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Abstract: The Bateman functions and the allied Havelock functions were introduced as solutions of
some problems in hydrodynamics about ninety years ago, but after a period of one or two decades
they were practically neglected. In handbooks, the Bateman function is only mentioned as a particular
case of the confluent hypergeometric function. In order to revive our knowledge on these functions,
their basic properties (recurrence functional and differential relations, series, integrals and the Laplace
transforms) are presented. Some new results are also included. Special attention is directed to the
Bateman and Havelock functions with integer orders, to generalizations of these functions and to the
Bateman-integral function known in the literature.

Keywords: bateman functions; havelock functions; integral-bateman functions; confluent hypergeo-
metric functions

1. Introduction

Harry Bateman (1882–1946) has been a renowned Anglo-American applied mathe-
matician, who made outstanding contributions to mathematical physics, namely to aero-
and fluid dynamics, to electro-magnetic and optical phenomena, to thermodynamics and
geophysics and to many other fields [1,2]. His main interests in mathematics were an-
alytical solutions of partial differential and integral equations. His book published in
1932, Partial Differential Equations of Mathematical Physics [3] is even today, a basic textbook
on this subject. Born in Manchester and educated in Trinity College, Cambridge, with
a continuation in Paris and Gottingen, Bateman emigrated to USA in 1910 and starting
since 1917, during nearly three decades he has been Professor of Aeronautical Research
and Mathematical Physics in the California Institute of Technology (Caltech). During these
years he solved a number of various applied problems and simultaneously compiled from
mathematical literature a vast amount of information associated with special functions and
their properties.

From an enormous scientific legacy that Bateman left behind him, it is important
to mention three items which are named after him. The first is the so-called Bateman
equation which is applied in solutions of pbharmacokinetics problems (modeling of effective
therapeutic management of drugs). As usual with Bateman, the origin of this equation came
from an interaction with other scientists, and this one with Ernest Rutherford. It includes
the solution of a set of ordinary differential equations which describes the radioactive decay
process. Mathematically, this process is similar to the behaviour of drugs in the human
body and therefore is frequently used in pharmacokinetic models (see for example [4], and
for prediction of the spread of COVID-19 look in [5]) listed in the fifties of the past century,
and they constitute the so-called Bateman approach.

In mathematics, the Bateman name is mostly associated with the five red books
published in the fifties of the previous century, and they constitute the so-called Bateman
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Manuscript Project. Three volumes are devoted to the properties of special functions [1] and
two volumes to tables of integral transforms [6]. This enormous collection of functions,
series and integrals, together with the description of their properties is based on the material
compiled largely by Bateman, and prepared for publication by four editors A. Erdélyi, R.
Magnus, F. Oberhettinger and F.G. Tricomi. Even today, these five books are indispensable
for everybody, mathematicians, scientists and engineers who are involved in study and
use of special functions and integral transforms. They were essential as a precursor and
model for later appearing in published or in modern on-line forms various compilations of
mathematical reference data (for most important see for example [7–19]).

In 1931 Bateman published a paper entitled: The k-function, a particular case of the
confluent hypergeometric function, where he presented the definite trigonometric integral (1)
and derived for it many properties [20]

kn(x) = 2
π

∫ π/2
0 cos(x tan θ − nθ) dθ, n = 0, 1, 2, 3, . . . (1)

This integral represents the solution of the ordinary differential equation which ap-
peared in Theodore von Kármán’s theory of turbulent flows

x
d2u(x)

dx2 = (x− n)u(x) . (2)

Bateman named the integral in (1) as k-function in tribute for the outstanding contribu-
tion of von Kármán in the field of fluid dynamics. Nowadays, denoted in the mathematical
literature by small or capital k, this function in a more general form, is called the Bateman
function of argument x and order (parameter) ν.

kν(x) =
2
π

∫ π/2

0
cos(x tan θ − νθ) dθ . (3)

The reason that Bateman used integer orders only, came from the fact that kn(x)
functions can then be expressed by the Rodriguez type formulas and they are associated
with the Laguerre polynomials. This also permitted to express sums of them in closed
form and to link the Bateman functions with the confluent hypergeometric and Whittaker
functions. In 1935, some new results were derived by Shastri [21], who showed that
methods of operational calculus can be applied to this function.

Unfortunately, the Bateman functions found later rather limited attention in the
mathematical literature. Few only topics associated with them were considered and
these mainly by Indian mathematicians [22–35]. They included the generalized Bateman
functions, dual, triple and multi series equations of these functions, some integral equations
and recurrence relations. It is worthwhile also to mention that in mathematical textbooks
and tables, the Bateman function is not considered as a some kind of minor special function,
but only indicated as a particular case of the confluent hypergeometric function. Besides,
no plots or tabulations of the Bateman functions are known in the literature.

One of the first attempts to enlarge a knowledge about properties of the Bateman
functions, has been evidently to introduce a new function, by replacing in the integrand of
integral (1) cosine function with sine function

Tn(x) =
2
π

∫ π/2

0
sin(x tan θ − nθ) dθ, n = 0, 1, 2, 3, . . . (4)

In 1950 H.M. Srivastava [25] and in 1966 K.N. Srivastava [29] suggested to denote this
new function as Tn(x), where the capital T letter was adapted to honor Walter Tollmien
who made pioneering works in the transition region between fully established laminar
and turbulent flows. However, an unquestionably historical fact is that both trigonometric
integrals as defined in (1) and (4), were already, six year earlier in 1925, considered by
Havelock who investigated some problems associated with surface waves [36]. In the case
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of a circular cylinder immersed in a uniform flow, he needed to evaluated the following
integrals which are written here in their original notation for k > 0

Lr =
∫ π/2

0
cos(2rφ− k tan φ) dφ , Mr =

∫ π/2

0
sin(2rφ− k tan φ) dφ . (5)

Thus, in view of that 2r = x and k = n, these integrals differ from (1) and (4) only
by the normalization factor 2/π and the minus sign in the second integral. What is even
more important, Havelock was able to present the first six integrals in a closed form. It is
of interest also to mention that Bateman knew about the Havelock paper and of related
integrals investigated by him. These integrals are included in the manuscript (later edited
and published by Erdélyi) which was found among his papers [37]. Taking these facts into
account, it is more fair and consistent to name the sine integral as the Havelock function and
to use similar as in (3) notation

hν(x) =
2
π

∫ π/2

0
sin(x tan θ − νθ) dθ . (6)

In the next step, further generalizations of the Bateman function were proposed by
including powers of trigonometric functions in integrands for m, n = 0, 1, 2, 3, . . . ,

km
ν (x) =

2
π

∫ π/2

0
(cos θ)m cos(x tan θ − νθ) dθ ,

km,n
ν (x) =

2
π

∫ π/2

0
(sin θ)m(cos θ)n cos(x tan θ − νθ) dθ .

(7)

However, by reviewing the papers dealing with these so-called generalized Bateman
functions, Erdélyi pointed out that the integrals in (7) are particular cases of confluent
hypergeometric functions and the derived mathematical expressions are not new because
they follow directly from manipulations with known properties of the Kummer confluent
hypergeometric functions.

Probably, the most paying attention from generalized Bateman functions is that which
was proposed by Chaudhuri [38]. In an analogy with the integral Bessel functions, he
introduced the Bateman-integral function

kin(x) = −
∫ ∞

x

k2n(u)
u

du ; x > 0, (8)

and discussed its properties.
As already mentioned above, in the last decades, the interest in the Bateman functions

was very limited, and only investigations of Koepf and Schmersau [39–41] dealing with
recurrence and other relations of Fn(x) functions, defined by

e− x(1+ t)/(1− t) =
∞

∑
n= 0

tnFn(x),

Fn(x) = (−1)nk2n(x) = (−1)n 2
π

∫ π/2

0
cos(x tan θ − 2nθ) dθ .

(9)

should be mentioned.
Considering that at the present time, the Bateman functions are unjustly neglected and

nearly entirely forgotten, we decided to prepare this survey in order to revive them and to
promote them as independent functions. It seems that the Bateman functions should be
treated separately, less as particular cases of the confluent hypergeometric functions or the
Whittaker functions. Bearing in mind today that the literature on the subject is rather old
and practically unknown, after Introduction, in the second section of this survey we collect
the most important properties of the Bateman functions with integer orders kn(x). In the
next section we present known results associated with the Havelock functions with integer
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orders hn(x). In the fourth section the generalized Bateman and Havelock functions are
discussed. More general aspects related with the Bateman and Havelock functions having
any order are considered in the fifth section. In these sections some new results derived by
us are also included. The sixth section is dedicated to properties of the Bateman-integral
functions. Concluding remarks are included in the last section.

In Appendix A we report various finite and infinite integrals of functions associated
with functions considered in this survey. Differential equations and trigonometric inte-
grals associated with the Kummer confluent hypergeometric function are discussed in
Appendix B. We refer the readers to Appendix C where they can find the integral represen-
tations of known special functions recalled in the text because of their relations with the
Bateman and Havelock functions.

It is expected that all results presented here in analytical and in graphical form will
stimulate a new research devoted to the Bateman and Havelock functions and these
functions will find a desirable and proper place in the mathematical literature.

2. The Bateman Functions with Integer Orders

The Bateman functions with integer order n and with real argument x, are defined by

kn(x) =
2
π

∫ π/2

0
cos(x tan θ − nθ) dθ, n = 0, 1, 2, 3, . . . (10)

For this integral Bateman showed that [20]

kn(0) =
2

πn
sin
(πn

2

)
, k2n(0) = 0,

lim
x→∞

kn(x) = lim
x→∞

k′n(x) = 0,
(11)

and
|kn(x)| ≤ 1

|kn(x)| ≤
∣∣∣n

x

∣∣∣ ; |kn(x)| ≤
∣∣∣∣n2 + 2

x2

∣∣∣∣ ; n > 2,

|k2n(x)| ≤
∣∣∣∣2n

x

∣∣∣∣ ; x > 1,∣∣k′n(x)
∣∣ ≤ ∣∣∣ n

2x

∣∣∣.
(12)

In the case of even integers they are associated with the Havelock integrals (5) and
with Fn(x) functions (9) in the following way [36,39–41]

k2n(x) =
2
π

Ln(x), k2n(x) = (−1)nFn(x), h2n(x) = − 2
π

Mn(x). (13)

The first six Bateman functions were tabulated by Havelock [36] for x > 0,

k0(x) = e− x,

k2(x) = 2xe− x,

k4(x) = 2x(x− 1)e− x,

k6(x) =
2
3

x(2x2 − 6x + 3)e− x,

k8(x) =
2
3

x(x3 − 6x2 + 9x− 3)e− x,

k10(x) =
2

15
x(2x4 − 20x3 + 60x2 − 60x + 15)e− x,

k12(x) =
2

45
x(2x5 − 30x4 + 150x3 − 300x2 + 225x− 45)e− x.

(14)



Mathematics 2021, 9, 1273 5 of 27

In the general case these polynomials can be derived from the Rodriguez type formula

k2n(x) =
(−1)nxex

n!
dn

dxn

[
xn−1e−2x

]
, (15)

which is similar to that of the generalized Laguerre polynomials L(α)
n (x).

L(α)
n (x) =

x−αex

n!
dn

dxn

[
xn+αe−x]. (16)

Bateman showed that for his functions with even integer orders we have [20]

k2n(x) = (−1)ne− x[Ln(2x)− Ln− 1(2x)], (17)

where Lk(z) are the Laguerre polynomials.
It is more difficult to express the Bateman functions with odd orders in terms of other

known functions. For n = 1, Bateman introduced a new integration variable t = tan θ and
obtained [20]

k1(x) =
2
π

∫ π/2

0
cos(x tan θ − θ) dθ =

2
π

∫ π/2

0
cos(x tan θ) cos θ dθ +

2
π

∫ π/2

0
sin(x tan θ) sin θ dθ =

2
π

∫ ∞

0

cos(xt)
(1 + t2)3/2 dt +

2
π

∫ ∞

0

t sin(xt)
(1 + t2)3/2 dt =

2
π

∫ ∞

0

cos(xt)
(1 + t2)3/2 dt− 2x

π

∫ ∞

0

cos(xt)
(1 + t2)1/2 dt.

(18)

The last two integrals are the integral representations of the modified Bessel functions
of the second kind of the first and zero orders [7]

k1(x) =
2x
π

[K1(x)− K0(x)] ; x > 0,

k1(x) = −2x
π

[K1(− x) + K0(− x)] ; x < 0.
(19)

The Bateman functions with other even and odd integer orders can also be derived
by applying the recurrence relations which are in the form of difference equations and
differential-difference equations

(2x− 2n) k2n(x) = (n− 1) k2n− 2(x) + (n + 1) k2n+ 2(x)

4xk′n(x) = (n− 2) kn− 2(x)− (n + 2) kn+ 2(x)

k′n(x) + k′n+ 2(x) = kn(x)− kn+ 2(x)

xk′′n(x) = (x− n) kn(x).

(20)

For example, using the second equation in (20) for n = 1, we have

k3(x) = −1
3

[
4x

dk1(x)
dx

+ k− 1(x)
]

dk1(x)
dx

=
2
π
[K1(x)− K0(x)] +

2x
π

[
dK1(x)

dx
− dK0(x)

dx

]
dK1(x)

dx
=

K2(x) + K0(x)
2

dK0(x)
dx

= −K1(x)

(21)
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and k−1(x) can be expressed by using integrals from (18)

k− 1(x) =
2
π

∫ π/2

0
cos(x tan θ + θ) dθ =

2
π

∫ π/2

0
cos(x tan θ) cos θ dθ − 2

π

∫ π/2

0
sin(x tan θ) sin θ dθ.

(22)

It is also possible to obtain the Bateman functions with odd orders in a different new
procedure, for example k3(x)

k3(x) =
2
π

∫ π/2

0
cos(x tan θ − 3θ) dθ =

2
π

∫ π/2

0
cos(x tan θ) cos(3θ) dθ +

2
π

∫ π/2

0
sin(x tan θ) sin(3θ) dθ,

(23)

but with t = tan θ

sin(3θ) = 3 sin θ − 4(sin θ)3 = sin θ
3− (tan θ)2

1 + (tan θ)2 =
t(3− t2)

(1 + t2)3/2 ,

cos(3θ) = −3 cos θ + 4(cos θ)3 = cos θ
1− 3(tan θ)2

1 + (tan θ)2 =
(1− 3t2)

(1 + t2)3/2 ,
(24)

and therefore (23) becomes

k3(x) =
2
π

∫ ∞

0

(1− 3t2) cos(xt)
(1 + t2)5/2 dt +

2
π

∫ ∞

0

t(3− t2) sin(xt)
(1 + t2)5/2 dt. (25)

However, this type of integrals can be evaluated by differentiating the modified Bessel
functions of the second kind [14]∫ ∞

0

t2n+ 1 sin(xt)
(1 + t2)α

dt = (−1)n+ 1 21/2− α
√

π

Γ(α)
∂2n+ 1

∂x2n+ 1

[
xα− 1/2Kα− 1/2(x)

]
, α > n + 1/2,∫ ∞

0

t2n sin(xt)
(1 + t2)α

dt = (−1)n 21/2− α
√

π

Γ(α)
∂2n+ 1

∂x2n+ 1

[
xα− 1/2Kα− 1/2(x)

]
, α > n.

(26)

Using known expressions for sin(α + 2θ) and cos(α + 2θ) functions with α = 2n + 1,
and taking into account that [7] with t = tan θ

sin(2θ) =
2 tan θ

1 + (tan θ)2 =
2t

(1 + t2)
,

cos(2θ) =
1− (tan θ)2

1 + (tan θ)2 =
(1− t2)

(1 + t2)
,

(27)

the above described procedure can be extended to the Bateman functions with higher odd
orders. Integrals of the type presented in (26) can be also used when derivatives with
respect to the argument are considered with m = 0, 1, 2, 3, . . .

∂2m kn(x)
∂x2m = (−1)m 2

π

∫ π/2

0
(tan θ)2m cos(x tan θ − nθ) dθ,

∂2m+ 1 kn(x)
∂x2m+ 1 = (−1)m 2

π

∫ π/2

0
(tan θ)2m+ 1 sin(x tan θ − nθ) dθ.

(28)

In order to illustrate the behaviour of the Bateman functions as a function of argument
and order, they were numerically evaluated using the MATLAB program and they are
presented in Figure 1 for positive integer orders and in Figure 2 for negative integer order.
As can be observed by comparing both figures, the curves are shifted with the symmetry
predicted by Bateman [20]

k− n(x) = kn(− x) . (29)
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Figure 1. Bateman functions with positive integer orders as a function of argument x.

Figure 2. Bateman functions with negative integer orders as a function of argument x.

Considering similarity with the generalized Laguerre polynomials, Bateman was able
to show the existence of the following expansions associated with his functions with even
orders [20]

∞

∑
n= 0

(−1)ntnk2n(x) = (1− t)α+ 1e− x
∞

∑
n=0

tn L(α)
n (2x),

∞

∑
n= 0

tn

2nn!
k2n+ 2(x) = 2e− (x +t/2)

√
x
t

I1(2
√

xt),

∞

∑
n= 0

(−1)nk4n+2(x) = sin x,
∞

∑
n= 0

(−1)nk4n(x) = cos x.

(30)

where I1 denoted the modified Bessel function of order 1, see (C.8) and [7]. Shabde [22]
demonstrated that

∞

∑
n= 0

(n + 1)tnk2n+ 2(x) =
2xe− x +[2xt/(1+t)]

(1 + t)2 ,

∞

∑
n= 0

(−1)n(2n + 1)t2nk2n+ 2(x) =

2xe− x +2xt2/(1+t2)

(1 + t2)2

[
(1− t2) cos

(
2xt

1 + t2

)
+ 2t sin

(
2xt

1 + t2

)]
,

∞

∑
n= 0

(−1)n(2n + 2)t2n+ 1k4n+ 4(x) =

2xe− x +2xt2/(1+t2)

(1 + t2)2

[
(1− t2) sin

(
2xt

1 + t2

)
− 2t cos

(
2xt

1 + t2

)]
,

(31)
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and

∞

∑
n= 0

(−1)ntn

n!
k2n+ 2(x) =

√
2x
t

e− (x +t) J1(23/2
√

xt),

∞

∑
n= 0

(−1)nt2n

(2n)!
k2n+ 2(x) =

√
2x
t

[
− sin t ber′(23/2

√
xt) + cos t bei′(23/2

√
xt)
]
,

∞

∑
n= 0

(−1)n+ 1t2n+1

(2n + 1)!
k4n+ 4(x) =

√
2x
t

[
cos t ber′(23/2

√
xt) + sin t bei′(23/2

√
xt)
]
,

(32)

where ber′(z) and bei′(z) are the derivatives of the Kelvin functions.
Additional sums of series expansions were reported by Shastri [24]

∞

∑
n= 0

(−1)nt2n+ 1k4n+ 2(x) = ex(t2 − 1)/(1+t2) sin
(

2xt
1 + t2

)
; |t| < 1,

∞

∑
n= 0

(−1)nt2nk4n(x) = ex(t2 − 1)/(1+t2) cos
(

2xt
1 + t2

)
; |t| < 1,

∞

∑
n= 0

(−1)nk4n+ 2(x) = sin x,
∞

∑
n= 0

(−1)nk4n(x) = cos x,

(33)

and
∞

∑
n= 0

k2n(x) sin(2nθ) = sin(x tan θ),

∞

∑
n= 0

k2n(x) sin(2nθ) = sin(x tan θ),

∞

∑
n= 0

k2n(x) = 1.

(34)

The orthogonal relations were established by Bateman [20]

∫ ∞

0
[k2n(x)]2 dx =

{
1 ; n > 0

1/2 ; n = 0∫ ∞

0
k2n(x)k2n+ 2k(x) dx =

{
0 ; k > 1

1/2 ; k = 1∫ ∞

0

kn(x)k2k(x)
x

dx =
4 sin

[
π
2 (2k− n)

]
πn(2k− n)

; k > 0,

(35)

and over the entire integration interval∫ +∞

−∞
k2k(x)k2m(x) dx =

sin[π(m− k)]
π(k−m + 1) (k−m) (k−m− 1)

,

PV
∫ ∞

−∞
k2k + 1(x)k2m+ 1(x)

dx
x

=

{
0 ; k 6= m,
2

π(2k+1) ; k = m.

(36)

In the literature there is a number of infinite integrals where the Bateman functions
appear in integrands or in final results of integration. These integrals are collected in
Appendix A, here only the Laplace transforms of the Bateman functions are presented [6,9]:∫ ∞

0
e− stk0(t) dt =

1
s + 1

; Re(s + 1) > 0 ; n = 0, 1, 2, . . .∫ ∞

0
e− stk2n+ 2(t) dt =

2(1− s)n

(s + 1)n+ 2∫ ∞

0
e− stk2ν(t) dt =

sin(πν)

2πν(1− ν) 2F1(1, 2; 2− ν;
1− s

2
) ; Res > 0

(37)
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and ∫ ∞

0
e− ste− t2

k2n(t2) dt =
(−1)n− 1sn− 3/2 es2/16

23n/2+ 1/4 W− n/2−1/4,− n/2−1/4

(
s2

8

)
∫ ∞

0
e− stk2m+ 2(

t
2
) k2n+ 2(

t
2
)

dt
t
=

(−1)m+ n

(s + 1)m+ n+ 2 2F1

(
−m,−n; 2;

1
s2

)
Res > −1∫ ∞

0
e− st e(α+ β)t/2

αβ
k2m+ 2(

αt
2
) k2n+ 2(

βt
2
)

dt
t
=

(−1)m+ n(m + n + 1)! (s− α)m (s− β)n

(m + 1)! (n + 1)!(s + 1)m+ n+ 2 2F1

(
−m,−n;−m− n− 1;

s(s− α− β)

(s− α) (s− β)

)
m, n = 0, 1, 2, . . . ; Res > 0

(38)

where Wκ,µ(z) is the Whittaker function. Formulas in (32) and (33) are accessible in a much
more general forms by applying the basic properties of the Laplace transformation

L{ f (t)} =
∫ ∞

0
e− st f (t) dt = F(s) ; a > 0

L{ f (at)} = 1
a

F
( s

a

)
L
{

e± at f (t)
}
= F(s∓ a)

L{tn f (t)} = (−1)n dnF(s)
dsn

(39)

For example in the simple case of the function k2(t) we have from (39)

L{k2(t)} =
2

(s + 1)2

L{k2(at)} = 2a
(s + a)2

L
{

e± atk2(at)
}
=

2
(s∓ a + 1)2

L{tk2(t)} =
4

(s + 1)3 .

(40)

The initial and final values of the Bateman functions with even integer orders (see
Figure 1) as presented in (11), can also be derived from the rules of the operational calculus

k0(t → +0) = lim
s→∞

[sF(s)] = lim
s→∞

[
s

s + 1

]
= 1

k0(t → ∞) = lim
s→ 0

[sF(s)] = lim
s→ 0

[
s

s + 1

]
= 0

k2n+ 2(t → +0) = lim
s→∞

[sF(s)] = lim
s→∞

[
2s(1− s)n

(s + 1)n+ 2

]
= 0

k2n+ 2(t → ∞) = lim
s→ 0

[sF(s)] = lim
s→ 0

[
2s(1− s)n

(s + 1)n+ 2

]
= 0.

(41)

Since the Bateman function is a particular case of the Whittaker function

k2ν

(
t
2

)
=

1
Γ(ν + 1)

Wν,1/2(t) (42)

it is possible to enlarge a number of the Laplace transforms using transforms of the
Whittaker functions W1/2,1/2(t) and Wν,1/2(t)
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L
{

t1/2e1/2tk1

(
2
t

)}
=

√
π

s
[
H1(2

√
s)−Y1(2

√
s)
]

L
{

te1/2tk1

(
2
t

)}
=

1
2s

H(1)
1 (
√

s) H(2)
1 (
√

s)

L
{

1
t

e− 1/2tk1

(
2
t

)}
=

25/2√s
π

K0(
√

s)K1(
√

s)

L
{

1
t2 e− 1/2tk1

(
2
t

)}
=

4
πs
[
K1(
√

s)
]2

(43)

and

L
{

tα− 1k2ν

(
t
2

)}
=

Γ(α) Γ(α + 1)
Γ(ν + 1)Γ(α− ν + 1)

(
2

2s + 1

)α+ 1

2F1(α + 1,− ν; α− ν + 1;
2s− 1
2s + 1

)

Res > −1
2

L
{

tνe 1/2tk2ν

(
2
t

)}
=

21−2ν

Γ(ν + 1) sν+ 1/2 S2ν,1(2
√

s) ; Re(ν± 1
2
) > −1

2

L
{

1
tν

e− 1/2tk2ν

(
2
t

)}
=

2sν− 1/2

Γ(ν + 1)
K1(2
√

s) ; Res > 0,

(44)

where Hµ(t), Yµ(t), H(1)
µ (t), H(2)

µ (t) and Sµ(t) are the Struve, Bessel, Hankel and Lommel
functions, respectively.

3. The Havelock Functions with Integer Orders

As pointed out above, Havelock in solving the surface wave problem [36] encountered
the following trigonometric integrals with even integer values of order (parameter) n

hn(x) =
2
π

∫ π/2

0
sin(x tan θ − nθ) dθ. (45)

These functions with positive and negative values of order were calculated numerically
by using the MATLAB program and they are plotted in Figures 3 and 4. Comparing both
figures, it is evident that the curves are shifted according to

h− n(x) = − hn(− x). (46)

Figure 3. Havelock functions with positive integer orders as a function of argument x.
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Figure 4. Havelock functions with begative integer orders as a function of argument x.

Havelock was able to present the first six integrals in terms of polynomials and the
logarithmic integrals [36]

h0(x) =
1
2
[
exli(e− x)− e− xli(ex)

]
h2(x) = xe− xli(ex)− 1

h4(x) = x(x− 1)e− xli(ex)− x

h6(x) =
x(2x2 − 6x + 3)e− xli(ex)− (2x2 − 4x + 1)

3

(47)

and

h8(x) =
x(x3 − 6x2 + 9x− 3)e− xli(ex)− x(x2 − 5x + 5)

3

h10(x) =
x(2x4 − 20x3 + 60x2 − 60x + 15)e− xli(ex)

15
−

(2x4 − 18x3 + 44x2 − 28x + 3)
15

h12(x) =
x(2x5 − 30x4 + 150x3 − 300x2 + 225x− 45)e− xli(ex)

45
−

x(2x4 − 28x3 + 124x2 − 198x + 93)
45

(48)

where

li(z) =
∫ z

0

dt
ln t

= γ + ln z +
∞

∑
n= 1

zn

n!n
, z = ex. (49)

In the same way as in the Bateman paper from 1931, the properties of the Havelock
functions with integer orders were studied by Srivastava in 1950 [25]. He found that

|hn(x)| ≤ 1

hn(0) =
2

πn

[
cos
(πn

2

)
− 1
]

h2n(0) =
[

1− (−1)n

πn

]
h4n(0) = 0

lim
x→∞

hn(x) = lim
x→∞

hn
′
(x) = 0,

(50)



Mathematics 2021, 9, 1273 12 of 27

and

h0(x) =
2
π

∫ π/2

0
sin(x tan θ) dθ =

2
π

∫ ∞

0

sin(xt)
1 + t2 dt

h1(x) =
2
π

∫ π/2

0
sin(x tan θ − θ) dθ =

2
π

∫ π/2

0
[sin(x tan θ) cos θ − cos(x tan θ) sin θ] dθ =

2
π

∫ ∞

0

[sin(xt)− t cos(xt)]
(1 + t2)3/2 dt.

(51)

These integrals are of the type presented in (26). In 1950 Srivastava [25] showed that
the infinite integral in (51) can be expressed in terms of the modified Bessel function of the
first kind of zero order and the Struve function of zero order and their derivatives.

The Havelock functions satisfy the following recurrence and differential relations [25,37]

(2n− 4x) hn(x) + (n− 2) hn− 2(x) + (n + 2) hn+ 2(x) = − 8
π

4xh′n(x) = (n− 2) hn− 2(x)− (n + 2) hn+ 2(x)

h′n− 1(x) + h′n+ 1(x) = hn− 1(x)− hn+ 1(x)

xh′′n(x) = (x− n) hn(x)− 2
π

.

(52)

The Laplace transform of the function h0(x) can be obtained in the following way

L{h0(x)} = 2
π

∫ ∞

0
e− sx

(∫ π/2

0
sin(x tan θ) dθ

)
dx =

2
π

∫ π/2

0

( ∫ ∞

0
e− sx sin(x tan θ) dx

)
dθ =

2
π

∫ π/2

0

tan θ

s2 + (tan θ)2 dθ =

2
π

∫ ∞

0

t
(s2 + t2)(1 + t2)

dt =
2 ln(s)

π(s2 − 1)
.

(53)

For the function h1(x) we have

L{h1(x)} = 2
π

∫ π/2

0

( ∫ ∞

0
e− sx[sin(x tan θ) cos θ − cos(x tan θ) sin θ]dx

)
dθ =

=
2
π

∫ π/2

0

[tan θ cos θ − s sin θ]

s2 + (tan θ)2 dθ =
2(1− s)

π

∫ ∞

0

t
(s2 + t2)(1 + t2)3/2 dt =

2
π(s + 1)

[
sec−1(s)√

s2 − 1
− 1
]

.

(54)

The Laplace transforms of the functions h0(x) and h1(x) were also derived by Srivas-
tava [25] in 1950 , but in the final expressions, the factor 2/π is missing.

The Havelock function h2(x) is expressed by

h2(x) =
2
π

∫ π/2

0
sin(x tan θ − 2θ) dθ =

2
π

∫ π/2

0
[sin(x tan θ) cos(2θ)− cos(x tan θ) sin(2θ)] dθ =

2
π

∫ π/2

0

sin(x tan θ) [1− (tan θ)2]− 2 tan θ cos(x tan θ)

1 + (tan θ)2 dθ

2
π

∫ ∞

0

(1− t2) sin(xt)− 2t cos(xt)
(1 + t2)2 dt

(55)
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and its Laplace transform is therefore

L{h2(x)} = 2
π

∫ ∞

0

[∫ ∞

0
e− sx (1− t2) sin(xt)− 2t cos(xt)

(1 + t2)2 dx
]

dt =

−2[s + 1 + ln(s)]
π(s + 1)2

(56)

where the infinite integrals in (53), (54) and (56) were verified using the MATHEMATICA
program. The derived Laplace transforms allow us to obtain the initial and final values of
the Havelock functions, for example for the function h0(x) we have

h0(x → +0) = lim
s→∞

[sF(s)] = lim
s→∞

[
2s ln(s)
s2 − 1

]
= 0

h0(x → ∞) = lim
s→ 0

[sF(s)] = lim
s→ 0

[
2s ln(s)
s2 − 1

]
= 0

(57)

as it is observed in Figure 3.
There is a number of recurrence and differential expressions that include both the

Bateman and the Havelock functions. They were reported by Srivastava [25] and three of
them are presented here

(n− 2) [kn(x)hn− 2(x)− kn− 2(x)hn(x)]+

(n + 2) [kn(x)hn+ 2(x)− kn+ 2(x)hn(x)] = − 8
π

kn(x)

4x
[
kn(x)h′n− 2(x) + k′n− 2(x)hn(x)

]
=

(n− 2) [kn(x)hn− 2(x) + kn− 2(x)hn(x)]+

(n + 2) [kn(x)hn+ 2(x) + kn+ 2(x)hn(x)][
kn(x)h′′n(x)− k′′n(x)hn(x)

]
= − 2

πx
kn(x),

(58)

where n is an even integer.
If we consider the Havelock function in the special case

hn(nx) =
2
π

∫ π/2

0
sin[n(x tan θ − θ)] dθ =

2
π

∫ π/2

0
sin[nα] dθ, (59)

then we recognize that the sums of series of the Havelock can be expressed by finite
trigonometric integrals.

For example from [42]

2
π

∞

∑
n= 1

tn sin(nα) =
2
π

[
t sin α

1− 2t cos α + t2

]
; t2 < 1 (60)

and integrating (60) with interchanging the order of summation and integration, we have

∞

∑
n= 1

tnhn(nx) =
2
π

∫ π/2

0

t sin(x tan θ − θ)

1− 2t cos(x tan θ − θ) + t2 dθ ; t2 < 1. (61)

In a similar way it is possible to obtain for series of the Bateman functions

∞

∑
n= 1

tnkn(nx) =
2
π

∫ π/2

0

1− t cos(x tan θ − θ)

1− 2t cos(x tan θ − θ) + t2 dθ ; t2 < 1. (62)

By this procedure, using various finite and infinite trigonometric series from [42],
many sums of the Bateman kn(nx) and Havelock hn(nx) series with different coefficients,
can be expressed by corresponding integrals.
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4. The Generalized Bateman and Havelock Functions with Integer Orders

In order to solve dual, triple or multi series equations, a number of generalized
Bateman and Havelock functions were introduced [25,26,29–35]. From the generalized
functions only two considered in 1972 by Srivastava [31] are presented here. There is no
agreed uniform notation of the generalized Bateman and Havelock functions. They are
defined by using different letters, with upper and lower indexes. Here these functions are
presented with an additional lower index with k > −1 as

kn,k(x) =
2
π

∫ π/2

0
(cos θ)k cos(x tan θ − nθ) dθ,

hn,k(x) =
2
π

∫ π/2

0
(cos θ)k sin(x tan θ − nθ) dθ.

(63)

It is suggested that if powers of cosine and sine functions appear also in (63), then the
third lower index m is included

kn,k,m(x) =
2
π

∫ π/2

0
(cos θ)k(sin θ)m cos(x tan θ − nθ) dθ,

hn,k,m(x) =
2
π

∫ π/2

0
(cos θ)k(sin θ)m sin(x tan θ − nθ) dθ,

(64)

where this notation differs from that used in (7).
Values of three such integrals having n = 0 and k = 0, 1, 2 are known

∫ π/2

0
(cos θ)2 cos(x tan θ − nθ) dθ =

π(1 + x) e− x

4
=

π

2
k0,2(x)∫ π/2

0
(sin θ)2 cos(x tan θ − nθ) dθ =

π(1− x) e− x

4
=

π

2
k0,0,2(x)∫ π/2

0
cos θ sin θ sin(x tan θ − nθ) dθ =

πx e− x

4
=

π

2
h0,1,1(x).

(65)

The recurrence and differential expressions for the generalized Havelock functions
are [31]

[(n− k− 2) hn− 2,k(x) + (n + k + 2) hn+ 2,k(x) + (2n− x) hn,k(x)] = − 8
π

4xh′n,k(x) = [(n− k− 2) hn− 2,k(x)− (n + k + 2) hn+ 2,k(x) + 2k hn,k(x)]

2xh′n,k(x)− 4
π

= [(n− k− 2) hn− 2,k(x) + (n + k− 2x) hn+ 2,k(x)]

2h′0,2k(x) = [2h0,2k + 2(x)− h0,2k(x)− h2,2k + 2(x)]

xh′′n,k(x)− kh′n,k(x) + (n− x)hn,k(x) = − 2
π

,

(66)

and for the generalized Bateman functions

2k′0,2k(x) = [2k0,2k + 2(x)− k0,2k(x)− k2,2k + 2(x)] . (67)

In 1972 Srivastava [31] was able to show that

k0,2k(x) =
2
π

∫ π/2

0
(cos θ)2k cos(x tan θ) dθ =

2√
π Γ(k + 1)

( x
2

)k + 1/2
Kk + 1/2(x)

h0,2k(x) =
2
π

∫ π/2

0
(cos θ)2k sin(x tan θ) dθ =

2Γ(−k)√
π

( x
2

)k + 1/2
[Ik + 1/2(x)− L− k− 1/2(x)],

(68)
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and in the explicit form for the generalized Havelock function

h2n,2k(x) =
1
π
[k2n(x) li(ex)− 2Sn− k−1,k(x)] ; n ≥ k + 1, (69)

where he determined the following polynomials for the expression in (69)

S2,1(x) =
1
6

(
2 + x + x2

)
S3,1(x) = 1

12
(
2− x2 + x3)

S4,1(x) =
1

30

(
4 + x + 2x2 − 4x3 + x4

)
S5,1(x) =

1
180

(
18− 9x2 + 31x3 − 16x4 + 2x5

)
S5,1(x) =

1
180

(
18− 9x2 + 31x3 − 16x4 + 2x5

)
,

(70)

and
S3,2(x) =

1
48

(
16 + 7x + 3x2 + x3

)
S4,2(x) =

1
120

(
24 + 6x + 2x2 + x3 + x4

)
S5,2(x) =

1
360

(
48 + 6x− x3 − 2x4 + x5

)
S6,2(x) = 1

2520
(
268 + 30x + 6x2 + 5x3 + 11x4 − 44x5 + 2x6).

(71)

Besides, in 1972 H.M. Srivastava [31] evaluated four Laplace transforms of the gen-
eralized Bateman and Havelock functions. Two are presented here, long but complex
expressions for the functions k2,2k(x) and h2,2k(x) are omitted here:

L
{

k0,2k(x)
}
=

[
(1− s)

(1− s2)k + 1 −
s√
π

k

∑
m= 1

Γ(k−m + 3/2)
Γ(k−m + 2) (1− s2)m

]

L
{

h0,2k(x)
}
=

1
π

[
2 ln(s)

(1− s2)k + 1 +
k

∑
m= 1

1
(k−m + 1) (1− s2)m

]
.

(72)

For the solution of pairs of dual equations, other researchers called Srivastava [28,29]
reported a few more properties of the generalized Bateman functions, but these functions
are slightly modified in their definitions.

5. The Bateman and Havelock Functions with Unrestricted Orders

General case of the Bateman and Havelock with any order

kν(x) =
2
π

∫ π/2

0
cos(x tan θ − νθ) dθ

hν(x) =
2
π

∫ π/2

0
sin(x tan θ − νθ) dθ

(73)

is practically unknown in the literature, with only one exception, the definition of the
Bateman function in terms of the Whittaker function Wk,µ(z) or Tricomi function U(a, b, z)
(particular cases of the confluent hypergeometric function ) [7]

k2ν(x) =
1

Γ(ν + 1)
Wν,1/2(2x) =

e− x

Γ(ν + 1)
U(− ν, 0; 2x)

U(− ν, 0; 2x) = 2x U(1− ν, 2; 2x)

k2n+ 2(x) = 2xe− x
1F1(−2n; 2; 2x) ; n = 0, 1, 2, 3, . . .

(74)
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Evidently, the corresponding generalized functions are

kν,α,β(x) =
2
π

∫ π/2

0
(cos θ)α(sin θ)β cos(x tan θ − νθ) dθ

hν,α,β(x) =
2
π

∫ π/2

0
(cos θ)α(sin θ)β sin(x tan θ − νθ) dθ,

(75)

where α, β and ν have any real value. By changing the integration variable in (73) and (75),
t = tan(θ) , these functions can be expressed by infinite integrals

kν(x) =
2
π

∫ ∞

0

[
cos(xt) cos[ν tan− 1(t)] + sin(xt) sin[ν tan− 1(t)]

]
1 + t2 dt

kν,α,β(x) =
2
π

∫ ∞

0

tβ
[
cos(xt) cos[ν tan− 1(t)] + sin(xt) sin[ν tan− 1(t)]

]
(1 + t2)α/2+ β/2+1 dt

hν(x) =
2
π

∫ ∞

0

[
sin(xt) cos[ν tan− 1(t)]− cos(xt) sin[ν tan− 1(t)]

]
1 + t2 dt

hν,α,β(x) =
2
π

∫ ∞

0

tβ
[
sin(xt) cos[ν tan− 1(t)]− cos(xt) sin[ν tan− 1(t)]

]
(1 + t2)α/2+ β/2+1 dt.

(76)

In Figures 5 and 6 we illustrate the behavior and the symmetries with respect to the
order of the Bateman functions with fractional positive and negative values: ν = n + 1/2
and ν = −(n + 1/2), with n = 0, 1, 2, 3, 4, 5. The same is demonstrated in Figures 7 and 8
for the Havelock-functions. Similarly as in (28), differentiation of the Bateman functions
with respect to the argument x is for k = 0, 1, 2, 3, . . .

∂2k kν(x)
∂x2k = (−1)k 2

π

∫ π/2

0
(tan θ)2k cos(x tan θ − νθ) dθ

∂2k + 1 kν(x)
∂x2k + 1 = (−1)k 2

π

∫ π/2

0
(tan θ)2k + 1 sin(x tan θ − νθ) dθ.

(77)

and in the case of the Havelock functions

∂2k hν(x)
∂x2k = (−1)k 2

π

∫ π/2

0
(tan θ)2k sin(x tan θ − νθ) dθ

∂2k + 1 hν(x)
∂x2k + 1 = (−1)k 2

π

∫ π/2

0
(tan θ)2k + 1 cos(x tan θ − νθ) dθ

k = 0, 1, 2, 3, . . .

(78)

Figure 5. Bateman functions with positive n + 1/2 orders as a function of argument x.
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Figure 6. Bateman functions with negative n + 1/2 orders as a function of argument x.

Figure 7. Havelock functions with positive n + 1/2 orders as a function of argument x.

Figure 8. Havelock functions with negative n + 1/2 orders as a function of argument x.

Using the definition of these function from (73), it is possible to consider the Bateman
and Havelock functions as functions of two variables x and ν. Thus, it is possible also to
perform differentiation with respect to ν

∂2k kν(x)
∂ν2k = (−1)k 2

π

∫ π/2

0
θ2k cos(x tan θ − νθ) dθ

∂2k + 1 kν(x)
∂ν2k + 1 = (−1)k 2

π

∫ π/2

0
θ2k + 1 sin(x tan θ − νθ) dθ

k = 0, 1, 2, 3, . . .

(79)
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and
∂2k hν(x)

∂ν2k = (−1)k 2
π

∫ π/2

0
θ2k sin(x tan θ − νθ) dθ

∂2k + 1 hν(x)
∂ν2k + 1 = (−1)k 2

π

∫ π/2

0
θ2k + 1 cos(x tan θ − νθ) dθ

k = 0, 1, 2, 3, . . .

(80)

The first derivatives with respect to the order at fixed positive and negative values
of argument x of the Bateman functions are plotted in Figures 9 and 10, and the same
for the Havelock functions in Figures 11 and 12. As can be observed, these functions are
symmetrical in both cases.

If orders are pure imaginary numbers ν = iα then the Bateman and Havelock func-
tions become complex functions which are expressed by integrals with integrands having
products of trigonometric and hyperbolic functions.

As pointed out above, the Bateman and Havelock functions were introduced to the
mathematical literature as solutions of particular problems in fluid mechanics [20,36].

Figure 9. First derivatives of the Bateman functions with respect to the order at fixed positive values
of argument x.

Figure 10. First derivatives of the Bateman functions with respect to the order at fixed negative
values of argument x.
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Figure 11. First derivatives of the Havelock functions with respect to the order at fixed positive
values of argument x.

Figure 12. First derivatives of the Havelock functions with respect to the order at fixed negative
values of argument x.

Years later, these functions were generalized to the form given in (64) and
(75) [25,26,29–35]. It should be mentioned however, that historically, these proposed
generalizations are not new, and they were already discussed much earlier by Giuliani
in1888 [43] and by Bateman in 1931 [44]. They also introduced similar trigonometric
integrals, but in the context of particular cases of the Kummer confluent hypergeometric
functions. It is rather strange, that in the later investigations [25,26,29–35], when the
generalized Bateman and Havelock functions were proposed, previous studies on this
subject were completely ignored. Considering that the trigonometric integrals and associ-
ated with them differential equations presented in the Giuliani and Bateman papers are of
particular importance and interest, it was decided to summarize their results separately,
in Appendix B.

6. The Bateman-Integral Functions

Analogous to the sine-integral, cosine integral and the Bessel-integral functions

si(x) = −
∫ ∞

x

sin t
t

dt

Ci(x) = −
∫ ∞

x
cos t

t dt

Jiν(x) = −
∫ ∞

x

Jν(t)
t

dt.

(81)
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Chaudhuri [26] has introduced the Bateman-integral function

ki2n(x) = −
∫ ∞

x

k2n(t)
t

dt ; t > 0, (82)

and mainly using operational calculus he has discussed its properties.

ki2n(x) =
∫ x

0

k2n(t)
t

dt + ki2n(0)

ki2n(0) = 0 ; n = 2k ; k = 0, 1, 2, 3, . . .

ki2n(0) = −
2
n

; n = 2k + 1

(83)

Using similarity with the Laguerre polynomials, Chaudhuri [26] derived the following
series expressions for the Bateman-integral functions

ki2n(x) =
e− x

n

n

∑
k = 1

(−2)k
(

n
k

)
Lk− 1(x)

ki2n(x) =
1

nx

[
n k2n(x)− 2

n

∑
m= 1

(−1)k
(

n
m

)
[m k2m(2x) + (m + 1)k2m+ 2(2x)− 2k0(2x)

]

ki2n(x) =
(−1)n− 1ex

2n+ 1

[
n

∑
m= 1

m k2k(x)

]
Ln− 1(x) =

ex

2n

n

∑
m= 1

(−1)m
(

n
m

)
m ki2m(x)

ki2(x) = −2 k0(x),

(84)

and the recurrence and differential expressions

k2n(x) =
(n− 1)ki2n− 2(x)− (n + 1)ki2n+ 2(x)

2

n ki2n(x) + (n + 1) ki2n+ 2(x) = −2
n

∑
k = 0

ki2k(x)

x ki′2n(x) =
(n− 1)ki2n− 2(x)− (n + 1)ki2n+ 2(x)

2
x ki′2n(x) = k2n(x).

(85)

He was also able to relate the Bateman-integral functions with the Bessel and the
Bessel integral functions

(n + 1) [Jin+ 1(x)ki2n− 2(x)− Jin− 1(x)ki2n+ 2(x)] =

2xJin− 1(x)ki′2n(x)− 2nJi′n(x)ki2n− 2(x)
∞

∑
m= 1

(−1)mm ki2m(x) ki2m(y) = J0(2
√

xy).
(86)

From integral expressions, the Laplace transform are presented here, when indefinite,
definite and infinite integrals related to of the Bateman-integral functions are given in
Appendix A:
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L{ki2n(x)} = 1
ns

[(
1− s
s + 1

)n
− 1
]
=

1
ns

n

∑
k = 1

(−1)k
(

n
k

)(
2s

s + 1

)k

L{ki2n(2x)} = 1
ns

[(
2− s
s + 2

)n
− 1
]

L{ki0(x)} = − ln(s)
s

L{ki2(x)} = − 2
s + 1

.

(87)

It is also worthwhile to mention that Srivastava [25] expressed the Bateman-integral
function in the following way

ki2n(x) =
π

2
[
k′2n(x)h2n(x)− h′2n(x)k2n(x)

]
=

π

8x
[(2n + 2)[k2n(x)h2n+ 2(x)− k2n+ 2(x)h2n(x)]−

(2n− 2)[k2n(x)h2n− 2(x)− k2n− 2(x)h2n(x)]],

(88)

by including products of the Bateman and Havelock functions.

7. Conclusions

As solutions of fluid mechanics problems, more than ninety years ago, Havelock in
1925 and Bateman in 1931 introduced new functions which are expressed in terms of finite
trigonometric integrals and discussed their properties. Initially, these functions found
attention of a number of mathematicians who further developed this subject and proposed
some generalizations. However, unfortunately, after a rather short period, the Havelock
and Bateman functions were practically abandoned. Today, only the Bateman function
is listed in mathematical handbooks as a particular case of the confluent hypergeometric
function, thus as a minor special function. However, as is clearly showed in this survey,
these functions have interesting properties and a rather large mathematical material was
devoted and associated with them. This leads to conclusion that they should be treated as
independent special functions. Since at present, in reference books, our knowledge about
these functions is very limited, we decided to prepare this survey where basic properties of
the Havelock and Bateman functions are presented. We have found useful for the reader’s
convenience to add two Appendixes: Appendix A is devoted to integrals associated
with the Bateman and Bateman-integral functions whereas Appendix B is devoted to
trigonometric integrals and differential equations associated with the Kummer Confluent
Hypergeometric Functions according to the almost unknown papers by Giuliani [43] and
by Bateman himself [44].

In Appendix C we have added the integral representations of the special functions
used in this survey.

It is worth to note that the Bateman Manuscript is currently under revision with the
name Encyclopedia of Special Functions: the Askey-Bateman Project, see [45]. However the
volume dealing with the confluent hypergeometric functions is not yet available.
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Appendix A. Integrals Associated with the Bateman and Bateman-Integral Functions

The integrals presented here are compiled from the literature and they have a definite
form. Their number can be enlarged by applying interconnections between the Bateman,
Bateman-integral and other special functions and using operational calculus. Besides, there
are many integrals which are expressed in term of infinite series, but they are omitted from
this tabulation.∫ 1

0
(1− t)β− 1 eαt k2n(αt) dt =

(−1)n− 1(n− 1)! Γ(β)

Γ(β + n + 1)
L(β+ 1)

n− 1 (2α) ; β > 0 (A1)

∫ x

0
k2m(t) k2n(x− t) dt =

∫ x

0
k2n(t) k2m(x− t) dt =

1
2
[k2m+ 2n−2(x) + 2k2m+ 2n(x) + k2m+ 2n+2(x)] (A2)

∫ x

0

J0(t)− k0(t)
t

dt = Ji0(x)− ki0(x) + ln 2∫ x

0

Jn(t)− k2n(t)
t

dt = Jin(x)− ki2n(x) +
(−1)n

n

(A3)

∫ ∞

0
J0(2
√

at) k2n(t) dt =

(−1)n− 1

2
[(n− 1)ki2n− 2(a)− 2nki2n (a) + (n + 1)ki2n+ 2(a)]

(A4)

∫ ∞

0
J0(2
√

at) k2n(t)
dt
t
= (−1)nki2n(a) (A5)

∫ ∞

0
e− t J1(23/2

√
xt) k2n(t)

dt
t
=

(−1)n− 1xn− 1/2 e− x
√

2n!
(A6)

∫ ∞

0
e− a t tn+ 1/2 J1(2

√
xt) dt =

(−1)nΓ(n + 2) e− x/2a

an+ 1
√

x
k2n+ 2

( x
2a

)
; a > 0 (A7)

∫ x

0

Jn(t)− k2n(t)
t

dt = Jin(x)− ki2n(x) +
(−1)n

n
(A8)

∫ ∞

0
tn/2− 1e− t J2−n(4

√
xt) k2n(t)

dt
t
=

xn/2− 1 e− x

2
k2n(x) (A9)

∫ ∞

0

e− bt2
Jλ(a
√

t2 + x2) Jν(a
√

t2 + x2)

t (t2 + x2)(λ+ ν)/2
k2n+ 2(bt2) dt =

(−1)n Jλ(ax) Jν(ax)
(2n + 2) xλ+ ν

Re(λ + ν) > −3/2

(A10)

∫ π

0
U2n(
√

x cos θ) (sin θ)2 dθ =
π(2n)! ex/2

2xn!
k2n+ 2(

x
2
)

Un(x) = (−1)n ex2 dn

dxn

{
e− x2

} (A11)

∫ x

0
sin(x− t) ki2(t) dt = cos x− sin x− e− x (A12)

∫ x

0
cos(x− t) ki2(t) dt = cos x− sin x + e− x (A13)
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∫ x

0
sinh(x− t) ki2(t) dt = e− x(1 + x)− cosh x (A14)

∫ x

0
cosh(x− t) ki2(t) dt = −xe− x − sinh x (A15)

∫ x

0
ex− t ki2(t) dt = −2 sinh x (A16)

∫ x

0
(x− t) ex− t ki4(t) dt = sinh x− x cosh x (A17)

∫ ∞

0
e− at ki0(bt) dt =

1
a

ln
(

b
a + b

)
; a, b > 0 (A18)

∫ ∞

0

ki2(at)− ki2(bt)
t

dt = 2 ln
( a

b

)
; a, b > 0 (A19)

∫ ∞

0
J0(2
√

at) ki2n(t) dt = (−1)n k2n(a)
a

(A20)

Appendix B. Trigonometric Integrals and Differential Equations Associated with the
Kummer Confluent Hypergeometric Functions

In a paper devoted to the note of Kummer, where he introduced into mathematics the
confluent hypergeometric function defined by the following polynomial series

1F1(a; b; x) = M(a, b, x) = 1 +
a
b

x
1!

+
a(a + 1)
b(b + 1)

x2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

x3

3!
+ . . .

Re(b) > Re(a) > 0.

(B1)

The Italian mathematician Giulio Giuliani [43] in 1888 considered the trigonometric
integral (the original notation is replaced here by that used in this survey)

I(x) =
∫ π/2

0
(cos θ)α−1 cos(

x
2

tan θ + nθ) dθ =
π

2
k−n,α−1(

x
2
) , α > 1. (B2)

We note that this integral is one of particular solutions of the following
differential equation

4x
d2 I(x)

dx2 − 4(α− 1)
dI(x)

dx
− (x + 2n)I(x) = 0. (B3)

Besides, Giuliani introduced two integrals coming from (B2)

Un(α, x) =
∫ π/2

0
(cos θ)α−1 cos(

x
2

tan θ) cos(nθ) dθ,

Vn(α, x) =
∫ π/2

0
(cos θ)α− 1 sin(

x
2

tan θ) sin(nθ) dθ,

(B4)

when ∫ π/2

0
(cos θ)α− 1 cos(

x
2

tan θ + nθ) dθ = Un(α, x)−Vn(α, x). (B5)

He showed that these integrals are solutions of the set of differential equations of the
first order

2(α− 1)
dUn(α, x)

dx
+

x
2

Un(α− 2, x)− nVn(α, x) = 0,

2(α− 1)
dVn(α, x)

dx
+

x
2

Vn(α− 2, x)− nUn(α, x) = 0,
(B6)
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and of the second order

2x
d2Un(α, x)

dx2 − 2(α− 1)
dUn(α, x)

dx
− x

2
Un(α, x) + nVn(α, x) = 0,

2x
d2Vn(α, x)

dx2 − 2(α− 1)
dVn(α, x)

dx
− x

2
Vn(α, x) + nUn(α, x) = 0.

(B7)

From (B6) and (B7) it is possible to obtain a differential equation of the fourth order

4x2 d4Un(α, x)
dx4 − 8(α− 2)x

d3Un(α, x)
dx3 −

2
[

x2 − 2(α− 1)(α− 2)
] d2Un(α, x)

dx2 + 2x(α− 2)
dUn(α, x)

dx
−(

x2

4
+ n2 + 1− α

)
Un(α, x) = 0,

Vn(α, x) =
1
n

(
− 2x

d2Un(α, x)
dx2 + 2(α− 1)

dUn(α, x)
dx

+
x
2

Un(α, x)
)

.

(B8)

In terms of the Kummer confluent hypergeometric functions Giuliani was able to
obtain that ∫ π/2

0
(cos θ)α− 1 cos(

x
2

tan θ + nθ) dθ = Un(α, x)−Vn(α, x) = π Γ(α− 1) e− x/2

2α Γ
(

α−n+1
2

)
Γ
(

α+n+1
2

) 1F1(
α− n + 1

2
; 1− α; x)−

π2 cos
(

α−n
2
)

xα e− x/2

2α sin(πα) Γ(α) 1F1(
α + n + 1

2
; α + 1; x)

]
,

(B9)

and

Un(α, x) + Vn(α, x) =

 π Γ(α− 1) e− x/2

2α Γ
(

α+n+1
2

)
Γ
(

α−n+1
2

) 1F1(
1− α− n

2
; 1− α; x) ,

−
π2 cos

(
α+n

2
)

xα e− x/2

2α sin(πα) Γ(α) 1F1(
α− n + 1

2
; α + 1; x)

]
.

(B10)

These expressions can be presented in terms of the generalized Bateman functions
defined in (75)

k− ν,α,0(x) =[
Γ(α) e− x

2α Γ
(

α−ν
2 + 1

)
Γ
(

α+ν
2
) 1F1(

α− ν

2
+ 1;−α; 2x)−

π cos
(

α−ν+1
2

)
xα+ 1 e− x

2α sin[π(α + 1)] Γ(α + 1) 1F1(
α + ν

2
+ 1; α + 2; 2x)

,

(B11)

and

kν,α,0(x) =

[
Γ(α)e− x

2α Γ
(

α+ν
2 + 1

)
Γ
(

α−ν
2 + 1

) 1F1(
−α− ν

2
;−α; 2x)

−
π cos

(
α+ν+1

2

)
xα+ 1 e− x

2α sin[π(α + 1)] Γ(α + 1) 1F1(
α− ν

2
+ 1; α + 2; 2x)

.

(B12)
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As shown by Giuliani, by changing the integration variable, the finite trigonometric
integrals can be presented as the infinite integrals, for example

∫ π/2

0
(cos θ)α cos(

x
2

tan θ) dθ =
∫ ∞

0

cos
( xt

2
)

(1 + t2)α/2+1 dt . (B13)

Considering the case α = 1 in (B2), Bateman [44] in 1931 noted the link that exists
between the investigated by Giuliani integral and the k-Bateman function with negative
order. He also found that the solution of the following third order differential equation

x
d3 I(x)

dx3 − (α− 1)
d2 I(x)

dx2 − (x + n)
dI(x)

dx
− βI(x) = 0, (B14)

is given by the following trigonometric integral

I(x) =
∫ π/2

0
(cos θ)α(sin θ)β−1 cos(x tan θ + nθ) dθ =

π

2
kn,α,β−1(x) . (B15)

Besides, Bateman showed that for x > 0:∫ π/2

0
(cos θ)m cos[x tan θ + (m + 2n)θ] dθ =

ex sin(πn)
2k + 1

∫ 1

0
tk(1− t)n− 1 e− 2x/t dt ,∫ π/2

0
cos[x tan θ + (m + 2n)θ] dθ =

ex sin(πn)
2

∫ 1

0
(1− t)n− 1 e− 2x/t dt =

π

2
k− 2n(x) .

(B16)

As can be observed, the included material from the 1888 paper by Giuliani and from the
1931 paper by Bateman is important from the historical and mathematical points of view.

Appendix C. Integral Representations of Special Functions Used in This Survey

Hypergeometric Function

2F1(a, b; c; x) =
Γ(c)

Γ(a) Γ(b)

∫ 1

0

tb−1 (1− t)c−b−1

(1− xt)a dt Re(c) > Re(a) > 0 . (C1)

Kummer Confluent Hypergeometric Function

1F1(a, b; x) = M(a, b, x) =
Γ(b)

Γ(a) Γ(b− a)

∫ 1

0
ta−1 ext (1− t)b−a−1 dt Re(b) > Re(a) > 0 . (C2)

Tricomi Confluent Hypergeometric Function

U(a, b, x) =
1

Γ(a)

∫ ∞

0
ta−1 e−xt (1 + t)b−a−1 dt , Re(b) > Re(a) > 0 . (C3)

Whittaker Functions

Mκ,µ(x) =
Γ(1 + 2µ) xµ+1/2 e−x/2

Γ(µ + κ + 1/2) Γ(µ− κ + 1/2)

∫ 1

0
tµ−κ−1/2 ext (1− t)µ+κ−1/2 dt ,

Mκ,µ(x) = xµ+1/2e−x/2 M(µ− κ + 1/2, 1 + 2µ, x)

Re(µ± κ + 1/2) > 0 .

(C4)
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Wκ,µ(x) =
xµ+1/2 e−x/2

Γ(µ− κ + 1/2)

∫ ∞

0
tµ−κ−1/2 e−xt (1 + t)µ+κ−1/2 dt ,

Wκ,µ(x) = xµ+1/2e−x/2 U(µ− κ + 1/2, 1 + 2µ, x)

Re(µ− κ + 12) > 0 .

(C5)

Bessel Functions

Jν(x) =
1
π

∫ π

0
cos(x sin θ − νθ) dθ − sin(πν)

π

∫ ∞

0
e−x sinh t−νt dt. (C6)

Yν(x) =
1
π

∫ π

0
sin(x sin θ − νθ) dθ − sin(πν)

π

∫ ∞

0
e−x sinh t−νt [eνt + e−νt cos(πν)

]
dt. (C7)

Iν(x) =
1
π

∫ π

0
ex cos θ cos(νθ) dθ − sin(πν)

π

∫ ∞

0
e−x cosh t−νt dt. (C8)

Kν(x) =
Γ(ν + 1/2) (2x)ν

√
π

∫ ∞

0

cos(xt)
(1 + t2)ν+1/2 dt =

∫ ∞

0
e−x cosh t cosh(νt) dt. (C9)

Struve Functions

Hν(x) =
2(x/2)ν

Γ(ν + 1/2)
√

π

∫ 1

0
(1− t2)ν−1/2 sin(xt) dt , Re(ν) > −1/2. (C10)

Lν(x) =
2(x/2)ν

Γ(ν + 1/2)
√

π

∫ π/2

0
(sin t)2ν sinh(x cos t) dt , Re(ν) > −1/2. (C11)

Lommel Functions

Sµ,ν(x)xµ
∫ ∞

0
e−xt

2F1

(
1− µ + |nu

2
,

1− µ− ν

2
;

1
2

;−t2
)

dt , Re(x) > 0 . (C12)
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