was more seriously mis-specified.
All of these tests are borderline, so all open for more analysis but do not point clearly in a
single direction.

Table 5. Fitted spatial regression model coefficients for model (2): average 1960 prices of 1955–1955
cars, with transport cost and sales tax covariates (standard error estimates in parentheses).

OLS SEM SLM SDM

(Intercept) 1404.473 1445.411 441.828 516.990
(23.200) (36.934) (150.080) (166.969)

transp 1.297 0.873 0.466 0.230
(0.189) (0.299) (0.168) (0.454)

salesTax −0.073 0.043 −0.053 −0.161
(0.211) (0.122) (0.143) (0.156)

lag(transp) 0.317
(0.536)

lag(salesTax) −0.474
(0.301)

ρ 0.721
(0.100)

λ 0.683 0.645
(0.105) (0.115)

σ2 2139.748 999.691 974.969 942.052

Finally, the examples of spatial regression in Waller and Gotway [36], using both SAR
and CAR approaches, and introducing case weights to try to handle heterogeneity, led to
the re-implementation of the spatial error model in the spautolm() function, which will
not be presented here.

3.2. The “Advent” of The GMM

In two seminal papers [37,38] suggested a generalized method of moments (GMM)
approach to the estimation of a SARAR model (Equation (8)) and established asymptotic
results for the estimator. The main motivation for the success of this approach was,
and in part still is, the computational simplicity even for large samples compared to ML.
Additionally, at the time the GMM was proposed, one further problem was the lack of
formal results concerning the asymptotic properties of ML, that were only derived later in
a paper by [39]. The original approach is based on a three steps procedure:

1. In the first step, the first equation in (8) is estimated by two-stage least square (2SLS)
using the matrix of instruments

H = (X, WX, W2X, . . . , WqX)

where, generally, q = 2.
2. In the second step, the residuals from the first step are employed to obtain an estimate

of ρ by solving a non-linear system of three equations resulting from the specification
of the three following quadratic moment conditions:

En−1ε′ε = σ2 En−1 ε̄′ ε̄ = σ2n−1trM′M En−1 ε̄′ε = 0 (10)

where ε̄ = Mε.
3. With the estimate of ρ obtained in the second step, a transformation of the model is

taken to filter out the spatial parameter and the transformed model is estimated again
by 2SLS.

The estimator described by these three steps is generally referred to as the feasible
generalized spatial two-stage least square (FGS2SLS) estimator. One issue to emphasize
is that ρ is treated as a nuisance parameter. Basically, the idea is to filter out spatial
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autocorrelation in the errors that is potentially dangerous for statistical inference on the
model parameters, but there is no interest to make inference on the spatial error parameter
itself. (In a later unpublished document, the authors demostrated how to compute the
variance for the spatial error parameter in order to make inference on it. The GMerrorsar
function takes advantage of this and therefore in the demonstration below there will be a
standard error for ρ.)

At this point it should be also evident that the nested models (i.e., the SLM, SEM, SDM
and SDEM) can be estimated easily by modifyng the three steps described above. On the
one hand, in the SEM and SDEM models the first and third steps are simply OLS, since
there is not any endogeneity deriving from the presence of the spatial lag of y. On the other
hand, the SLM and SDM models can be estimated by 2SLS since the error term is no longer
spatially autocorrelated.

There were three separate functions in spdep: stsls for the SLM, GMerrorsar for
the SEM, initially contributed by Luc Anselin, and gs2sls for the SARAR model. These
functions, along with many others, recently migrated into spatialreg.

The estimation of the lag model, as well as those of the error and SARAR models,
of the DUI data cannot use the formula defined in Section 2, since none of the functions in
spdep allow for additional endogenous variables.

> lag_gmm_sreg <- spatialreg::stsls(dui ˜ nondui + vehicles + dry +
+ police, data = shape2,
+ listw = listw_dui)
> err_gmm_sreg <- spatialreg::GMerrorsar(dui ˜ nondui + vehicles +
+ dry + police, data = shape2,
+ listw = listw_dui)
> sarar_gmm_sreg <- spatialreg::gstsls(dui ˜ nondui + vehicles +
+ dry + police,
+ data = shape2, listw = listw_dui)

Table 6 reports results for the three implementations. A glance at the table shows
that, out of the regressors, only non-alcohol related arrests is not statistically significant.
The presence of police force is the larger deterrent to driving under the influence of alcohol.
It is also noteworthy that the coefficient estimates are very stable across different models.
The value of λ for the SLM is higly statistically significant (even though it is quite small
in magnitude). The spatial error coefficient ρ in the SEM model is similar in magnitude,
but it is not statistically significant. Finally, the estimated value and inference for λ in the
SARAR model is (almost) identical to the SLM, while ρ is smaller than the SEM coefficient
estimates and, as we mentioned previously, inference is not available.

Table 6. Fitted spatial regression model coefficients for SLM, SEM, and SARAR: DUI data (standard
error estimates in parentheses).

SEM SLM SARAR

(Intercept) −5.432 −6.410 −6.410
(0.229) (0.418) (0.418)

nondui 0.000 0.000 0.000
(0.001) (0.001) (0.001)

vehicles 0.016 0.016 0.016
(0.001) (0.001) (0.001)

dry 0.104 0.106 0.106
(0.035) (0.035) (0.035)

police 0.600 0.598 0.598
(0.015) (0.015) (0.015)

ρ 0.051 0.001
(0.080)

λ 0.047 0.047
(0.017) (0.017)
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An Early Version of sphet

Few years later that the GM approach was implemented in spdep, [40] developed a
new package for estimating and testing spatial models with heteroskedastic innovations.
The library was mainly based on GM estimators and semi-parametric methods for the
estimation of the coefficient’s variance-covariance matrix. sphet was complementing but
not overlapping with spdep. In fact, sphet focused only on GM and instrumental variables
(IV) methods, leaving aside ML, and dealt with potential heteroskedasticity in the error
term, features that was only partly taken into account in stsls. From a theoretical point
of view, the procedures implemented in sphet were derived in [41,42]. The point of de-
parture of [41] was the SARAR model with potential heteroskedasticity in the innovations.
A noticeable difference of [41] is that they gave results for the spatial error coefficient for
both consistency and asymptotic normality. Of course, this enabled to perform statistical
inference on both spatial parameters. Moreover, the moment conditions were slightly
different from their earlier paper, thus leading to a different system of equations, that,
in turn, resulted in a different estimates for the spatial error parameter.

The corresponding function in sphet is called gstslshet. The syntax of the function
is pretty straightforward: the first argument is a description of the model to be estimated,
then the optional argument containing the data set, and, finally, the (mandatory) object of
class "listw".

> het_old <- sphet::gstslshet(dui ˜ nondui + vehicles + dry
+ police, data = shape2, listw = listw_dui)

Table 7 reveals that, besides the different moment conditions (that influence the
estimated value of ρ), the model coefficients estimates, including the coefficient of the
spatially lagged dependent variable, are very stable. The spatial error coefficient can be
tested although, in this case, it is not statistically significant.

Table 7. Fitted spatial regression model coefficients for SARAR using gstslshet: DUI data (standard
error estimates in parentheses).

SARAR Het

(Intercept) −6.410
(0.446)

nondui 0.000
(0.001)

vehicles 0.016
(0.001)

dry 0.106
(0.034)

police 0.598
(0.018)

λ 0.047
(0.018)

ρ −0.000
(0.037)

Reference [42] propose a semi-parametric method for the estimation of the coeffi-
cient’s variance-covariance matrix that is robust against possible misspecifications of the
disturbances and allows for unknown forms of heteroskedasticity and correlation across
spatial units (HAC estimation). Instead of assuming a specific spatial structure for the
error term, they assume a general form that nests many different spatial processes such as
spatial autoregressive or spatial moving average. The rationale behind this idea is that
the error term, being the unknown part of the model, should not be specified a priori in
terms of a specific spatial process, but rather assume a very general flexible form. However,
the spatial HAC estimator is not immune from possible criticisms related to the type of
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kernel and the bandwidth selection. If the decision about the kernel choice has been proven
not to be very relevant in that different kernels lead to negligible differences in practical
applications, the same does not apply for the bandwith.

The function to produce the 2SLS with HAC standard errors available from sphet is
stslshac. The procedure is based on the choice of a distance function that along with a
kernel determines the non-zero observations in the variance-covariance matrix.

> crd_dui <- st_coordinates(st_centroid(shape2))
> knn_dui <- spdep::knearneigh(crd_dui, k = 10)
> nb_dui <- spdep::knn2nb(knn_dui)
> dst_dui <- spdep::nbdists(nb_dui, crd_dui)
> k10lw <- spdep::nb2listw(nb_dui, glist = dst_dui, style="B")
> class(k10lw) <- "distance"
> hac_old <- sphet::stslshac(dui ˜ nondui + vehicles + dry +
+ police, data = shape2, listw = listw_dui, distance = k10lw,
+ type = "Triangular", bandwidth = "variable" )

Clearly, the results of the estimated coefficients in Table 8 are not different from those
obtained using the stsls in spatialreg. The table reports two standard errors (second and
third columns): For each coefficient, the second column has the usual 2SLS standard error,
while the third is produced with the HAC. Interestingly, the differences in standard errors
do not change the overall conclusions that all but one variable are statistically significant.

Table 8. Fitted spatial regression model coefficients for LAG: dui data (standard error estimates
in parentheses).

LAG HAC s.e. (2SLS) s.e. (HAC)

(Intercept) −6.410 (0.418) (0.466)
nondui 0.000 (0.001) (0.001)
vehicles 0.016 (0.001) (0.001)

dry 0.106 (0.035) (0.034)
police 0.598 (0.015) (0.020)

λ 0.047 (0.017) (0.019)

3.3. Further Development in R: The spdep Package and the Improvement of sphet

When [43] was published, the treatment of spatial econometrics covered the available
software implementations in spdep. LeSage and Pace [2] appeared shortly afterwards,
significantly “raising the bar” as expressed by Elhorst [44] in an extended review. Refer-
ence [45] discussed in detail both how to estimate an extended range of nested models using
ML, and how to handle model interpretation, pursuing topics presented in Halleck Vega
and Elhorst [46] and LeSage [47].

Work began in 2019 to split model fitting functions out from the spdep package,
moving these components to the new spatialreg package. At about the same time, Bayesian
fitting methods were added, based on porting of MATLAB Spatial Econometrics Toolbox
code carried out by Virgilio Gómez-Rubio and Abhirup Mallik.

At the same time, the theoretical development of the generalized methods of mo-
ments in spatial econometric models was flourishing and gave rise to many important
contributions. This corresponded to a series of major revisions of sphet, and, in particular,
the inclusion of the wrapper function spreg. We will turn to this after describing the
evolution of the ML estimation in the next subsection.

3.3.1. Evolution of the ML Estimation

Bivand et al. [48] review the technical issues around the calculation of the log Jacobian
term in ML and Bayesian model estimation. It had been established from the mid-1990s
that sparse matrix decomposition (Cholesky for symmetric weights matrices and LU for
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intrinsically asymmetric weights matrices) was feasible [49,50]. This was extended to cover
the initial decomposition step in sparse Cholesky decomposition, which does not need to
be repeated to look up log Jacobian values for successive values of the spatial coefficient.

> err_eigen <- spatialreg::errorsarlm(dui ˜ nondui + vehicles + dry +
+ police, data=shape2, listw=listw_dui, method="eigen",
+ control=list(returnHcov=FALSE))
> err_Cholesky <- spatialreg::errorsarlm(dui ˜ nondui + vehicles + dry +
+ police, data=shape2, listw=listw_dui, method="Matrix",
+ control=list(returnHcov=FALSE))
> set.seed(1)
> err_MCMC <- spatialreg::spBreg_err(dui ˜ nondui + vehicles + dry +
+ police,data=shape2, listw=listw_dui )

Gomez-Rubio et al. [51] also show that these kinds of models may be estimated using
integrated nested Laplacian approximation, yielding estimates of n spatially structured
random effects over and above the spatial coefficient itself. The domain of the spatial
coefficient is transformed internally to [0, 1), so the bounds of the domain need to be known
or calculated; here the extreme eigenvalues were previously calculated when fitting with
ML and the eigenvalue-based log Jacobian.

> library(INLA)
> W <- as(listw_dui, "CsparseMatrix")
> n <- nrow(shape2)
> shape2$idx <- 1:n
> zero.variance <- list(prec = list(initial = 15, fixed = TRUE) )
> rho.max <- err_eigen$interval[2]
> rho.min <- err_eigen$interval[1]
> args.slm <- list(rho.min = rho.min, rho.max = rho.max,
+ W = W, X = matrix(0, n, 0),
+ Q.beta = matrix(1, 0, 0))
> hyper.slm <- list(prec = list(prior = "loggamma", param = c(0.01, 0.01)),
+ rho = list(initial = 0, prior = "logitbeta", param = c(1, 1)) )
> err_INLA_slm <- inla(dui nondui + vehicles + dry + police +
+ f(idx, model="slm"), args.slm=args.slm, hyper=hyper.slm),
+ data=as.data.frame(shape2), family="gaussian",
+ control.family = list(hyper = zero.variance),
+ control.compute = list(dic = TRUE, cpo = TRUE, config = TRUE))

Table 9 shows clearly that the coefficients of the covariates are very much the same
for all estimation methods. The values of ρ differ a little, but all of those based on the
likelihood are very close. For comparison of estimation methods, the standard error of ρ is
more interesting. When eigenvalues are used to compute the log Jacobian, it is assumed
that the data set is small enough to compute the asymptotic variance-covariance matrix of
the coefficients. The estimated value in this case matches those from MCMC and INLA
very well, but when the sparse Cholesky is used for the log Jacobian, inverting (I− ρW)
is not attempted, and a finite difference Hessian approach is tried instead. This may lead,
as in this case, to there being marginally negative values on the diagonal of the estimated
variance-covariance matrix, leading to failures when taking square roots. Problems with
estimating the variance-covariance matrix can also occur in general when the scaling of
the spatial coefficient and the remaining coefficients differ greatly. In this case the problem
may be avoided by dividing the response by 1000, but the introduction of sensitivity tests
to the poor conditioning of these matrices may be required. The standard error of ρ seems
to be estimated well by MCMC and INLA. The likelihood ratio test on ρ return the same
probability value in both the eigenvalue and sparse Cholesky cases, however, so resolving
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numerical issues in the variance-covariance matrix has not been seen as critical, although it
also impacts the Hausman test as well.

Table 9. Spatial error model estimates and timings for the DUI data set: GMM, ML (eigenvalue and sparse Cholesky log
Jacobian), MCMC using sparse LU griddy Gibbs log Jacobian and INLA using the experimental "slm" latent model.

GMM Eigen Cholesky MCMC INLA

ρ 0.0509 0.0459 0.0459 0.0464 0.0461
(Intercept) −5.4319 −5.4329 −5.4329 −5.4344 −5.4331

nondui 0.0003 0.0003 0.0003 0.0003 0.0003
vehicles 0.0156 0.0156 0.0156 0.0156 0.0156

dry 0.1037 0.1039 0.1039 0.1049 0.1039
police 0.5999 0.5998 0.5998 0.5995 0.5998
ρ s.e. 0.0805 0.0299 0.0302 0.0299

LR test 0.1287 0.1287

Set up 11.8420 s 0.0390 s 4.3530 s 0.6579 s
Fitting 0.0170 s 0.0820 s 25.1193 s

Sampling 2.9090 s
Completion 92.8660 s 0.1140 s 0.0000 s 0.6290 s

Turning to the timings reported in Table 9, the set up times for the ML eigenvalue
method, involving finding the eigenvalues of W, and for MCMC conducting many LU
decompositions for a coarse grid of values of the spatial coefficient to prepare for griddy
Gibbs sampling, are longer than for the other estimation methods. Fitting for INLA is much
longer because the n random effects are computed as coefficients, so that the dimensionality
of the problem is bigger. MCMC here took 2500 draws only, discarding the first 500; more
draws would increase the run time. Completion for the ML eigenvalue method includes
the calculation of the asymptotic variance-covariance matrix of the coefficients, which
could be speeded up somewhat with multi-threaded linear algebra.

There are a number of loose ends in the implementations, especially where numer-
ical issues can appear, or where approximations lead to degradations when the spatial
coefficient is near the extremities of its domain.

3.3.2. Interpretation and Impacts Evaluation

A fuller comparative treatment of model interpretation and the calculation of im-
pacts is given by Bivand and Piras [52]. Difficulties arise from interaction between the
spatial dependence modelled in the response, parameterized as λ and the coefficients on
the covariates.

Here, we run into trouble with: y = λWy+Xβ+ ε, and rewriting: (I− λW)y = Xβ + ε,
and: y = (I− λW)−1Xβ + (I− λW)−1ε, with the interaction between the coefficients in
(I− λW)−1Xβ when λ 6= 0 potentially causing confusion unless clearly motivated.

As observed before, in the spatial lag mode—unlike the spatial error case—the spatial
dependence in the parameter λ feeds back. These difficulties are discussed as emanating
effects [53], also known as impacts [2,54], simultaneous spatial reaction function/reduced
form [55] and equilibrium effects [56].

This feedback comes from the fact that, while the elements of the Hessian matrix for the
ML spatial error model linking ρ and β are zero (∂2`/(∂β∂λ) = 0), in the spatial lag model
(and by extension in the spatial Durbin model): ∂2`/(∂β∂λ) 6= 0. In the spatial error model,
for exogenous variable r, ∂yi/∂xir = βr and ∂yi/∂xjr = 0 for i 6= j. In the spatial lag model,
∂yi/∂xjr = ((I− λW)−1Iβr)ij, where I is the N × N identity matrix, and (I− λW)−1 is
known to be dense. The awkward Sr(W) = ((I − λW)−1Iβr) matrix term needed to
calculate impact measures for the lag model, and Sr(W) = ((I− λW)−1(Iβr −Wγr)) for
the spatial Durbin model, may be approximated using traces of powers of the spatial
weights matrix as well as analytically.
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The average direct impacts are represented by the sum of the diagonal elements of
the matrix divided by n for each exogenous variable. The average total impacts are the
sum of all matrix elements divided by n for each exogenous variable. The average indirect
impacts are the differences between the direct and total impact vectors.

The development for approximation using traces of powers of the spatial weights
matrix in [2] (pp. 114–115) for the lag model and q traces is as follows:

T = [1, 0, n−1tr(W2), n−1tr(W3), . . . , n−1tr(Wq)]

g = [1, λ, λ2, λ3, . . . , λq]; Gii = gi, i = 1, . . . , q + 1

P = [β1, β2, . . . , βp]
T ,

where the intercept β0 is dropped, and with a a p-vector of ones:

Direct = PTGa

Total = βga.

Let us revert to the smaller used car data set, and show the important difference
between predictions from the OLS model for the base data set and a new data set with the
transport cost variable incremented by one:

> p0 <- predict(lm_obj2, newdata=used.cars)
> transp1 <- used.cars
> transp1$transp <- transp1$transp + 1
> p1 <- predict(lm_obj2, newdata=transp1)
> mean(p1-p0)
[1] 1.297165
> coefficients(lm_obj2)["transp"]
transp
1.29716

and the spatial lag model (SLM):

> p0_slm <- predict(slm_obj2, newdata=used.cars, listw=lw)
> p1_slm <- predict(slm_obj2, newdata=transp1, listw=lw)
> mean(p1_slm-p0_slm)
[1] 1.468775
> coefficients(slm_obj2)["transp"]
transp
0.4660211

In the OLS case, the mean difference between the predictions is (of course) the value
of the coefficient for the transport cost variable. In the SLM case, λ is far from zero, so
the feedback is strong, and the difference between predictions is much larger than the
coefficient value.

If we pick apart the model output, we can calculate the Sr(W) matrix for the trans-
port cost variable, and see that the mean difference between predictions is the average
total impact:

> invIrW <- invIrW(lw, rho=coef(slm_obj2)[1])
> n <- nrow(used.cars )
> S_transp <- invIrW
> sum(c(S_transp))/n
[1] 1.468775
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We can further check that the average direct and total impacts calculated in this way
match the values returned by the impacts() method, when the spatial weights matrix is
inverted inside the method:

> sum(diag(S_transp))/n
[1] 0.5527551
> impacts(slm_obj2, listw=lw )
Impact measures (lag, exact):

Direct Indirect Total
transp 0.55275511 0.9160198 1.4687749
salesTax -0.06233369 -0.1032987 -0.1656324

When the eigenvalues of the spatial weights matrix are used, the results are identical.

> impacts(slm_obj2, evalues=eigenw(lw))
Impact measures (lag, evalues):

Direct Indirect Total
transp 0.55275511 0.9160198 1.4687749
salesTax -0.06233369 -0.1032987 -0.1656324

However, these methods do not scale to larger data sets, so the traces of the power
series of the spatial weights matrix may be used instead, noting a minor degradation in
accuracy caused by the limited length of the power series q (here argument m=):

> impacts(slm_obj2, tr=trW(as(lw, "CsparseMatrix"), m=30, type="mult"))
Impact measures (lag, trace):

Direct Indirect Total
transp 0.55275463 0.9160046 1.4687592
salesTax -0.06233364 -0.1032970 -0.1656307
> impacts(slm_obj2, tr=trW(as(lw, "CsparseMatrix"), m=100, type="mult"))
Impact measures (lag, trace):

Direct Indirect Total
transp 0.55275511 0.9160198 1.4687749
salesTax -0.06233369 -0.1032987 -0.1656324

The eigenvalue and trace methods make it possible to conduct Monte Carlo tests on the
impacts using draws from the fitted model coefficients and their variance-covariance matrix.

3.3.3. Evolution of the GMM and Recent Developments

The theoretical development of the generalized methods of moments in spatial econo-
metric models has been flourishing over the last 15 years. Many important scholars in
the field got involved and major commercial software (like, for example, Stata) started
implementing codes to estimate the techniques that were under development. In this
context, [52] presented a comparison of the implementations available for spatial econo-
metric models. In the meanwhile, sphet had gone under a process of serious revisions
that culminated with the inclusion of the wrapper function spreg. Specifyfing a model
argument, spreg allows to estimate all of the specifications nested in the general model
of Equation (1). The re are mainly two advantages of GMM compared to ML: On the one
hand, GMM can deal with very large sets of data since it does not require inversion of
large matrices. On the other hand, dealing with additional (other than the spatial lag)
endogeneous variables is simple, provided that one has proper and valid instruments.

For the DUI data, the size of the police force is most likely related with the alcohol-
arrest rates. The refore, police can be treated as an endogenous variable. As we anticipated
earlier, ref. [12] also assume that the dummy variable elect (where elect is 1 if a county
government faces an election, 0 otherwise) make a valid instrument for police.



Mathematics 2021, 9, 1276 19 of 40

> err_gmm_sphet <- sphet::spreg(formula = dui ˜ nondui + vehicles + dry
+ police, data = shape2, listw = listw_dui, model = "error")
> err_gmm_sphet_e <- sphet::spreg(formula = fm2, data = shape2,
+ listw = listw_dui, endog = endog2, instruments = instruments2,
+ model = "error")
> lag_gmm_sphet <- sphet::spreg(formula = dui ˜ nondui + vehicles + dry +
+ police, data = shape2, listw = listw_dui, model = "lag")
> lag_gmm_sphet_e <- sphet::spreg(formula = fm2, data = shape2,
+ listw = listw_dui, endog = endog2, instruments = instruments2,
+ model = "lag")
> sarar_gmm_sphet <- sphet::spreg(formula = dui ˜ nondui + vehicles + dry
+ + police, data = shape2, listw = listw_dui, model = "sarar")
> sarar_gmm_sphet_e <- sphet::spreg(formula = fm2, data = shape2,
+ listw = listw_dui, endog = endog2, instruments = instruments2,
+ model = "sarar")

Table 10 compares the SEM, the SLM, and the SARAR models with the corresponding
models assuming that police force is endogenous.

Table 10. Fitted spatial regression model coefficients for SLM, SEM, and SARAR: dui data (standard error estimates
in parentheses).

SEM SEM-End SLM SLM-End SARAR SARAR-End

(Intercept) −5.432 15.782 −6.410 11.850 −6.410 11.920
(0.229) (1.606) (0.418) (1.724) (0.416) (1.696)

nondui 0.000 −0.000 0.000 −0.000 0.000 −0.000
(0.001) (0.003) (0.001) (0.003) (0.001) (0.003)

vehicles 0.016 0.094 0.016 0.094 0.016 0.094
(0.001) (0.006) (0.001) (0.006) (0.001) (0.006)

dry 0.104 0.400 0.106 0.400 0.106 0.401
(0.035) (0.092) (0.035) (0.092) (0.035) (0.092)

police 0.600 −1.365 0.598 −1.366 0.598 −1.367
(0.015) (0.144) (0.015) (0.143) (0.015) (0.142)

ρ 0.047 −0.005 −0.006 −0.0819
(0.030) (0.025) (0.035) (0.0304)

λ 0.047 0.188 0.047 0.186
(0.017) (0.047) (0.017) (0.046)

Let us focus first on the three models with no additional endogeneity. While the SLM
is the same as the one presented in Table 6, the SEM and the SARAR models are sligthly
different since spreg uses different moment conditions. Despite this fact, results are very
close to the one presented before and similar conclusions can be drawn. In particular,
the spatial error parameter is not statistically significant, while the positive spatial lag
coefficient is small but strongly statistically significant. This means that the DUI related
arrests in neighbouring counties affects the alcohol related arrests for a given county.
This result can be explained in terms of copycat policies or a certain level of coordination
in police enforcement between counties. In terms of the explanatory variables in the model,
nondui is the only one that is not statistically signicant. The estimated coefficient for police
is large and positive in all three models. Moving to the specifications that treat police
as endogenous the results are quite different particularly in terms of the magnitude of
the coefficient estimates. Moreover, police turns out to be negative once endogeneity is
controlled for. Two additional things have to be noted. The first relates to the SARAR
model. The summary method for SARAR models automatically performs a Wald test that
both ρ and λ are statistically significant. The second relates to the SLM as well as to the
SARAR model. Once again for models that are specified in terms of a spatial lag of the
dependent variable appropriate summary measures needs to be used to take into account



Mathematics 2021, 9, 1276 20 of 40

for simultaneity. This is the reason why appropriate spatial effects are calculated for the
SAR and SARAR models. However, when additional endogenous variables are present,
the calculation of the impacts is quite complicated. Ref. [57] show how to approximate that
calculation but since is very case specific, it has not been implemented (yet) in sphet.

4. Spatial Panel Data Models

The econometric literature has considered panel regression models with spatially
autocorrelated outcomes or disturbances and random or fixed individual effects for more
than three decades now.

The pioneering book of Anselin [1] and the famous Econometrica paper of Case [15]
have introduced the subject to a large audience. The former reserved a minor part of a book-
length treatment to the SEM model in a random effects setting, while the second applied a
comprehensive spatial panel data framework to the empirical analysis of rice production in
Indonesia, a subject panel data econometricians would come back to in more recent years.
Nevertheless, few spatial panel data applications have followed, mainly because of the
computational difficulties and the lack of ready-made, user-friendly software.

The more recent methodological contributions by [58,59] and the first comprehensive
treatments of the subject in [60,61] have further helped the diffusion of spatial panel
methods in applied practice, this time helped by the circulation of the first general-purpose
routines, written in MATLAB by J. Paul Elhorst and kindly provided for public use by
the author.

Nevertheless, the number of empirical applications has constantly trailed that of
theoretical developments in this particular subject. Although clearly written, well tested
and not difficult to adapt to one’s problem, Elhorst’s MATLAB routines were still primarily
written for the author’s own use; moreover, if the specific routines were provided free for
general use, MATLAB was, and is, non-free. The availability of estimators and tests of
production-quality usability (i.e., devoting much of the functionality to data and modelling
interfaces, results’ presentation and consistency checks) within an open source environment
would boost the number of spatial panel applications in the empirical literature. This hap-
pened with the emergence of the dedicated R package splm described here (see [62]); and,
some years later, with the Stata add-on package ’xsmle’ [63] (in this latter case, while the
package is provided in the open domain, the base software system is not; still, Stata is a de
facto standard in econometrics and most researchers are likely to have access to a copy).

4.1. Static Spatial Panels

Spatial panel data models capture spatial interactions across spatial units observed
over time. A general static panel model includes a spatial lag of the dependent variable
and spatial autoregressive disturbances:

y = λ(IT ⊗W)y + Xβ + u

where y is an nT × 1 vector of observations on the dependent variable, X is a nT × k
matrix of observations on the non-stochastic exogenous regressors, IT an identity matrix of
dimension T, W is the n× n spatial weights matrix of known constants whose diagonal
elements are set to zero, and λ the corresponding spatial parameter. The disturbance vector
is the sum of two terms

u = (ιT ⊗ In)µ + ε

where ιT is a T× 1 vector of ones, In an n× n identity matrix, µ is a vector of time-invariant
individual specific effects and ε a vector of spatially autocorrelated idiosyncratic errors that
follow a spatial autoregressive process of the form

ε = ρ(IT ⊗W)ε + e
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with ρ as the spatial autoregressive parameter, W the spatial weights matrix and e ∼
I ID(0, σ2

e ). The spatial weights matrices in the lag and the error term can differ (see the
following). In − ρW is assumed non-singular.

The spatial panel model described above draws on panels of n data points observed
over T time periods. Contrary to standard panel data practice, data are stacked by time,
then by cross-section (so that the individual index is the “fastest” one). The spatial weight
matrix W is assumed time invariant, as customary in the literature, and enters spatial panel
models as IT ⊗W where ⊗ is the Kronecker product. In the following, the models are
illustrated based on the Rice Farming data.

4.1.1. The Pooled Spatial Model

If one could safely assume out any individual heterogeneity, spatial panels could be
estimated by simply applying cross-sectional estimation techniques to the pooled dataset,
employing an extended W matrix as specified above. This hypothesis, nevertheless, is
extremely unlikely to hold. Below we estimate the pooled model; results will be reported
later, comparing them to those considering individual effects.

> library(splm)
> sem <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ model="pooling", lag = FALSE, spatial.error = "b")

4.2. Tests

In principle, spatial correlation in the residuals of panel models can be tested through
a Moran test, treating all observations as a pool and employing a panel extension of
the neigbourhood matrix, where as discussed above WnT = IT ⊗W. This approach
nevertheless depends on the pooling assumption, i.e., assuming out any form of individual
effect: which is inappropriate in the vast majority of cases. Specific test statistics have
therefore been devised for spatial panels.

4.2.1. LM Tests

The Lagrange multiplier (LM), or score, test procedure on verifying whether the
score of the likelihood of a restricted model is significantly different from the zero vector.
If this is not the case, then the restriction is not binding w.r.t. the problem at hand and the
corresponding null hypothesis is not rejected. Differently from its siblings, the asymptot-
ically equivalent Likelihood Ratio and Wald tests, the LM test only requires to estimate
the restricted model, therefore is often the procedure of choice in econometrics because
of its computational parsimony, especially when estimation of the unrestricted model is
complicated, costly or even problematic.

Since the seminal work of [64], LM tests have been extensively employed to test for
random effects and serial or cross-sectional correlation in panel data models. For the above
reasons, LM tests are particularly appealing in a spatial random effects setting because
estimates for the full model are often much more difficult to compute than those for the
restricted one.

Conditional and Joint Tests for Spatial or Random Effects

Building on the earlier literature, ref. [59] have extended the ML-based testing frame-
work deriving joint, marginal and conditional tests for all combinations of random effects
and spatial correlation. While the marginal tests are those already known, and the joint
test is of little practical value because it will be a signal either of spatial or random effects
without giving directions regarding which one is actually present, the conditional tests
are particularly important because they allow to test for one of the two effects allowing
for the presence of the other. The comparative disadvantage of conditional tests is that
their implementation is slightly more complicated as being based on the ML residuals from
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the model containing the “other” effect–the one the test is conditional on–instead of on
OLS residuals.

Specifically, the hypotheses under consideration are:

1. Ha
0 : λ = σ2

µ = 0 under the alternative that at least one component is not zero
2. Hb

0 : σ2
µ = 0 (assuming λ = 0), under the one-sided alternative that the variance

component is greater than zero
3. Hc

0 : λ = 0 assuming no random effects (σ2
µ = 0), under the two-sided alternative that

the spatial autocorrelation coefficients is different from zero
4. Hd

0 : λ = 0 assuming the possible existence of random effects (σ2
µ may or may not be

zero), under the two-sided alternative that the spatial autocorrelation coefficient is
different from zero

5. He
0 : σ2

µ = 0 assuming the possible existence of spatial autocorrelation (λ may or may
not be zero)and the one-sided alternative that the variance component is greater than
zero.

In the following we compute the full suite of tests from the [59] paper:

> LMH <- bsktest(ricefm, data = RiceFarms, listw = ricelw, test="LMH" )
> LM1 <- bsktest(ricefm, data = RiceFarms, listw = ricelw, test="LM1" )
> LM2 <- bsktest(ricefm, data = RiceFarms, listw = ricelw, test="LM2")
> CLMm <- bsktest(ricefm, data = RiceFarms, listw = ricelw, test="CLMmu")
> CLMl <- bsktest(ricefm, data = RiceFarms, listw = ricelw,
+ test="CLMlambda")
> LMtab <- cbind(c(LMH$statistic, LMH$p.value), c(LM1$statistic,
+ LM1$p.value), c(LM2$statistic, LM2$p.value), c(CLMm$statistic,
+ CLMm$p.value), c(CLMl$statistic, CLMl$p.value))
> dimnames(LMtab) <- list(c("test", "p-value"),
+ c("LM joint", "LM mu", "LM lambda", "CLM mu", "CLM lambda") )
> round(LMtab, 5)

LM joint LM mu LM lambda CLM mu CLM lambda
test 1034.1 4.11991 31.89241 7.99082 35.10134
p-value 0.0 0.00004 0.00000 0.00000 0.00000

The presence of both spatial error dependence and random effects are confirmed,
the spatial effect giving rise to the “most forceful” rejection.

Local CD Test

An alternative testing procedure from the heterogeneous panel literature can be
applied to homogeneous panels as well, containing either fixed or random effects. This is
based on a particularization of Pesaran’s ([65]) CD test for global spatial dependence. The
CD test is based on an average (across the sectional dimension) of sample estimates of the
pairwise correlations of residuals of the separate (timewise) regressions for every cross
sectional unit:

CD =

√
2T

N(N − 1)
(

N−1

∑
i=1

N

∑
j=i+1

ρ̂ij); ρ̂ij =
∑t eitejt

(∑t e2
it)

1/2(∑t e2
jt)

1/2

The CD test is asymptotically standard Normal distributed under the null of no
cross-sectional correlation; moreover, it does not depend on the heterogeneity assumption.
In general, residuals from any appropriate model (pooled, FE, RE) can be employed.

A variant of the CD test, called CD(p) test, has been designed to test for local cross-
sectional dependence, i.e., dependence between neighbours only: in other words, for spatial
dependence. It works by considering only the subset of “neighbouring” pairs of cross-
sectional units, selected by means of the familiar binary proximity matrix. Originally,
a regular ordering of observations was assumed, so that the m-th cross-sectional observation
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was a neighbour to the (m− 1)-th and to the (m + 1)-th. Reference [66] first extended the
application of the CD(p) test to an irregular lattice. The formula for the local test is an
adaptation of the original CD statistic where, as observed, the binary proximity matrix
is employed as a selector for discarding the correlation coefficients relative to pairs of
observations that are not neighbours (corresponding to zeros in W):

CD(p) =

√
T

∑N−1
i=1 ∑N

j=i+1 w(p)ij
(

N−1

∑
i=1

N

∑
j=i+1

w(p)ijρ̂ij)

where w(p)ij is the (i, j)-th element of the p-th order proximity matrix, so that if h, k are not
neighbours, w(p)hk = 0 and ρ̂hk is canceled out. Both the global (i.e., non-spatial) and the
local CD tests have been available since 2008 in the plm package [67]. In the following we
compute the local CD test on the residuals of the random effects panel model:

> library(plm)
> CDp.pool <- pcdtest(plm(ricefm, data = RiceFarms, model=’pooling’),
+ w = listw2mat(ricelw), test=’cd’)
> CDp.FE <- pcdtest(plm(ricefm, data = RiceFarms, model=’within’),
+ w = listw2mat(ricelw), test=’cd’)
> CDp.RE <- pcdtest(plm(ricefm, data = RiceFarms, model=’random’),
+ w = listw2mat(ricelw), test=’cd’)
> CDtab <- cbind(c(CDp.pool$statistic, CDp.pool$p.value) ,
+ c(CDp.FE$statistic, CDp.FE$p.value),
+ c(CDp.RE$statistic, CDp.RE$p.value))
> dimnames(CDtab) <- list(c("test", "p-value"), c("Pooled","Fixed","Random") )
> round(CDtab, 5)

Pooled Fixed Random
test 31.89157 31.47463 31.8113
p-value 0.00000 0.00000 0.0000

Again, spatial dependence is clearly present regardless of which kind of individual
effects, if any, are included.

4.2.2. Individual Effects: Fixed or Random

The spatial panel data literature, following the mainstream non-spatial approach,
distinguishes between treating the unobserved individual effects as fixed or random.
In a random effects specification, these are assumed uncorrelated with the regressors, so
that they can be safely treated as components of the error term: see, e.g., Assumption
RE.1.b in Wooldridge [68] (10.4). Should this hypothesis not hold, then the latter strategy
would introduce endogeneity and produce inconsistent estimates; the individual effects
would either have to be estimated out or, which is more often the case, eliminated by first
differencing or time-demeaning the data (see [68] 10.5). The standard device for assessing
the hypothesis of no correlation (i.e., for testing the appropriateness of random effects
methods), is the Hausman [69] test. In a spatial setting, Mutl and Pfaffermayr [70] derived
an appropriate Hausman test for spatial panels.

From another viewpoint, the random effects hypothesis is considered consistent with
sampling individuals from a potentially infinite population. for this reason Elhorst [61]
dismissed its practical utility in spatial econometric contexts, where sampling typically
takes place over a fixed set of countries or regions.

4.3. ML Estimation

For all the popularity of either the SAR and the SEM specification, econometric practice
generally focuses on one effect only. With an exception made for the pioneering work
of [15], few applications in the literature allow for both. Nevertheless, the expression for
the likelihood of a model combining a spatial lag with any error structure Σ, including
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spatial dependence ones, is easily written as a panel version of the general likelihood in
Anselin [1]:

`(λ, β, σ2, Σ) = − nT
2 ln(2πσ2

e )− 1
2 ln|Σ|+ Tln|A|

− 1
2σ2

e
[(IT ⊗A)y− Xβ]′Σ−1[(IT ⊗A)y− Xβ]. (11)

As such, the spatial lag model can be estimated combining the SAR filter with any
spatial or non-spatial structure, e.g., random effects:

> sarre <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ model="random", lag = TRUE, spatial.error = "none")

4.3.1. Individual Effects and Spatial Errors

What differentiates the panel estimators from their cross-sectional counterparts is their
ability to deal with the individual effects. In the MATLAB routines due to [58], which have
long been the de facto standard in the econometric analysis of spatial panel data, the partial
time-demeaning technique familiar from standard panel data (see, e.g., [68] Ch. 10) is
combined with Anselin’s ML framework: the data are either time-demeaned (FE) or
partially time-demeaned (RE) in order to eliminate the individual effects, then standard
SAR or SEM estimators are applied to the transformed data (see [61]).

Computationally, the fixed effects case is simpler, being encompassed by the pooled
case: fixed effects models are generally estimated by pre-demeaning the data, according
to the framework described in Elhorst [58]. This procedure has been criticized by [60]
because time-demeaning alters the properties of the joint distribution of errors, introducing
serial dependence: ([71] p.257) also discuss the issue; see also [62] (p.33) for Monte Carlo
evidence of the magnitude of the bias. [72] (3.2) suggest to either correct the estimates ex
post or to circumvent the problem using a different orthonormal transformation of the data.
The current implementation in splm can perform the Lee and Yu correction.

In the random effects case, following [58], to estimate the SARRE model one can add
spatial filtering on y using IT ⊗A = IT ⊗ (In − λW) and the determinant of the spatial
filter matrix, |IT ⊗A| = |A|T , to the likelihood of the random effects model. Concentrating
the likelihood with respect to β and σ2

e as

`(λ, θ) = −nT
2

ln(2πσ2
e ) +

N
2

lnθ + Tln|A| − nT
2

ln(ẽ′ ẽ) (12)

where θ is the quasi-demeaning parameter and the residuals ẽ are those of the demeaned
model with a spatial filter on y

ẽ = (IT ⊗A)ỹ− X̃β,

and maximizing it w.r.t. λ and θ; then iterating until convergence between this maximiza-
tion and the GLS step, whose first order conditions are

β̂ = (X̃′X̃)−1X̃(IT ⊗A)ỹ
σ̂2

e = ẽ′ ẽ
nT .

yields an efficient two-step estimation procedure.
The transformation procedure for the SEM model (which employs a spectral decompo-

sition of the errors covariance) is omitted here: see [58] (pp. 19–21). Although not explicitly
stated by the author, [58]’s methodology is also easily extended, by combination, to the
SAREM specification (for an application see [73]); on the other hand, it does not lend itself
as easily to extensions in the direction of serially correlated errors (see the following).

The implementation in splm works instead on untransformed data and approaches
random effects together with any other feature of the error covariance, spatial depen-
dence included [74]. This has the advantage of keeping some components of the error
term (most notably, the random effects) out of the spatial dependence, which can re-



Mathematics 2021, 9, 1276 25 of 40

main a feature of the idiosyncratic error only, as in most applications in the literature
(see, e.g., [44,58–61,70–72,75–85]) but entails some computational complications. The al-
ternative specification where the individual effects follow the same spatial process as the
idiosyncratic errors, as in [86], which is also considered below, is much easier to compute.

4.3.2. Fixed Effects

Consistently with the conventions of the standard panel package plm, the most robust
specification—the FE—is the default choice in the estimator function:

> library(splm)
> semfe <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ lag = FALSE, spatial.error = "b")

Spatial error correlation is remarkably high, as expected. What about spatial lag
correlation? In his seminal papers which laid the foundations for practical estimation of
spatial panel data models both under the fixed and the random effects assumptions, [58,61]
does not consider combinations of spatially lagged response and spatially autocorrelated
error term; while the original contribution of Case [15] did. With splm it is indeed possible
to estimate a model containing both effects to assess the significance of each through a
Wald test. We only report estimation results for the relevant coefficients:

> saremfe <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ lag = TRUE, spatial.error = "b")
> summary(saremfe)$CoefTable[1:2, ]

Estimate Std Error t-value Pr(>|t|)
lambda 0.2134885 0.09556429 2.233978 2.548455e-02
rho 0.6901826 0.05309268 12.999581 1.230160e-38

The results confirm the relevance of the spatial error process, while the spatial lag is
only marginally significant.

4.3.3. Independent Random Effects

The Rice Farms dataset, with observations coming from a large number of small
villages employing the same standard technology, is a good candidate for a random effects
analysis, perhaps after controlling for the region (which itself is likely to be a source of
systematic differences in soil quality and climate).

Two kinds of random effects specifications are possible in spatial error panels: one
where the spatial process in the error includes the random effects, the other where the
individual random effects are idiosyncratic and independent of the neighbours’ ones. In
the latter case, µ ∼ I ID(0, σ2

µ), and the error term can be rewritten as:

ε = (IT ⊗ B−1
n )e

where Bn = (In − ρW). As a consequence, the composite error term becomes

u = (ιT ⊗ In)µ + (IT ⊗ B−1
n )e

and its variance-covariance matrix, if JT = ιT ι>T is a T × T matrix of ones, is

Ωu = σ2
µ(JT ⊗ In) + σ2

e [IT ⊗ (B>n Bn)
−1]. (13)

The hypothesis of independent random effects is the most natural to assume in many
cases, including the one at hand; the idea being that random shocks, possibly related to
weather, economic or health conditions, are likely to affect farms within the same village;
while the individual heterogeneity captures the persistent random differences between
individual farms in terms of soil quality or ability of the farmers.
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> library(splm)
> semre <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ model="random", lag = FALSE, spatial.error = "b")

The estimated variance of the random effect is small in proportion of that of the
idiosyncratic error (about one fifth); the spatial error correlation is confirmed as very strong.

4.3.4. Spatially Correlated Random Effects

The specification for the disturbances of [86] assumes that spatial correlation applies
to both the individual effects and the idiosyncratic errors. Although the “Baltagi” and
“KKP” data generating processes look similar, they do imply different spatial spillover
mechanisms. The economic meaning of the two models is also different: in the first model
only the time-varying components diffuse spatially, in the second spatial spillovers too have
a permanent component [76]. Reference [87] (see also 2.4) on the difference between these
two RE specifications. In this latter case, commonly referred to as “KKP”, the composite
disturbance term

u = (ιT ⊗ In)µ + ε

follows a first order spatial autoregressive process of the form:

u = ρ(IT ⊗W)u + e.

Then the variance-covariance matrix of u is:

Ωu = [IT ⊗ B−1
n ]Ωε[IT ⊗ (Bn

>)−1] (14)

where Ωε = [σ2
e IT + σ2

µJT ]⊗ In is the typical variance-covariance matrix of a one-way error
component model.

It is not obvious why the spatial process should carry over to the individual effects in
the case of the Rice Farms data; although one plausible hypothesis is that if the random
individual heterogeneity is related to the quality of soil or to the working ability of the
farmers—perhaps through tradition and cultural affinity—then one might see this as
leading to a spatial process in the individual effects as well.

> sem2re <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ model="random", lag = FALSE, spatial.error = "kkp")

The practical difference between the two approaches turns out to be quite small.
Again, models containing both a spatial lag and a spatial error (plus individual effects) can
be estimated:

> saremre <- spml(ricefm, data = RiceFarms, listw = ricelw,
+ model="random", lag = TRUE, spatial.error = "b")

the encompassing models’ results confirming the preference for a spatial error specification,
given that the spatial lag coefficient is not significant.

4.4. Serial and Spatial Correlation

Serial correlation in spatial panel data has long been overlooked, if not for the very
special case of persistent random effects. Nevertheless, if autocorrelation of the autoregres-
sive type were present it would bias ML estimates, and may be a symptom of more serious
misspecification: unit roots or missing dynamics. Ref. [75] further generalized the structure
of the errors, introducing serial correlation in the remainder of the error term together with
the spatial correlation and random effects. They derived a number of LM tests for the
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different effects, either marginal (i.e., assuming the other effects out) or conditional (i.e.,
allowing for their presence). The general model is:

y = Xβ + u
u = (ıT ⊗ µ) + ε
ε = ρ(IT ⊗W)ε + ν
νt = ψνt−1 + et .

While the marginal tests are already established testing procedures in the literature,
the main contribution lies with the three-way joint test J and the one-way conditional tests
C.1-3. The hypotheses under consideration are:

1. Ha
0 : λ = ρ = σ2

µ = 0 under under the alternative that at least one component is not
zero (J)

2. Hh
0 : λ = 0, assuming ρ 6= 0, σ2

µ > 0: test for spatial correlation, allowing for serial
correlation and random individual effects (C.1)

3. Hi
0 : ρ = 0 , assuming λ 6= 0, σ2

µ > 0: test for serial correlation, allowing for spatial
correlation and random individual effects (C.2)

4. H j
0 : σ2

µ = 0, assuming λ 6= 0, ρ 6= 0: test for random individual effects, allowing for
spatial and serial correlation (C.3)

An early application of the C.2 conditional test for spatial correlation in RE panels
with serially correlated errors, based on a prototype of the R code, appeared at the same
SEA conference as the [75] paper and was later published as (see 0.290 [66]). Production
versions of the test resulted in the function bsjktest with J and C.1-3 appearing in the new
splm package for R [62].

In the following we illustrate a possible specification search based on performing the
joint test—which will obviously reject—and, most importantly, all three conditional tests
from the [75] paper, which will give indications on whether any of the three possible effects
(random, serial or spatial) is absent:

> J <- bsjktest(ricefm, data = RiceFarms, listw = ricelw, test="J")
> C.1 <- bsjktest(ricefm, data = RiceFarms, listw = ricelw, test="C.1" )
> C.2 <- bsjktest(ricefm, data = RiceFarms, listw = ricelw, test="C.2")
> C.3 <- bsjktest(ricefm, data = RiceFarms, listw = ricelw, test="C.3" )
> LMtab2 <- cbind(c(J$statistic, J$p.value),
+ c(C.1$statistic, C.1$p.value),
+ c(C.2$statistic, C.2$p.value),
+ c(C.3$statistic, C.3$p.value))
> dimnames(LMtab2) <- list(c("test", "p-value"),
+ c("LM joint", "CLM lambda", "CLM psi", "CLM mu") )
> round(LMtab2, 5 )

LM joint CLM lambda CLM psi CLM mu
test 1050.143 1047.052 7.00581 78.21034
p-value 0.000 0.000 0.00812 0.00000

Although all three the conditional tests reject, the p-values make it very clear that the
strongest effect is the spatial correlation, then the individual heterogeneity; lastly, there is
also evidence of serial correlation but this is much weaker.

ML Estimation of Models with Serially Correlated Errors

In the splm package, Millo et al. [62]—also based on the early empirical work of
Case [15]—realized that the estimation framework allowed for the coexistence of spatial
lag and spatial error, and introduced the possibility of combining them into the so-called
SAREM (or SARAR) model, so that functionality of this kind was available in the package
from the outset (i.e., before 2010). In the same fashion, it is possible to combine a spatial
lag with a further generalization of the errors according to the Baltagi et al. [75] model
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outlined above. Extending Baltagi et al. [75] to the spatial lag, Millo [74] formalizes the
estimation procedure for this kind of specification; he also presents a similar extension to
serial correlation of the errors a la Kapoor et al. [86].

> saremsrre <- spreml(ricefm, data = RiceFarms, w = riceww,
+ lag = TRUE, errors = "semsrre")
> sarem2srre <- spreml(ricefm, data = RiceFarms, w = riceww,
+ lag = TRUE, errors = "sem2srre")

The encompassing model’s estimates confirm that the relevant spatial process is the
error; and that random effects of modest magnitude are present, together with an even
weaker form of autocorrelation in the remainder errors. Again, the practical difference
between independent or spatially correlated random effects turns out to be minimal.

The estimates from all the spatial panel models in the previous paragraphs are pre-
sented in the following Table 11 :

Table 11. Parameter estimates from all spatial panel models for the Rice Farming dataset; left to right: pooled SEM, SAR-RE,
SEM-FE, SAREM-FE, SEM-RE, SEM-RE (KKP version), SAREM-AR(1)-RE and SAREM-AR(1)-RE (KKP version). Standard
errors are reported only for the spatial parameters.

(1) (2) (3) (4) (5) (6) (7) (8)

(Intercept) 5.2240 2.9114 5.2359 5.2400 4.7440 4.5834
log(seed) 0.1224 0.0916 0.1025 0.1033 0.1153 0.1155 0.1146 0.1151
log(urea) 0.1430 0.1301 0.1043 0.1045 0.1280 0.1286 0.1266 0.1270

phosphate 0.0006 0.0014 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
log(totlabor) 0.2200 0.2370 0.2350 0.2344 0.2301 0.2289 0.2336 0.2326

log(size) 0.5076 0.4547 0.4830 0.4859 0.5021 0.5031 0.5021 0.5035
pesticide −0.0117 0.0366 −0.0178 −0.0152 −0.0106 −0.0109 −0.0110 −0.0111

high yield 0.1212 0.0260 0.0983 0.0983 0.1149 0.1178 0.1107 0.1133
mixed 0.0894 0.0798 0.1073 0.1075 0.0980 0.0990 0.0954 0.0962

wet season 0.0630 −0.0390 0.0849 0.0165 0.0689 0.0687 0.0488 0.0405
lambda 0.3433 0.2135 0.0734 0.0984

S.E.lambda 0.0286 0.0956 0.0835 0.0842
rho 0.7225 0.7691 0.6902 0.7488 0.7421 0.7192 0.7039

S.E.rho 0.0332 0.0275 0.0531 0.0304 0.0310 0.0433 0.0454
psi 0.0899 0.0943

S.E.psi 0.0409 0.0411

4.5. Endogeneity in Static Panel Data Models

As we mentioned early, the initial contribution to the application of GM methods
for spatial panels dates back to [86]. The y considered a panel data model involving a
first order spatially autoregressive disturbance term that, in turn, allowed for an error
component structure in the innovations. The proposed methodology was based on an
extension of the moment conditions put forth from the same authors in the context of a
cross-sectional model. A few years later while considering a spatial panel version of the
Hausman test, ref. [70] extended the estimation procedure to a Cliff and Ord type model
including the spatial lag of the dependent variable as well as a spatially lagged one-way
error component model. The y implemented instrumental variables estimation under both
the fixed and the random effects specifications. However, Piras [88] noted that they were
not taking full advantage of the six moment conditions derived in [86] since they were
using only a subset of those moment conditions.As a consequence, ref. [88] suggested an
improvement that included all six moment conditions in [86]. The approach taken by [88]
followed more closely the fixed and between effects two stage least squares estimator for
spatial panel models proposed by [89]. (This was in turn an extension of the [90] error
component 2SLS estimator to a spatial panel model.) The function spgm implements the
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procedure described in [88] with the extra feature of considering additional (other than the
spatial lag) endogenous variables.

Table 12 compares results from the “classical" error component two stage least square
(EC2SLS) in [90] and the spatial version of the EC2SLS. The first model can be obtained
by setting both lag and error arguments to FALSE and specifying endogenous variables
along with instruments. To obtain the second model the user has to include both spatial
lag and error parameters. The data set to produce Table 12 where presented in Section 2.4
and relates to an economic model of crime estimated by [17]. Keep in mind that [17] had
a genuine concern about the endogeneity of police per-capita ad the probability of arrest.
The refore, those two variables are instrumented using per-capita tax revenue and a mix of
different types of offense. The spatial lag parameter at the bottom of the second column in
Table 12 is positive and statistically significant and then justifies the spatial specification.
The spatial connection are driven from the fact that counties with high (low) levels of
crime are generally clustered. This may be due to some sort of copy-cat policies occurring
within the counties.

> ec2sls <- spgm(fm4, data = data_cor, listw = nc_listw,
+ model = "random", lag = FALSE, spatial.error = FALSE,
+ endog = endog4, instruments = instruments4, method = "ec2sls" )
> sarar_ec <-spgm(fm4, data = data_cor, lag = TRUE, listw = nc_listw,
+ endog = endog4, instruments = instruments4, spatial.error = TRUE,
+ model = "random", optim.method = "nlminb", pars = c(0.2, 1),
+ method = "ec2sls")

Table 12. Results from the EC2SLS and the spatial version of the EC2SLS.

EC2SLS (std. err.) Spatial EC2SLS (std. err.)

lprbarr −0.413 (0.097) −0.340 (0.059)
lpolpc 0.435 (0.090) 0.354 (0.050)

(Intercept) −0.954 (1.284) −0.698 (1.144)
lprbconv −0.323 (0.054) −0.275 (0.031)
lprbpris −0.186 (0.042) −0.164 (0.033)
lavgsen −0.010 (0.027) −0.014 (0.025)
ldensity 0.429 (0.055) 0.446 (0.049)
lwcon −0.007 (0.040) −0.005 (0.037)
lwtuc 0.045 (0.020) 0.039 (0.017)
lwtrd −0.008 (0.041) −0.012 (0.039)
lwfir −0.004 (0.029) −0.006 (0.027)
lwser 0.006 (0.020) 0.004 (0.019)
lwmfg −0.204 (0.080) −0.185 (0.074)
lwfed −0.164 (0.159) −0.067 (0.141)
lwsta −0.054 (0.106) −0.041 (0.097)
lwloc 0.163 (0.120) 0.118 (0.110)

lpctymle −0.108 (0.140) −0.066 (0.116)
lpctmin 0.189 (0.041) 0.185 (0.036)

west −0.227 (0.100) −0.224 (0.089)
central −0.194 (0.060) −0.210 (0.056)
urban −0.225 (0.116) −0.179 (0.100)

d82 0.011 (0.026) 0.006 (0.020)
d83 −0.084 (0.031) −0.064 (0.026)
d84 −0.103 (0.037) −0.077 (0.032)
d85 −0.096 (0.049) −0.073 (0.044)
d86 −0.069 (0.060) −0.057 (0.054)
d87 −0.031 (0.071) −0.034 (0.064)

λ 0.268 (0.069)
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5. Developments and Alternative Approaches

Before concluding, we will draw attention to work in progress, and to alternative
approaches to spatial regression for area data, first for cross-sectional models, later for
spatial panel models.

5.1. Developments and Alternative Approaches in Cross-Sectional Models

One of many implementations of Markov Random Field (MRF) spatially structured
random effects in generalized additive models (GAM) is found in Wood [91], imple-
mented in [92]. The neighbour objects needs to be matched to the variable expressing
the random effect, here State. The MRF smooth requires manual adjustment of the
number of knots, because here we are not using a multi-level approach and so approach
the upper bound on the number of parameters to be estimated. In addition, the MRF
approach does not row-standardize the spatial weights, using a conditional rather than
a simultaneous autoregression.

> used.cars$State <- as.factor(used.cars$State)
> names(nb) <- as.character(used.cars$State)
> N <- nrow(used.cars )
> library(mgcv )
> gam_obj2 <- gam(av55_59 ˜ transp + salesTax +
+ s(State, bs="mrf", k=N-2, xt=list(nb=nb)), data = used.cars)

Another approach is through hierarchical generalized linear models (HGLM), pre-
sented by [93] and implemented in [94]. Both GAM and HGLM can fit Gaussian responses,
but can also fit discrete responses. This implementation can accommodate either SAR or
CAR spatially structured random effects. All such approaches estimate the per-observation
random effects and their standard errors, so are somewhat constrained as the number of
observations increases.

> library(hglm )
> hglm_obj2 <- hglm(fixed=av55_59 ˜ transp + salesTax, random= ˜ 1|State,
+ data=used.cars, rand.family=SAR(D=as(lw, "CsparseMatrix"))

Figure 2 shows the spatially structured random effects, where the HGLM SAR and
GAM MRF values are very similar indeed (Table 13).

HGLM SAR RE GAM MRF RE
1960 USD RE

−80 to −60
−60 to −40
−40 to −20
−20 to 0
0 to 20
20 to 40
40 to 60
60 to 80

Figure 2. Maps of two estimates of spatially structured random effects.

In an extension of work handling missing observations of the response variable,
ref. [95] began a series of articles, followed by [96,97]. Reference [98] give a complete
survey of the challenges raised in predicting from models when the observations are
autocorrelated (implemented in spatialreg for ML estimators); this has obvious extensions
to spillover between training, validation and test data sets in machine learning contexts.
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5.1.1. Limited Dependent Variables Models

In addition to the resolutions shown above using GAM or HGLM, a number of other
approaches have been proposed for limited dependent variables, in particular discrete
dependent variables. Ref. [99] follow [2] in fitting spatial probit models using MCMC,
implemented in [100]. The link function used in this approach differs in character from
those used in generalized additive and linear mixed models, such as those fitted using
standard Bayesian techniques, which dominate the application of such approaches outside
spatial econometrics. It is also possible to use GMM approaches, as shown by Klier and
McMillen [101] and implemented in [23]. The same package also provides implementations
od spatial quantile regression [102].

5.1.2. Multi-Level Models

Multi-level models involve the grouping of observations within nested containers,
where the spatial processes may play out at the finest level, or at coarser spatial scales.
Recent work has been undertaken by [103–105], and is implemented in [106] using MCMC.
Many of the general packages for Bayesian model fitting, such as [107] implemented
in [108] can also be used for fitting multi-level models. A comparative review is given
by [109].

5.1.3. Spatial Filtering Methods

Spatial filtering methods as developed by Griffith [110] build on using standard linear
and generalized linear models supplemented with selected eigenvectors from the spatial
weights matrix. In [111–113], examples were given of how standard and non-standard
spatial econometric problems could be approached using spatial filtering. Tiefelsdorf and
Griffith [114] proposed that the eigenvectors for inclusion should be selected by their ability
to reduce residual autocorrelation rather than to increase model fit. This approach was
implemented by Chun and Tiefelsdorf in spdep and moved to spatialreg [34], with two
steps, first to select eigenvectors taken from the spatial weights matrix doubly centred
using the hat matrix of the actual regression, then using lm to fit the model, effectively
removing residual autocorrelation:

> SF0 <- SpatialFiltering(av55_59 ˜ transp + salesTax, data = used.cars,
+ nb=nb, style="W")
> SF_obj2 <- lm(av55_59 ˜ transp + salesTax + fitted(SF0),
+ data = used.cars )

> lm.morantest(SF_obj2, lw)
Global Moran I for regression residuals

data:
model: lm(formula = av55_59 ˜ transp + salesTax + fitted(SF0), data =
used.cars)
weights: lw
Moran I statistic standard deviate = 0.083905, p-value = 0.4666
alternative hypothesis: greater
sample estimates:
Observed Moran I Expectation Variance

-0.110164405 -0.117270378 0.007172552

Figure 3 shows the products of the selected eigenvectors and their estimated regression
coefficients in map form. Typically, the small subset of eigenvectors selected mops up
spatial autocorrelation in the residual. References [115,116] adopt a similar approach
in a generalized linear model context, implemented in spdep by Pedro Peres-Neto and
moved now to spatialreg as ME analogous with SpatialFiltering, but centering the
spatial weights matrix on the null model hat matrix, and using bootstrap methods in
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evaluating the the choice of eigenvectors. The correlations between the implied cumulated
outcomes of these methods are shown in Table 13. Reference [117] describe many of
the underlying motivations, including the view that Moran eigenvector spatial filtering
approaches may permit both spatial autocorrelation and spatial scale tto be accommodate
in a single model; a further implementation is given in [118].

EV 2 EV 1

EV 4 EV 6

1960 USD
−80 to −60
−60 to −40
−40 to −20
−20 to 0
0 to 20
20 to 40
40 to 60

Figure 3. Four eigenvectors chosen by the Tiefelsdorf and Griffith [114] approach to spatial filtering.

Murakami and Griffith [119] provide a fresher version of spatial filtering implemented
in [120]. This also appears to centre the spatial weights matrix on the null model hat matrix,
and chooses eigenvectors not to reduce residual autocorrelation, but chooses those among
the eigenvectors with positive eigenvalues that increase model fit most up to a threshold
to control overfitting. The default approach uses an exponential variogram model to
generate the weights matrix from planar coordinates. The meigen function subsets the full
set of eigenvectors before the data are seen, then esf calls lm itself while further subsetting
the eigenvectors.

> library(spmoran )
> centroids_laea <- st_centroid(st_geometry(used.cars_laea) )
> meig <- meigen(st_coordinates(centroids_laea))
> y <- model.response(model.frame(av55_59 ˜ transp + salesTax,
+ data=used.cars_laea) )
> X <- model.matrix(˜ transp + salesTax, data=used.cars_laea)
> esf_obj2 <- esf(y, X, meig=meig )

Figure 4 shows the products of the first four eigenvectors chosen and their regression
coefficients, and differs from the approaches shown above mostly in using a distance model
to relate the observations to each other rather than the graph of neighbours, and in selecting
to improve fit rather than reduce residual autocorrelation.
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EV 2 EV 4

EV 1 EV 6

1960 USD
−80 to −60
−60 to −40
−40 to −20
−20 to 0
0 to 20
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40 to 60

Figure 4. First four eigenvectors chosen by the [119] approach to spatial filtering.

Table 13 shows the correlations between the two estimates of spatially structured
random effects, three cumulated spatial filtering approaches, and the spatially structured
term implied by the ML estimates of the spatial error model. As can be seen, they are very
similar to each other, so the choice of approach may be fairly flexible and relate more to the
needs of users and their domain usages that to a single body of theory.

Table 13. Correlation coefficients between HGLM and GAM random effects and cumulated spatial filtering effects (eigen-
vector values multiplied by their regression coefficients and summed by observation, SF: [114], ESF: [119], ME: [115]); SAR
are the implied values from the SEM model fitted by ML.

HGLM GAM SF ESF ME SAR

HGLM 1.0000 0.9593 0.4443 0.9046 0.9588 0.9500
GAM 0.9593 1.0000 0.4064 0.8833 0.8856 0.8462

SF 0.4443 0.4064 1.0000 0.2635 0.4570 0.4992
ESF 0.9046 0.8833 0.2635 1.0000 0.8751 0.8336
ME 0.9588 0.8856 0.4570 0.8751 1.0000 0.9410
SAR 0.9500 0.8462 0.4992 0.8336 0.9410 1.0000

5.1.4. Heterogeneity in Space: GWR and Regime Models

While the presence of spatial dependence has been widely recognized as an issue to
address in econometric models, spatial heterogeneity has not received that much attention
ans, therefore, is not always adequately taken into account. Possible reasons for this
should be searched not only in the theoretical and practical difficulties to identify spatial
heterogeneity separately from spatial dependence in empirical models, but also (and
perhaps primarily) to the lack of readily available software to perform this kinds of analysis.
There is a wide array of models to account for spatial heterogeneity, but only few of
them are available in R. (An interesting overview can be found in [1].) One can model
heterogeneity allowing for a different parameter for each observations. This is the idea
embedded in the so-called geographically weighted regression [121] available in R from the
package spgwr. A different approach to this extreme case would be assuming that spatial
heterogeneity can be classified into a limited number of spatial regimes characterized
by different values of the regression parameters. One of the future directions for spatial
models in R would be geared towards the development of such regime models.
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5.1.5. Higher Order Spatial Models

A natural extension of the techniques in sphet would be considering higher order
spatial models [122,123]. The presence of additional lags (either of the dependent variable,
of the regressors, or of the error term) would allow to test different types of interactions
and make the model interpretation richer.

5.1.6. Systems of Spatial Equations

An earlier version of the package splm included codes to estimate spatial simulta-
neous equation and spatial seemingly unrelated regression equations. By the time splm
was published the routine for those models migrated into a new package spse that, un-
fortunately, never saw the light. spse contained two major functions: spsegm and spseml.
spsegm implemented the feasible generalized three stages least square estimator (FGS3SLS)
for simultaneous systems of spatially interrelated cross sectional equations put forward
by [124], while spseml implemented ML estimation of simultaneous systems of spatial
seemingly unrelated regression equation following the lines in [1]. The package is now
hosted on Github (https://github.com/gpiras/spse) and is (again) under development.
Future plans will include the extension to simultaneous equation combined with higher
order spatial interactions [125]. (In a similar context, the package spsur [126] also deals
with seemingly unrelated regression equations.)

5.1.7. Machine Learning and Spatial Econometrics

A first attempt to insert a spatial lag model into a regression tree has been presented
by Wagner and Zeileis [127], and is implemented in [128].

5.2. Developments and Alternative Approaches in Spatial Panels

Here two important developments will be mentioned briefly, referring the interested
reader to the cited references for futher details.

5.2.1. Dynamic Spatial Panels

Many economic phenomena are inherently dynamic in nature and therefore call for
estimators allowing for time lags of the included objects, most notably for a lagged depen-
dent variable. Nevertheless, the abundant results from the time series literature do not
easily carry over to the spatial panel case. The estimation of panel models containing both
individual effects and a lagged dependent variable is well known to be problematic be-
cause of the serial correlation induced in the error terms by the transformation procedures
employed to eliminate the individual heterogeneity (either time-demeaning or first differ-
encing), so that e.g., the fixed effects estimator for a dynamic model would be biased [129].
Arellano and Bond [130] famously proposed a GMM procedure for consistently estimating
the dynamic model with individual effects; yet their estimator assumes cross-sectionally
uncorrelated errors and is hence not appropriate in a spatial context.

Research on dynamic spatial panels has been quite recent and is mostly associated
with Elhorst. His first paper on the subject [131] set the stage in 2001; then he provided
a first solution based on approximating the initial conditions (complete with MATLAB
routines in the public domain) some years later [132]. Still, the ML estimator of [132] has a
number of caveats: refs. [83,133] derive the asymptotic properties and a bias correction.
The review paper of [134] discusses the general space-time specification, the different
estimation approaches of ML/QML, GMM and Markov Chain Monte Carlo (MCMC).
In general, despite the existence of some solutions, estimation of spatial dynamic panels
can be said to be a still developing field. R software for this task is still lacking but is likely
to be developed in the near future.

5.2.2. Heterogeneous SAR Panels

Another recent extension of the mainstream spatial panel is the heterogeneous spatially
autoregressive (HSAR) estimator of [135] which, in the general framework of the SAR

https://github.com/gpiras/spse
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panel with fixed effects, relaxes the assumptions of parameter homogeneity and of error
homoscedasticity, so that the model becomes

yit = λ

(
N

∑
j=1

wijyjt

)
+ β′xit + uit, i = 1, 2, . . . , N; t = 1, 2, . . . , T (15)

where yit is the response variable for unit i observed at time t, xit = (xi1,t, xi2,t, . . . , xik,t)
′

is a k× 1 vector of exogenous explanatory variables, with the associated k× 1 vector of
slope parameters, β = (β1, β2, . . . , βk)

′, wij is the element (i, j) of W; and the vector of
individual SAR coefficients λ = (λ1, λ2, . . . , λk)

′. As in a standard linear panel data model,
the idiosyncratic error is in turn the sum of two terms

uit = µi + εit, i = 1, 2, . . . , N; t = 1, 2, . . . , T (16)

where µi is a time-invariant unit specific effect and εit is the idiosyncratic error. µ are
allowed to be correlated with the regressors, and ε to be heteroscedastic.

ML estimators are provided for the individual coefficients; then the latter can be
averaged according to the mean groups (MG) method of Pesaran and Smith [136] to obtain
average coefficients and their dispersion matrix. A project to produce a multilanguage
implementation, including an R package, is nearing completion [137].

6. Conclusions

This paper was dedicated to a review of the functionality for spatial econometric
methods available in the R system for statistical computing, in the light of the historical
developments of methods, mostly following a chronological order and hinting when
appropriate at implementations in different software environments. It addressed estimators
and tests for: spatial econometric models on cross sectional data, both based on ML and on
GM; spatial panel models with either correlated or independent unobserved heterogeneity;
spatial panel models with possibly endogenous explanatory variables. The methods have
been presented through empirical examples based on four well-known and historically
relevant datasets. At the end of the paper, several active areas of development are hinted at.

Although some specific areas of spatial econometric modelling have been covered in
recent books—cross-sectional methods in [3] (Appendix B), panel data in [138] (Ch. 10)—
this is the first comprehensive review addressing the development of spatial methods
in R in a historical perspective and trying to cover all relevant functionality in both the
cross-sectional and the panel domain.

R is considered the lingua franca of statistical computing. As such, most available
statistical functionality is available under form of R packages, including very powerful
optimization features. Moreover, the R system offers a wide range of tools for dealing with
spatial data, including mapping and automated computing of spatial weights. Therefore,
although there are several other viable and powerful options, R is arguably the ideal
development environment for spatial regression modelling. Finally, two aspects that need
to be taken into consideration are that R, unlike other software, is open-source and cross-
platform.

The R infrastructure described in the paper is entirely open source and packaged into
the standard, user-friendly and documented packages so that it is ready for the perusal of
empirical researchers. The paper itself is entirely replicable in its computational aspects,
based on open source code and data from the R project. As such, it complies with the
reproducibility requirements of Peng [139], the “gold standard of full replication”, as pro-
viding “a detailed log of every action taken by the computer” which can be reproduced by
anybody on any system.
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