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Abstract: In this paper, we focus on some geometrical properties of the partially null slant helices in
semi-Euclidean 4-space. By structuring suitable height functions, we obtain the singularity types of
the pseudonull hypersurfaces, which are generated by the partially null slant helices. An example is
given to determine the main results.
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1. Introduction

Since Einstein put forward the theory of relativity in 1915, semi-Euclidean space has
attracted the attention of many geometry and physics scholars. Compared with Euclidean
space, the characteristic of semi-Euclidean space is the existence of a lightlike vector. There
are three types of curves (surfaces) in semi-Euclidean space: spacelike curves (surfaces),
timelike curves (surfaces), and lightlike curves (surfaces) [1–4]. In physics, Hiscock WA [5]
obtained that the horizon of the black hole was a null hypersurface. In this paper, we
construct a special kind of null hypersurface along a partially null slant helix and obtain
its singularity types, which can help scientists to further study the shape of the black
hole horizon.

There are many examples and phenomena of helical structures in nature, such as
carbon nanotubes and the DNA double helical structure, among others. Amand AL and
Lambin P [6] stated that the DNA double helical structure was believed to be one of the
most important subjects in biology. Izumiya S and Takeuchi N [7] gave the definition of
the slant helix in Euclidean space. Abazari N [8] obtained the stationary acceleration in
Minkowski space. Yaliniz AF, Hacisalihoglu HH [9] obtained some geometry properties of
the null generalized helices in Lm+2. The third author and Hou [10] gave a new kind of
helicoidal surface in Minkowski 3-space. Mosa S, Elzawy M [11] considered the differential
geometrical properties of the helicoidal surfaces in Galilean 3-space.

Petrović-Torgašev M, Ilarslan K, and Nešović E [12] gave definitions and some ge-
ometrical properties of partially null curves and pseudonull curves in R4

2; Ali A, López
R, and Turgut M [13] defined the k-type partially null and pseudonull slant helices in R4

1.
Harslan K and Nešović E [14] obtained the geometrical properties of the null helices and
gave some characterizations for the timelike and null helices. We find that many papers
about the helical curves only considered the smooth properties, but few considered the
singular properties. Therefore, starting from the singularity, in this paper, we study the
singularity properties of the pseudonull hypersurfaces of the partially null slant helices in
semi-Euclidean 4-space with index two using singularity theory.

In the research of geometric properties of submanifolds, singularity is an inevitable
research object. Singularity is widely used in many disciplines, such as biology and
physics, among others. The singularities of surfaces and curves in Euclidean space or
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semi-Euclidean space were studied in [4,15–19]. The first author [1,20] studied the singu-
larity properties of some null curves in different spaces. In this paper, we investigate the
differential geometry and the singularity properties of the pseudonull hypersurfaces of the
partially null slant helices in semi-Euclidean 4-space.

We organize the present manuscript as follows. In the second section, we introduce
the definition of the pseudonull hypersurface and obtains some geometrical properties of
the partially null slant helices. Meanwhile, the main singularity result (the Theorem 3) is
also given in this section. The height functions of partially null slant helices are constructed
to describe the contract relation in Section 3. For the remainder of this paper, we consider
the versal unfolding and the generic properties of the partially null slant helices to prove
Theorem 3 in Section 4. In the last section, we give one example to insist on our results.

2. Preliminaries and the Main Results

Let γ : I ⊂ R→ R4
2 be an arc-length parameterized differentiable curve with Frenet

frames T(s), N(s), B1(s), and B2(s), where T(s) is called the tangent vector, N(s) is called
the principal normal vector, B1(s) is called the first binormal vector, and B2(s) is called the
second binormal vector [13].

For a fixed constant vector field U, we call γ(s) a 0-type, 1-type, 2-type, or 3-type
slant helix if and only if 〈T(s), U〉 = c, 〈N(s), U〉 = c, 〈B1(s), U〉 = c, or 〈B2(s), U〉 = c,
respectively, where c is a constant.

First, the definition of a partially null curve is given by the following [12,13].

Definition 1. Let γ(s) be an arc-length parameterized differentiable curve with Frenet frames
{T(s), N(s), B1(s), B2(s)}, satisfying the following conditions:

〈T(s), T(s)〉 = −〈N(s), N(s)〉 = −ε, ε = ±1,

〈B1(s), B1(s)〉 = 〈B2(s), B2(s)〉 = 0, 〈B1(s), B2(s)〉 = 1,

〈T(s), N(s)〉 = 〈T(s), B1(s)〉 = 〈N(s), B1(s)〉 = 0,

〈T(s), B2(s)〉 = 〈N(s), B2(s)〉 = 0.

We call the curve γ(s) a partially null curve.

The Frenet formulas of the partially null curve are given by the following equations [13]:
T ′(s) = k1(s)N(s)
N ′(s) = k1(s)T(s) + k2(s)B1(s)
B′1(s) = k3(s)B1(s)
B′2(s) = −εk2(s)N(s) + k3(s)B2(s)

, (1)

where k1(s) = ε〈T ′(s), N(s)〉, k2(s) = 〈N′(s), B2(s)〉, and k3(s) = 〈B′1(s), B2(s)〉 are called
the curvature functions of the partially null curve γ(s). We call a curve a 0-type partially
null slant helix if the curve is a partially null curve with 〈T(s), U〉 = constant. When
k1(s)k2(s) = 0, we have the following remark.

Remark 1. When k1(s) = 0 (k2(s) = 0), from Equations (1), we can ascertain that T(s)
(B2(s)) is a constant vector and the rectifying space at every points of γ(s) are parallel. So
γ(s) ⊂ HP(T(s), 0) ⊂ R3

1 (γ(s) ⊂ HP(B2(s), 0) ⊂ R3
1) or γ(s) ⊂ R3

2. The two spaces R3
1,R3

2
are equal. In the following text, we only consider k1(s)k2(s) 6= 0.

Theorem 1. Let γ(s) be a 0-type partially null slant helix in R4
2 if and only if k1(s)/k2(s) is

constant for any s ∈ I.
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Proof. Let γ(s) be a 0-type partially null slant helix, we choose a constant vector U satisfying

〈T(s), U〉 = c, (2)

where c is constant. By taking the derivative of the Equation (2) with respect to s, we
assume there exist two coefficients u3 and u4, the constant vector U can be written easily:

U = cT(s) + u3B1(s) + u4B2(s). (3)

Differentiating the both sides of the Equation (3), we can find the following equations:{
u′4 = 0
−εck1(s)− εk2(s)u4 = 0

. (4)

Hence, we obtain that k1(s)/k2(s) is a constant with k2(s) 6= 0. The contrary is clearly
established. We completed the proof.

Theorem 2. In R4
2, γ(s) is a 0-type partially null slant helix; then, γ(s) is also a 1-type, 2-type,

or 3-type partially null slant helix.

Proof. Let γ(s) be a 0-type partially null slant helix. From the Theorem 1, we can obtain
the following conclusion:

k1(s)〈N(s), U〉 = 0. (5)

Hence γ(s) is a 1-type partially null slant helix. Taking the derivative from both sides
of the Equation (5) with respect to s and using Frenet Equation (1), we obtain the following
statements:

k1(s)〈T(s), U〉+ k2(s)〈B1(s), U〉 = 0, (6)

and
〈B1(s), U〉 = −ck1(s)/k2(s) = −cc′ = constant. (7)

Hence, γ(s) is also a 2-type partially null slant helix. Similarly,

〈B2(s), U〉′ = 〈B′2(s), U〉 = −εk2(s)〈−N(s), U〉 = 0. (8)

We know 〈B2(s), U〉 is constant, and γ(s) is a 3-type partially null slant helix.

As the same method of the Theorem 2, we have the following conclusion:

Corollary 1. In R4
2, γ(s) is a 1-type partially null slant helix if and only if γ(s) is a 3-type

partially null slant helix.

Let γ(s) be a 0-type partially null slant helix in R4
2. We define a surface with the base

curve γ(s) as following:

PNH(s, λ, η) = γ(s)− λT(s)− ηB2(s),

BC(v0) = {u ∈ R4
2 | 〈u− v0, B2(s)〉 = 0},

we call PNH(s, λ, η) the pseudonull hypersurface of γ(s), which is a ruled hypersurface.
We call BC(v0) the hyperplane.

We can obtain the main result of the singularity types of the pseudonull hypersurface
PNH by the following theorem.

Theorem 3. Let γ(s) be a 0-type partially null slant helix; for v0 = PNH(s0, λ0, η0), we have
the following:

(1) γ(s) and BC(v0) have at least 2-point contact at s0 (Figure 1).
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(2) γ(s) and BC(v0) have 3-point contact at s0 if and only if v0 = γ(s)− η(ε(k2(s)/k1(s))T(s)
+B2(s)), η 6= 1, under this condition, the germ of v0 is diffeomorphism to the cuspidal edge
(Figure 2).

(3) γ(s) and BC(v0) have 3-point contact at s0 if and only if v0 = γ(s)− η(ε(k2(s)/k1(s))
T(s) + B2(s)), η = 1, under this condition, the germ of v0 is diffeomorphism to the swallow-
tail (Figure 3).

Here C × R = {(x1, x2, x3) | x1 = u, x2 = ±v1/2, x3 = v1/3} is the cuspidal edge and
SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail.

Figure 1. Cusp.

Figure 2. Cuspidal edge.

Figure 3. Swallowtail.

3. The Height Function

In this section, we mainly give the definition of the height function on γ(s) to describe
the contact relationship.

Let γ(s) be a 0-type partially null slant helix in R4
2. The height function H : I×R4

2 → R
is given as

H(s, v) = 〈γ(s)− v, B2(s)〉.

We write hv(s) = H(s, v) for any fixed vector v. Then, we have the following proposition:
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Proposition 1. Let γ(s) be a 0-type partially null slant helix in R4
2, for a fixed vector v ∈ R4

2.
Then, we have

(1) hv(s) = 0 if and only if there exist three real numbers λ, ω, η, such that γ(s) − v =
λT(s) + ωN(s) + ηB2(s).

(2) hv(s) = h′v(s) = 0 if and only if v = γ(s)− λT(s)− ηB2(s).
(3) hv(s) = h′v(s) = h′′v (s) = 0 if and only if v = γ(s)− η(ε(k2(s)/k1(s))T(s) + B2(s)),

η 6= 1.
(4) hv(s) = h′v(s) = h′′v (s) = h′′′v (s) = 0 if and only if v = γ(s)− η(ε(k2(s)/k1(s))T(s) +

B2(s)), η = 1.

Proof. (1). Let us assume that v = λT(s) + ωN(s) + ξB1(s) + ηB2(s), where λ, ω, ξ, η ∈ R.
Thus, it can be seen that hv(s) = 0 if and only if ξ = 0, we obtain the statement (1).
(2). Differentiating both sides of the Equation hv(s) = 0 with respect to s and using Frenet
Equation (1), we get

h′v(s) = 〈γ′(s), B2(s)〉+ 〈γ(s)− v, B′2(s)〉
= 〈γ′(s), B2(s)〉+ 〈γ(s)− v,−εk2(s)N(s)〉
= k2(s)ω,

(9)

and in the view of k2(s) 6= 0, it can be seen that ω = 0. The statement (2) is supported.
(3). Similarly, differentiating both sides of the Equation (9) with respect to s and using
Frenet Equation (1),

h′′v (s) = 〈γ′(s),−εk2(s)N(s)〉+ 〈γ(s)− v,−εk′2(s)N(s)− k2(s)N ′(s)〉
= 〈γ(s)− v,−εk′2(s)N(s)− εk2(s)(k1(s)T(s) + k2(s)B1(s))〉,
= λk1(s)k2(s)− εηk2

2(s).
(10)

It can be seen that λ/η = ε(k2(s)/k1(s)). We obtain the statement (3).
(4). Taking the derivative of the Equation (10) with respect to s and using Frenet Equation (1),
we can obtain

h′′′v (s) = 〈γ′(s),−εk′2(s)N(s)− εk2(s)N ′(s)〉
+〈γ(s)− v,−εk2(s)(k1(s)T(s) + k2(s)B1(s))′〉
= k1(s)k2(s) + 〈γ(s)− v,−ε(k1(s)k′2(s) + (k1(s)k2(s))′

−(2k′′2 (s) + εk2
1(s)k2(s)))T(s) + (k1(s) + k′′2 (s))N(s) + 2ε(k′1(s)k2(s))B1(s)〉

= k1(s)k2(s) + λ(k1(s)k2(s) + (k1(s)k2(s))′ − 2k′1(s)k2(s)).
(11)

Thus, λ = k1(s)k2(s)/(k1(s)k2(s) + (k1(s)k2(s))′ − 2k′1(s)k2(s)) = 1 when h′′′v (s) = 0.

4. The Proof of the Theorem 3

In this section, we use some general results on the singularity theory [15] to prove the
main result (Theorem 3).

Firstly, we introduce two important sets. The singular set of F is the set

SF = {(s, x) ∈ R×Rr| ∂F/∂s(s, x) = 0}.

The discriminant set of F is the set

DF = {x ∈ Rr| there exists s with F = ∂F/∂s = 0 at (s, x)}.

Then, applying the main result of Theorem 4.1 in [16] and the versal unfolding
in [18], for the height function H of the 0-type partially null slant helix, we obtain the
following theorem:

Theorem 4. Let γ(s) be a 0-type partially null slant helix and v0 ∈ DH , H is a versal unfolding
of hv0 if hv0 has Ak-singularity at s (k = 1, 2).
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Proof. Suppose γ(s) = (x1(s), x2(s), x3(s), x4(s)), v(s) = (v1(s), v2(s), v3(s), v4(s)), and
B1(s) = {b1(s), b2(s), b3(s), b4(s)}.

We have H(s, v) = −(x1(s)− v1(s))b1(s)− (x2(s)− v2(s))b2(s)+ (x3(s)− v2(s))b3(s)
+(x4(s)− v4(s))b4(s),

∂H/∂vi = bi(s) i = 1, 2; ∂H/∂vj = −bj(s), j = 3, 4

∂2H/∂s∂vi = b′i(s), i = 1, 2; ∂2H/∂s∂vj = −b′j(s), j = 3, 4

and
∂3H/∂2s∂vi = b′′i (s), i = 1, 2; ∂3H/∂2s∂vj = −b′′j (s). j = 3, 4

Let j2∂H/∂vi(s, v0)(s0) be the 2-jet of ∂H/∂vi(s, v) (i = 1, 2, 3, 4) at s0, we can show that

∂H/∂vi(s0, v0) + j2∂H/∂vi(s, v0)(s0) = α0,i + α1,i(s− s0) + 1/2α2,i(s− s0)
2, (12)

where ∂H/∂vi(s0, v0) = α0,i, ∂2H/∂s∂vi(s0, v0)(s− s0) = α1,i, and

∂3H/∂2s∂vi(s0, v0)(s− s0)
2 = α2,i.

We denote that

M =
(

α0,1 α0,2 α0,3 α0,4
)
,Z =

(
α0,1 α0,2 α0,3 α0,4
α1,1 α1,2 α1,3 α1,4

)
.

When h has A1-singularity at s0, by the Proposition 1, there exist two nonzero numbers
λ, η satisfying

h(s0)− v = η(ε(k2(s)/k1(s))T(s) + B2(s)).

We can see that the rank ofM is 1 since B2(s) 6= 0. From the Proposition 1, h has
A2-singularity at s0 if and only if h(s0)− v = η(ε(k2(s)/k1(s))N(s) + B2(s)), η 6= ε. When
h has A2-singularity at s0, we require the rank of Z is 2.

detZ = det(B2(s0), B′2(s0), B′′2 (s0)) 6= 0 (13)

This completes the proof.

Then, we have the following proposition as a corollary of Lemma 6 [16].

Proposition 2. Let O be a submanifold of Jl(1, 1). Then the set TO = {γ(s) ∈ Embs(I,R4
2) |

jl
1(H) is transversal to O} is a residual subset of Emb(I,R4

2). If O is a closed subset, then TO
is open.

There is another characterization of the versal unfolding as follows [15],

Proposition 3. Let F : (R×Rr, 0)→ (R, 0) be an r-parameter unfolding of f : (R, 0)→ (R, 0),
which has Ak-singularity at 0. Then, F is a versal unfolding if and only if jl1F is transversal to the

orbit Ll ˜(jl f (0)) for l ≥ k + 1. Here, jl
1F : (R×Rr, 0)→ Jl(R,R) is the l-jet extension of F given

by jl
1F(s, x) = jl Fx(s).

Proposition 4. There exists an open and dense subset TLl
k
⊂ Emb(I,R4

2) such that for any
γ(s) ∈ TLl

k
, the pseudonull hypersurface PNH(s, λ, η) is locally diffeomorphic to the cuspidal

edge at a singular point.

Proof. For l ≥ 3, we consider the decomposition of the jet space Jl(1, 1) into Ll
1 orbits. We

define a semialgebraic set by

Σl = {z = jl f (0) ∈ Jl(1, 1) | f has an A≥3 − singularity}.
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The codimension of Σl is 3; therefore, the codimension of Σ̃l
0 = I × {0} × Σl is 4

and the orbit decomposition of jl(1, 1)− Σl is jl(1, 1)− Σl = Ll
0 ∪ Ll

1 ∪ Ll
2, where Ll

k is the

orbit through an Ak-singularity. Thus, the codimension of L̃l
k is k + 1. We consider the

l-jet extension jl
1(H) of the indicatrix height function H. By Proposition 2, there exists an

open and dense subset TLl
k
⊂ Emb(I,R4

2) such that jl
1(H) is transversal to L̃l

k(k = 0, 1) and

the orbit decomposition of Σ̃l . This means that jl1(H)(I ×R4
2) ∩ Σ̃l = ∅ and H is a versal

unfolding of h at any point (s0, v). By Theorem 4.1 in [15], the discriminant set of H is
locally differmorphic to cuspidal edge at a singular point.

Proof of the Theorem 3. Let γ(s) be a 0-type partially null slant helix in R4
2. For a vec-

tor v = γ(s)− η(ε(k2(s)/k1(s))T(s) + B2(s)), η = 1, hv0 has Ak-singularity at s0 if and
only if γ(s) and BC(v0) have k-point contact at s0. By Bruce’s singularity classification
method [16], the Propositions 1 and 4, we can obtain the main conclusion in Theorem 3.

5. Example

In this section, we give an example about the geometrical properties of the pseudonull
hypersurface of a 0-type partially null slant helix. The graph of the pseudonull hypersurface
and the singular locus of the 0-type partially null slant helix are seen in the following graph.

Example 1. Let γ(s) be a 0-type partially null slant helix with Frenet frames {T(s), N(s), B1(s),
B2(s)}, where

γ(s) =
{

sin s + cos s, sin s− cos s,− cos s, sin s
}

,

T(s) =
{

cos s− sin s, cos s + sin s, sin s, cos s
}

,

N(s) =
{

sin s, cos s, cos s + sin s, cos s− sin s
}

,

B1(s) =
{
− cos s, sin s, sin s− cos s, sin s + cos s

}
,

B2(s) =
{

cos s + sin s, sin s− cos s, sin s, cos s
}

.

We can calculate

k1(s) = −1, k2(s) = 2 cos s(cos s + sin s).

The pseudonull hypersurface of the 0-type partially null slant helix is

PNH(s, λ, η) =
{
(1− λ− η) cos s + (1 + λ− η) sin s,

(1− λ− η) sin s− (1 + λ− η) cos s, (−λ− η) sin s + cos s,

(−λ− η) cos s + sin s
}

.

The singular locus of the pseudonull hypersurface is

L(s) =
{

2(sin s + cos s− cos s cos 2s), 2(sin s− cos s− cos s(cos s + sin s)2),

− cos s− sin 2s(cos s + sin s) + sin s, sin s− 2 cos2 s(cos s + sin s) + cos s
}

.

This structure of the singular locus of the curve γ(s) and the pseudonull hypersurface are
inconceivable in 4-space. Here, we give the projection of the curve γ(s) into {T(s), N(s), B1(s)}. We
draw the projections of the pseudonull hypersurface (Figure 4) and the singular locus (Figure 5).
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Figure 4. the pseudonull hypersurface PNH.

Figure 5. the singular locus of PNH.
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12. Petrović-Torgašev, M.; Ilarslan, K.; Nešović, E. On partially null and pseudo null curves in the semi-Euclidean space R4

2. J. Geom.
2006, 84, 106–116. [CrossRef]

13. Tawfik, A.; López, R.; Turgut, M. k-type partially null and pseudo null slant helices in Minkowski 4-space. Math. Commun. 2012,
17, 93–103. [CrossRef]
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