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Abstract: One-dimensional random walks with a constant velocity between scattering are considered.
The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be
different for positive and negative directions of the walk axis. Several special cases are considered
when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin
for a symmetric random walk with exponential path distribution and its generalization to the
asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material
derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.
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1. Introduction

The main difference between the Boltzmann kinetic equation and widely used diffu-
sion approximation is the velocity loss. Whereas the Boltzmann trajectory is a broken line
consisting of rectilinear segments, each of which is characterized by a certain velocity, and
any part of the trajectory has a length and travel time, a Brownian particle in the Wiener
representation has a continuous everywhere but nowhere differentiable trajectory. The
length of its section between any two points is infinite. From a physical point of view, some
of the consequences of this approximation are unacceptable. Particularly, a small diffusion
packet placed in an infinite medium will instantly spread to all space that conflicts with
special relativity. This is the price to pay for the ease of a mathematical solution.

To the best of our knowledge, the first who undertook an attempt to involve a finite
velocity into this model was Soviet physicist-theorist V. A. Fock [1]. His aim was to describe
the diffusion of light in a medium with small transparent reflecting particles suspended in
it. Beginning his article with consideration of the random hopping process on a discrete
system of nodes, he formulated the mathematical problem by means of algebraic equations
and gave its solution in terms of finite differences, and only to the end of his article, Fock
introduced a finite constant velocity c (he considered photons) and derived the system
of differential interrelations under the Markovian assumption that the probability for the
particle changing its motion direction into the opposite one during interval (t, t + dt) is
equal to µdt:

p+(x, t) = p+(x− cdt, t− dt)(1− µdt) + p−(x + cdt, t− dt)µdt, (1)

p−(x, t) = p−(x + cdt, t− dt)(1− µdt) + p+(x− cdt, t− dt)µdt. (2)

This pair of equalities is a one-dimensional case of the linear Boltzmann equation
expressed through differentials. Each of these two functions obeys an equation of the
wave-type

∂2u
∂x2 =

1
c2

∂2u
∂t2 +

1
D

∂u
∂t

, (3)
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called the telegraph equation. The presence of term 1
c2

∂2u
∂t2 shows that any perturbations

and inhomogeneities in concentration spreads with the finite velocity c, but after they
become smooth, the next development of the process is governed by the ordinary diffusion
equation. Ten years later, another Soviet physicist published his article on the same
problem [2]. Beginning with the remark that the ordinary diffusion equation is derived
under the assumption of the infinite velocity of free motion between collisions, Fock took
into account the duration of a free path. However, at the molecular level, the proposed
interpretation looks convincing only on the condition that the medium in question is a
fairly rarefied gas of short-interacting molecules. It is also not applicable to real particles
observed by Brown and later by Perrin (1909) under a microscope, because the suspended
particles are much larger in size than molecules and are under their continuous collective
action, which does not disintegrate into separate collisions. Only nowadays there exist
a technique that made it possible to measure the instantaneous velocities of molecules
between collisions [3]. Understanding this situation made physicists shift their attention
from molecular diffusion to the turbulent one, in which it is easy to observe the velocities
of test particles (tracers) carried by the turbulent flow and to measure them.

In [4], A.S. Monin significantly advanced the understanding of the possibilities of
the model under consideration by applying it to the description of turbulent diffusion,
relying on the fundamental work of A. N. Kolmogorov [5]. Within the framework of the
Kolmogorov picture, the turbulent diffusion of a tracer can be regarded as the result of thin
action flows, i.e., jets, randomly distributed in fluid. In the presence of only two types of jets
with opposite directions of their motion and on the assumption that random transitions of
the tracer from one jet to another form the Poisson process, this random motion is described
by the telegraph equation. Taking for initial direction of velocity probabilities P(+) = ε1,
P(−) = ε2, Monin obtained the spatial distribution of the walking particle along the x-axis
in the form

p(x, t) = p(0)(x, t) + p(s)(x, t),

where
p(0)(x, t) = e−µt[ε1δ(x− vt) + ε2δ(x + vt)]

is the unscattered part, and p(s)(x, t) is the scattered one, expressed through the modified
Bessel functions with argument µt

√
1− (x/vt)2, where −vt < x < vt.

A fundamentally important circumstance accompanying the derivation of the tele-
graph equation is the proportionality of the scattering probability on an elementary path to
the length of this path, the result of which is the exponential type of the free path distribu-
tion. In a review [6], a detailed analysis of Einstein’s derivation of diffusion equation was
done and revealed an important circumstance taking place in the case with the telegraph
equation as well: random positions of scatterers acting on the tracer are considered to be
statistically independent. In other words, these equations model passing a tracer through
an ideal gas, molecules of which do not interact with each other, so there are no correlations
between consecutive collisions. Certainly, the inertia of the tracer possessing some mass
produces some small correlations, especially in a rarified matter, but much stronger correla-
tions arise in a turbulent media, when the tracer is picked up by the random flow (having
the form of a jet or vortex) and carried to large distances. A similar situation takes place
in the case of charged particle diffusion in random magnetic fields, correlations of which
are produced by a random system of magnetic force lines. Some of these cases allow the
broken-line approximation of certain parts of the trajectory, but the lengths of the random
segments have distributions that differ from the classical exponential form.

We consider in this paper other examples of one-dimensional random motion also
admitting a rather easy solution but being beyond the Markovian paradigm. In a general
case, we should be ready to describe a process by means of using integral operators with an
arbitrary kernel and find a way to its solution. Such an approach is known as the nonlocal
transport theory and find a more and more broadening field of applications.
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2. The Generalized Process

One-dimensional walking of a particle under consideration starts from the point
x = 0 at the moment t = 0 with probability ε1 on the left (towards negative x) and with
probability ε2 = 1− ε1 in the opposite direction. Velocities of free motion in different
directions are also different and are of v1 and v2 correspondingly. The probability density
for a random free path (to the point of changing the direction of the motion) depends on
direction as well and is denoted by p′1(ξ) for the left direction and p′2(ξ) for the right (ξ > 0).
The problem is to determine the probability density ρ(x, t) of the particle coordinate at the
moment t > 0.

A further modification of this scheme is possible by introduction of a square matrix εij,
determining the transition probability from the state of motion j to the state i (i, j = 1, 2). Let
us denote the path-distribution in this modifications qi(ξ), so free path distributions become

p′i(ξ) = εij

∞

∑
n=1

εn−1
ii q(n)i (ξ), i 6= j (4)

where q(n)i (ξ) denotes multiple convolutions of the densities qi(ξ):

q(1)i (ξ) = qi(ξ), q(n+1)
i (ξ) =

ξ∫
0

q(n)i (ξ − ξ ′)qi(ξ
′)dξ ′. (5)

The sought density consists of two parts

ρ(x, t) = ρ1(x, t) + ρ2(x, t) (6)

corresponding to possible directions (states) of particle motion. Denote by ξ the distance
between points of observation and the appearance of the particle in some state via transition
from another state or emitted by a source. The minimum value of ξ is zero, and the
maximum value depends on x, t and a considered state. For state 1, it satisfies the system
of equations

x + ξ = vt∗

ξ = v(t− t∗)
(7)

where t∗ is the moment of time when the particle performs a jump from a corresponding
point of the cone (x = −vt, x = vt) to the point x. Excluding t∗, we find

(ξmax)1 = (vt− x)/2 ≡ ξ1(x, t). (8)

Similarly, for state 2, we find

(ξmax)2 = (vt + x)/2 ≡ ξ2(x, t). (9)

Let f1(x′, t′)dx′dt′ be the probability of particle appearance in state 1 in the element
dx′ during dt′ and let P1(x′, t′ → x, t) be the probability that it will pass a segment [x, x′]
without collisions and at time t turns out to be at point x:

P1(x′, t′ → x, t) = P1(ξ)δ(t− t′ − ξ/v), ξ = x′ − x. (10)

Here

P1(ξ) =

∞∫
ξ

p1(x)dx (11)
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stands for probability that the random path of the particle will exceed ξ ≥ 0. The first
density component is expressed through the integral

ρ1(x, t) = (1/v)
vt∫

x

dx′
t∫

0

dt′ f1(x′, t′)P1(x′, t′ → x, t) (12)

having the sense of the absolute value of the current particle j1 in the direction 1, so j1 = vρ1.
Inserting (10) into (12) and using the δ-function property, we arrive at expression

ρ1(x, t) = (1/v)

ξ1(x,t)∫
0

dξP1(ξ) f1(x + ξ, t− ξ/v). (13)

Considering in a similar way the motion in the opposite direction, we find the sec-
ond relation:

ρ2(x, t) = (1/v)

ξ2(x,t)∫
0

dξP2(ξ) f2(x− ξ, t− ξ/v). (14)

The collision densities fi(x, t) satisfy the system of integral equations, derived from
the same reasoning as (13) and (14), and have the form

f1(x, t) =

ξ2(x,t)∫
0

dξ p2(ξ) f2(x− ξ, t− ξ/v) + f (0)1 (x, t) (15)

f2(x, t) =

ξ1(x,t)∫
0

dξ p1(ξ) f1(x + ξ, t− ξ/v) + f (0)2 (x, t) (16)

The free terms
f (0)i (x, t) = εiδ(x)δ(t) (17)

describe the emission of particles by the source.

3. Solving the Generalized Equation

Let us add to ρij and fij the second index, indicating a fixed initial state of the particle, so

ρi(x, t) = ρi1(x, t)ε1 + ρi2(x, t)ε2 (18)

After one iteration, the system of equations for fij(x, t) (15)–(16) become a pair of
independent equations

f1j(x, t) = f (0)1j (x, t) +

ξ2(x,t)∫
0

dξ p2(ξ)

ξ1(x,t)∫
0

dξ ′p1(ξ
′) f1j(x− ξ + ξ ′, t− (ξ + ξ ′)/v) (19)

f2j(x, t) = f (0)2j (x, t) +

ξ1(x,t)∫
0

dξ p1(ξ)

ξ2(x,t)∫
0

dξ ′p2(ξ
′) f2j(x + ξ − ξ ′, t− (ξ + ξ ′)/v) (20)

with free terms
f11(x, t) = f22(x, t) = δ(x)δ(t),

f21(x, t) = p1(vt)δ(t + x/v),

f12(x, t) = p2(vt)δ(t− x/v).

(21)
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Let us consider the equation for f11(x, t) in detail, omitting lower indexes to be short.
Representing its solution in the form of von Neumann series, we obtain

f (x, t) =
∞

∑
n=0

f (n)(x, t), (22)

where

f (n+1)(x, t) =

ξ2(x,t)∫
0

dξ p2(ξ)

ξ1(x,t)∫
0

dξ ′p1(ξ
′) f (n)(x + ξ ′ − ξ, t− (ξ ′ + ξ)/v). (23)

For the farther exposition, it is convenient to extend the notion of multiple convolution

p(n+1)
i (ξ) =

ξ∫
0

p(n)i (ξ − ξ ′)pi(ξ
′)dξ ′ (24)

to the case n = 0:
p(0)i (ξ) = δ(ξ). (25)

A simple check confirms that

f (0)(x, t) = (v/2)p(0)1 (ξ1)p(0)2 (ξ2). (26)

Substituting (26) into (23) and finding a few first iterations, we see that each term has
the form of a product

f (n)(x, t) = ψ
(−)
n (ξ1)ψ

(+)
n (ξ2). (27)

Substituting (27) into (23) and taking into account that

ξ2(x + ξ ′ − ξ, t− (ξ ′ + ξ)/v) = ξ2(x, t)− ξ (28)

and
ξ1(x + ξ ′ − ξ, t− (ξ ′ + ξ)/v) = ξ1(x, t)− ξ (29)

yields

ψ
(+)
n+1(ξ2) =

ξ2∫
0

dξ p2(ξ)ψ
(+)
n (ξ2 − ξ) (30)

and

ψ
(−)
n+1(ξ1) =

ξ1∫
0

dξ p1(ξ)ψ
(−)
n (ξ1 − ξ). (31)

4. Solution of the Generalized Equation for the Process with an Arbitrary
Transition Density

The latter functions are expressed in terms of multiple convolutions of distributions
p1(ξ) and p2(ξ), so we have:

f (x, t) = f11(x, t) = (v/2)
∞

∑
n=0

p(n)1 (ξ1)p(n)2 (ξ2). (32)

The meaning of the summation index n is clear: it is the number of particle steps
after which it appears in state 1 at point x at moment t. Since the initial state is also 1, the
probability that after some (any) number of steps n the particle will be at state 1 without
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reference to x and t, is equal to 1. It is easy to verify that this normalization condition is
satisfied. Expressing ξ1 through ξ2 using relation ξ1 = vt− ξ2 yields

(v/2)
∞∫

0

dt
vt∫
−vt

dxp(n)1 (vt− ξ2)p(n)2 (ξ2) = v
∞∫

0

dt
vt∫

0

dξ2 p(n)1 (vt− ξ2)p(n)2 (ξ2)

=

∞∫
0

dξ2 p(n)2 (ξ2)

∞∫
0

dξ1 p(n)1 (ξ1) = 1.

(33)

Similarly, we get function f21(x, t), but since the right side of the corresponding
equation has the form

f (0)21 (x, t) = (v/2)p(1)1 (ξ1)p(0)2 (ξ2) (34)

the result will be

f21(x, t) = (v/2)
∞

∑
n=0

p(n+1)
1 (ξ1)p(n)2 (ξ2). (35)

We also give the expressions for the other two functions:

f12(x, t) = (v/2)
∞

∑
n=0

p(n)1 (ξ1)p(n+1)
2 (ξ2) (36)

and

f22(x, t) = (v/2)
∞

∑
n=0

p(n)1 (ξ1)p(n)2 (ξ2). (37)

However, it is clear from obvious reasons that f12 can be obtained from f21, and f22
from f11, by replacing all lower indexes (1→ 2, 2→ 1) in the right side of expressions (35)
and (32), respectively. Substituting the expressions found in the right sides of (13), (14) and
considering that

ξ1∫
0

dξP1(ξ)p(n)1 (ξ1 − ξ) =

ξ1∫
0

dξ p(n)1 (ξ1 − ξ)−
ξ1∫

0

dξF1(ξ)p(n)1 (ξ1 − ξ)

= F(n)
1 (ξ1)− F(n+1)

1 (ξ1) ≡ ∆F(n)
1 (ξ1)

(38)

and
ξ2∫

0

dξP2(ξ)p(n)2 (ξ2 − ξ) = ∆F(n)
2 (ξ2) (39)

where

F(n)
i (ξ) =

ξ∫
0

p(n)i (x)dx (40)

is a distribution function, we shall get

ρ11(x, t) = (1/2)
∞

∑
n=0

∆F(n)
1 (ξ1)p(n)2 (ξ2) (41)

ρ21(x, t) = (1/2)
∞

∑
n=0

p(n+1)
1 (ξ1)∆F(n)

2 (ξ2). (42)

As in the case of fij(x, t), expressions for densities ρ22(x, t) and ρ12(x, t) are obtained
from (41)–(42) by permutation of the lower indexes. Note that the distribution presented
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here includes δ-features, given by the term with n = 0, so the normalization condition
is valid:

vt∫
−vt

[ρ1i(x, t) + ρ2i(x, t)]dx = 1. (43)

The representation (41)–(42) of the walking problem reduces it to a calculation of
multiple convolutions p(n)1 (x) and p(n)2 (x) of path-densities. We divide the set of such
distributions into four classes: A, whose convolutions are expressed in terms of elementary
or special functions; B, whose convolutions are expressed in terms of the original one with
changed parameters; and C, whose convolutions are expressed through the initial one up
to the linear scale transform (Lévy-stable densities). Below, we consider some of them.
Taking any of these distributions allows us to get the solution in a closed form. Finally,
the last (D) class includes densities, producing solutions with self-similar (with respect to
space-time variables) long-time asymptotics.

5. Solution for the Process with Exponential and Gamma-Distributions

We begin the search for explicit solutions with the simplest term of this family

pi(ξ) = µie−µiξ , µ1 6= µ2 (44)

In this case

p(n)i (ξ) = µi
(µiξ)

n−1

(n− 1)!
e−µiξ (45)

and

∆F(n)
i (ξ) ≡ F(n)

i (ξ)− F(n+1)
i (ξ) =

(µiξ)
n

n!
e−µiξ (46)

Substituting these expressions into (41), we obtain for the regular component (n 6= 0)

ρ̃11(x, t) = (1/2)
∞

∑
n=1

(µ1ξ1)
n

n!
µ2

(µ2ξ2)
n−1

(n− 1)!
e−µ1ξ1−µ2ξ2

= (1/2)µ1µ2ξ1e−µ1ξ1−µ2ξ2
∞

∑
n=1

(µ1ξ1µ2ξ2)
n

(n + 1)!n!
(47)

The last sum is an expansion to the power series of (2/z)I1(z) function, where

z = 2
√

µ1ξ1µ2ξ2 =
√

µ1µ2[(vt)2 − x2] (48)

As a result, we have

ρ̃11(x, t) =
√

µ1µ2(vt− x)

2
√
(vt)2 − x2

exp{−(µ1 + µ2)vt/2− (µ2 − µ1)x/2}I1

(√
µ1µ2[(vt)2 − x2]

)
(49)

Similary, from (42) we find

ρ̃21(x, t) = (µ1/2) exp{−(µ1 + µ2)vt/2− (µ2 − µ1)x/2}I0

(√
µ1µ2[(vt)2 − x2]

)
(50)

The components ρ̃22(x, t) and ρ̃12(x, t) are obtained by changing indices of the coeffi-
cients µ and changing the sign before x. The total distribution

ρ̃(x, t) = [ρ̃11(x, t) + ρ̃21(x, t)]ε1 + [ρ̃12(x, t) + ρ̃22(x, t)]ε2 (51)

reads for x ∈ (−vt, vt):
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ρ̃(x, t) =

{
[(µ1ε1 + µ2ε2)/2]I0

(√
µ1µ2[(vt)2 − x2]

)
+

√
µ1µ2[vt + (ε2 − ε1)x]

2
√
(vt)2 − x2

I1

(√
µ1µ2[(vt)2 − x2]

)}
×

× exp{−(µ1 + µ2)vt/2− (µ2 − µ1)x/2}. (52)

Solutions for exponential and gamma distribution of path lengths are demonstrated
in Figure 1. All results were confirmed using Monte Carlo simulations; for example, the
result of the modeling for exponential and gamma walks are shown in Figure 2.

1

2

3

4

- 6 - 4 - 2 2 4 6
x

0.05

0.10

0.15

0.20

0.25

0.30

(a)

�� �� �� �� �� ��

��x,t� ��x,t�

Figure 1. (a) The result (52) for exponential distribution of path lengths (only regular parts). On
this figure t = 3, v = 1. For 1, we chose ε1 = ε2 = 1

2 and µ1 = µ2 = 1, for 2, ε1 = 0.99, ε2 = 0.01
µ1 = µ2 = 1, for 3, ε1 = ε2 = 1

2 , µ1 = 1, µ2 = 2 and for 4, ε1 = 0.99, ε2 = 0.01, µ1 = 1, µ2 = 2.
(b) The result for gamma distribution (only regular parts) for ν1 = ν2 = 2. The other parameters are
the same as in (a).

Equation (37) is a particular case of the gamma distribution.

pi,νi (ξ) = µi
(µiξ)

νi−1

Γ(νi)
e−µiξ (53)

The family of gamma distributions is closed under convolution [7]. Therefore, choosing

pi(ξ) = pi,νi (ξ) (54)

we immediately get

p(n)i (ξ) = µi
(µiξ)

nνi−1

Γ(nνi)
e−µiξ (55)

Using (46), we get

∆F(n)
i (ξ) =

Γ([n + 1]νi, µiξ)

Γ([n + 1]νi)
− Γ(nνi, µiξ)

Γ(nνi)
(56)

where Γ(β, x) is the upper incomplete gamma function. Thus, for regular components of
densities ρ11 and ρ21, we get

ρ̃11 =
µ2e−µ2ξ2

2

+∞

∑
n=1

(µ2ξ2)
nν2−1

Γ(nν2)

(
Γ([n + 1]ν1, µ1ξ1)

Γ([n + 1]ν1)
− Γ(nν1, µ1ξ1)

Γ(nν1)

)
(57)

and

ρ̃21 =
µ1e−µ1ξ1

2

+∞

∑
n=0

(µ1ξ1)
(n+1)ν1−1

Γ([n + 1]ν1)

(
Γ([n + 1]ν2, µ2ξ2)

Γ([n + 1]ν2)
− Γ(nν2, µ2ξ2)

Γ(nν2)

)
(58)
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for integer νi, this sum can be expressed through integrals of generalized hypergeometric
functions. For ν1 = ν2 = 2, these expressions become especially simple

ρ̃11(x, t) = (µ2/4)
√

µ1ξ1µ2ξ2

[
I1

(
2
√

µ1ξ1µ2ξ2

)
− J1

(
2
√

µ1ξ1µ2ξ2

)]
exp(−µ1ξ1 − µ2ξ2) (59)

ρ̃21(x, t) = (µ1/4)
√

µ1ξ1/(µ2ξ2)
[

I1

(
2
√

µ1ξ1µ2ξ2

)
+ J1

(
2
√

µ1ξ1µ2ξ2

)]
exp(−µ1ξ1 − µ2ξ2). (60)

ρ(x,t)

x

(a)
x

(x,t)

(b)

Figure 2. Monte Carlo results versus exact solution (only regular part). On this figure t = 3, v = 1.
(a) Result for exponential distribution with, ε1 = 0.99, ε2 = 0.01, µ1 = 1, µ2 = 2. (b) Result for
gamma distribution with ν1 = ν2 = 2, µ1 = µ2 = 1 and ε1 = ε2 = 1/2

6. Solutions for the Process with Some Other Transition Densities

There are some more distributions in which multiple convolutions can be expressed
in elementary form, but sums (41) and (42) can not be expressed in closed form (as (57) and
(58) with arbitrary νi). One example is the Bessel density

p(n)i (ξ) = νix−1e−ξ Iνi (ξ)

p(n)i (ξ) = nνix−1e−ξ Inνi (ξ)
(61)

Using (46), we get

∆F(n)
i (ξ) = 2−(n+1)νi ξnνi [2νi Γ(2nνi + 1)F2;2(nνi, nνi +

1
2

; nνi + 1, 2nνi + 1;−2ξ)−

− ξνi

Γ(νi[n + 1] + 1)
F2;2(νi[n + 1], νi[n + 1] +

1
2

; [n + 1]νi + 1, 2[n + 1]νi + 1;−2ξ)]
(62)

where Fp;q(a1, .., ap; b1, .., bq, x) is a generalized hypergeometric function [8]. The sums (41)
and (42) can be calculated numerically, and the result are shown in Figure 3.

ν=0.5

ν=2

ν=3

ν=4

ν=6

- 3 - 2 - 1 1 2 3
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�� �� ��

��x t�

(a)

ν=0.5

ν=1

ν=1.5

ν=2

ν=3

- 3 - 2 - 1 1 2 3
x

0.05
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0.15

0.20

0.25

�� �� ��

��x t�

(b)

Figure 3. (a) The result of numerical computations using (41) and (42) for gamma distribution (a)
and Bessel distribution (b) for different parameters. On this picture, v = 1 and t = 3. The outer
columns indicate the fraction of unscattered particles
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Another distribution is uniform distribution [7]

pi(ξ) =
1
ai

, 0 ≤ ξ ≤ ai

p(n)i (ξ) =
1

(n− 1)!an
i

n

∑
k=0

(−1)kCk
n(ξ − kai)

n−1θ(kai − ξ), 0 ≤ ξ ≤ nai

(63)

where θ(x) is a Heaviside function. For this distribution, we have

F(n)
i (ξ) =

1
n!an

i

n

∑
k=0

(−1)kCk
n[(ξ − kai)

nθ(kai − x)− (−1)n(kai)
n] (64)

and ∆F(n)
i (ξ) = F(n)

i (ξ)− F(n+1)
i (ξ)

A wide class of distributions whose convolutions lie in the same class are one-sided
stable densities with 0 < α < 1, concentrated on the positive semiaxis [9]

pi(ξ) = g(αi)(ξ)

p(n)i (ξ) = n−1/αi g(αi)(n−1/αi ξ)
(65)

Using a cumulative distribution function of stable densities G(α)(x), we can get

∆F(n)
i (ξ) = G(αi)(n−1/αi ξ)− G(αi)([n + 1]−1/αi ξ) (66)

For a special case α = 1/2 we have

p(n)(ξ) =
n

2
√

π
ξ−3/2e−

n2
4ξ

∆F(n)(ξ) = erf
(

n + 1
2
√

ξ

)
− erf

(
n

2
√

ξ

) (67)

Some distributions with different α are shown in Figure 4a. As in the previous section,
all results were proved by means of the Monte Carlo simulations. One example is shown
in Figure 4b.

α=0.1

α=0.3

α=0.5

α=0.7

α=0.9

- 3 - 2 - 1 1 2 3
x

0.05

0.10

0.15

0.20

0.25

��x t�

�� �� ��

(a)

��x,t�

�� �� ��

(b)

Figure 4. (a) The result of numerical computations using (41) and (42) for a one-sided stable distribu-
tion for different parameters α and a comparison with Monte Carlo simulations for α = 0.7 (b) for
different parameters. In this figure, v = 1 and t = 3.

7. Integral Transforms and Asymptotic Results

In the case of an arbitrary density p(z) with a finite second moment, the asymptotic
part of the solution satisfies the telegraph equation. In References [10–12], the authors
investigated one-dimensional random walks with the asymptotically power-law distribu-
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tion p(ξ) ∝ ξ−α−1, 0 < α < 2. Such a random process is sometimes called a fractal walk.
Recently, Lévy flights with a bi-modal distribution of jumps were studied in Reference [13]
and the interesting effect of loss of self-similarity was predicted for certain parameters.

We rewrite Equations (13)–(17) as the following system,

p(x, t) =
∫ t

0
[γ1 f (x− vτ, t− τ) + γ2 f (x + vτ, t− τ)]P(vτ)dτ. (68)

f (x, t) =
∫ t

0
[γ1 f (x− vτ, t− τ) + γ2 f (x + vτ, t− τ)]p(vτ)dτ + δ(x)δ(t). (69)

After the Fourier–Laplace transformation, the solution can be represented as the
following transform,

p̃(k, λ) =
λ/v− ikβ− γ1(λ/v− ik) p̃(λ/v + ik)− γ2(λ/v + ik) p̃(λ/v− ik)

v[k2 + (λ/v)2][1− γ2 p̃(λ/v− ik)− γ1 p̃(λ/v + ik)]
. (70)

Consider two cases of fractal walk. Let an asymptotic expansion (λ→ 0, i.e., t→ ∞)
of the Laplace transform p̃ be of the form,

p̃(λ) = 1− cλα, c = (A/α)Γ(1− α), 0 < α < 1. (71)

This case corresponds to the heavy-tailed distribution, p(z) ∼ αz0
αz−α−1, 0 < α < 1,

and all moments of natural order diverge.
Substituting Equation (71) into expression (70), we obtain for the first case

p̃(k, λ) =
γ2(λ/v− ik)α−1 + γ1(λ/v + ik)α−1

v[γ2(λ/v− ik)α + γ1(λ/v + ik)α]
, 0 < α < 1. (72)

In Reference [12], we inverted this transform in the symmetric case and expressed
the result through elementary functions for all values of α of the indicated interval. In the
asymmetric case, we have

p(x, t) =
2 sin πα

πvt
γ1γ2

(
1− x2/v2t2)α−1

γ2
1(1− x/vt)2α + γ2

2(1 + x/vt)2α + 2γ1γ2(1− x2/v2t2)
α cos πα

, 0 < α < 1. (73)

Here, C = γ1/γ2. Plots of these distributions for several values of α are presented in
Figure 5. The pdf of such type was obtained by Lamperti in frames of the mathematical
theory of occupation times [14] and used in statistical physics of weakly non-ergodic
systems [15]. Evolution of pdf for instantaneous point source and its tendency to the
asymptotic Lamperti distribution (α = 0.75) is demonstrated in Figure 6. Path lengths are
distributed according to the Pareto distribution with the same α.

Rewriting relation (72) in the form

v[γ2(λ/v− ik)α + γ1(λ/v + ik)α] p̃(k, λ) = γ2(λ/v− ik)α−1 + γ1(λ/v + ik)α−1 (74)

and performing the inverse Fourier–Laplace transformation, we arrive at the equation with
material derivatives of fractional order[

γ2

(
∂

∂t
+ v

∂

∂x

)α

+ γ1

(
∂

∂t
− v

∂

∂x

)α]
G(x, t) =

t−α

Γ(1− α)
[γ2δ(x + vt) + γ1δ(x− vt)]. (75)
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x x

p(x,t) p(x,t)

� �

��
��

��
��

��
��

��
��

Figure 5. Distribution densities for α = 0.7 and 0.5. Points are the result of a Monte Carlo simulation.

The multiplier (λ± ivk)α in the formulas derived above presents the Fourier–Laplace
transform of the fractional material derivative [11]:

(λ∓ ivk)α f̃ (k, λ) =

∞∫
0

dt
∞∫
−∞

dxe−λt+ikx
(

∂

∂t
± v

∂

∂x

)α

f (x, t),

that can be verified by rewriting the operator in the Riemann–Liouville form:

(
∂

∂t
± v

∂

∂x

)α

f (x, t) =
1

Γ(1− α)

(
∂

∂t
± v

∂

∂x

) t∫
0

f (x− v(t− τ), τ)(t− τ)−αdτ, 0 < α < 1,

and applying the Fourier–Laplace transformation.

Figure 6. Evolution of the reduced solution (−vt < x < vt) for instantaneous point source and its
tendency to the asymptotic Lamperti distribution (α = 0.75).

The second case is characterized by a finite first moment (1 < α < 2),

p̃(λ) = 1−m1λ + c1λα, c1 =
(A/α)Γ(2− α)

α− 1
, 1 < α < 2. (76)
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For asymptotic solution, we can put λ→ 0, k→ 0, |λ/vk| → 0. Thus, the transform
takes the following form:

p̃(k, λ) =
1

λ + iβkv− (cv/m)[γ1(ik)α + γ2(−ik)α]
. (77)

The inverse Laplace transformation leads to the characteristic function

p̃(k, t) = exp
(

iβkvt− cvt
m

[
γ1(ik)α + γ2(−ik)α

])
,

related to the characteristic function of the Lévy stable density g(x; α, β),

g̃(k; α) = exp
(
−|k|α[1− iβ tan(πα/2) sign(k)]

)
,

by the following expression

p̃(k, t) = exp(iβkvt) g̃((Kt)1/αk; α; β).

The passage to the original leads to the solution:

p(x, t) = (Kt)−1/αg
(
(x− βvt)(Kt)−1/α; α, β

)
, (78)

where

K =
cv
m

sin
π(α− 1)

2
We rewrite expression (77) in the form

λ p̃(k, λ) = −iβkvp̃(k, λ) +
cv
m
[γ1(ik)α + γ2(−ik)α] p̃(k, λ) + 1.

The inverse Fourier–Laplace transformation of the latter expression corresponds to
the superdiffusion equation with a fractional operator.

8. One-Sided Fractal Walks with Traps

In some applications, the models of a random walk with localization events can be
useful. Particularly, traps characterized by random waiting times play a major role in the
kinetics of dispersive transport of charge carriers in disordered semiconductors [16]. Let us
call the localized state off-state, and the state of motion is on-state.

Let p(x, t) be the distribution density of total residence time in on-state. For the double
Laplace transform of the density p(x, t),

ˆ̃p(k, s) =
∫ ∞

0
dτ
∫ ∞

0
dtp(τ, t)e−τk−st. (79)

the following expression is derived [17]:

ˆ̃p(k, s) =
v−1ψ̂(s)P̂

(
k + s

v
)
+ Ψ̂(s)

1− p̂
(
k + s

v
)
ψ̂(s)

. (80)

Here, v denotes some proportional coefficient responsible for time compression in
on-state, v = 1 if time measures in on- and off- states coincide. Under the assumption of
power-law distributions of waiting times in off- and on-states,

ψ̂(s) ∼ 1− τβsβ, Ψ̂(s) =
1− ψ̂(s)

s
∼ τβsβ−1, (81)

p̂(k) ∼ 1− lαkα, P̂(k) =
1− p̂(k)

k
∼ lαkα−1. (82)
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After substituting the latter expressions into the transform of the asymptotic solu-
tion (80), we obtain:

ˆ̃p(k, s) ∼
v−1(1− τβsβ

)
lα
(
k + s

v
)α−1

+ τβsβ−1

τβsβ + lα
(
k + s

v
)α .

Introducing K = lα/(vατβ) and rewriting the latter expression in the form:[
sβ + K(vk + s)α

]
ˆ̃p(k, s) = sβ−1 + K(vk + s)α−1.

Inverting it, we arrive at the following equation:

0Dβ
t p(x, t) + K

(
∂

∂t
+ v

∂

∂x

)α

p(x, t) =
t−β

Γ(1− β)
δ(x) + K

(t− x/v)−α

Γ(1− α)
δ(vt− x)

containing the fractional Riemann–Liouville derivative of order β with respect to time and
the material derivative of fractional order α. We find the solution by inverting the transform:

ˆ̃p(k, s) ∼ sβ−1 + K(vk + s)α−1

sβ + K(vk + s)α

using the known expressions for fractional stable densities [18].
As a result, we have the following asymptotic solution for one-sided Levy walks:

w(α,β)(τ, t) =
(

1 +
β

α

τ

t− τ

)[
K(t− τ)β

]−1/α
q(α,β)

(
τ
[
K(t− τ)β

]−1/α
)

, (83)

where τ = x/v.
The comparison of these pdfs for different values of 0 < α = β < 1 and K with the

results of the Monte Carlo simulation is shown in Figure 7. Formula (83) perfectly describes
the asymptotic distribution densities of a one-sided Lévy walk with trapping. For the
simulation of waiting times and path lengths, we use densities in the form of “fractional
exponentials” (see, e.g., [16]),

ψ̂(s) =
1

1 + τβsβ
, p̂(k) ∼ 1

1 + lαkα
, µβ = τ−β, µα = l−α

for which expressions for the Monte Carlo simulation are known [16]:

T = τ|lnU|1/βSβ, X = l|lnU|1/αSα.

Here, Sα and Sβ are one-sided stable random variables of order α ∈ (0, 1] and β ∈ (0, 1].
If α = β, the fractional stable density is expressed through the elementary function:

q(α,α)(x) =
sin πα

πx(xα + x−α + 2 cos πα)
,

and the solution takes the form of the Lamperti function:

w(α,α)(τ, t) =
sin πα

π

vt τα−1(t− τ)α−1

K(t− τ)2α + K−1τ2α + 2(t− τ)ατα cos πα
.
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Figure 7. Comparison of solution (83) with the Monte Carlo simulation results. There are no
fit parameters.

9. Generalized Cases

In this section, we shortly discuss some generalized cases of one-dimensional random
walks, where the obtained solutions can be applied.

9.1. Two-Sided Lévy Walks with Traps

The asymptotic (t→ ∞) solution for the pdf of a walking particle coordinate can be
written in terms of an integral with the subordinating function

p(x, t) =
∫ t

0
p1(x, τ) w(τ, t) dτ. (84)

Here, p1(x, τ) is the solution for a random walk without traps, and w(τ, t) is the distri-
bution density for operational time. For the case of Lévy walks, expressions for p1(x, τ) are
given in and Sections 8 and 9. For w(τ, t), we can use the asymptotic expression (83) with
τ instead of x/v, when the distribution of waiting times and motion times are distributed
according to (81) and (82). The comparison of a numerically computed integral (84) with re-
sults of the Monte Carlo simulation for the case α = 0.6, β = 0.7 and asymmetry parameter
θ = 0.5 is shown in Figure 8. The agreement is satisfactory.

9.2. Asymmetric Fractal Random Walks

We consider the problem of a random walk of a particle along the x axis with a
constant speed v and pdf’s of free path lengths p−(x) and p+(x) of motion in negative
and positive directions, respectively. After each scattering event, the walker continues its
motion with probabilities ε− and ε+ in negative and positive directions, respectively. The
probability density function ψ(x, t) of the walker coordinate at time t is given by

ψ(x, t) =
t∫

0

[ε−ψ(x + vτ, t− τ)p−(vτ) + ε+ψ(x− vτ, t− τ)p+(vτ)]dτ

+ ε−P−(vt)δ(x + vt) + ε+P+(vt)δ(x− vt), (85)
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where

P±(x) =
+∞∫
x

p±(ξ)dξ, (86)

and
p±(x) ∝ x−1−α± , x → +∞, 0 < α± < 1. (87)

Introducing a new variable η = x+vt
2v , we can rewrite Equation (85) in the form

ψ(η, t) = ε−

t∫
0

ψ(η, t− z)p−(z)dz + ε+

η∫
0

ψ(η − z, t− z)p+(z)dz

+
ε−
2v

P−(t)δ(η) +
ε+
2v

P+(t)δ(t− η) (88)

Applying a Laplace transformation on t, we arrive at

ψ(η, s) = ε+

η∫
0

ψ(η − z, s)e−zs p+(z)dz + ε−ψ(η, s)p−(s) +
ε−
2v

P−(s)δ(η) +
ε+
2v

P+(η)e−ηs (89)

After the Laplace transformation on η, we have

ψ(λ, s) = ε+ψ(λ, s)p+(λ + s) + ε−ψ(λ, s)p−(s) +
ε−
2v

P−(s) +
ε+
2v

P+(λ + s). (90)

The latter equation gives

ψ̂(λ, s) =
1

2v
ε−P−(s) + ε+P+(s + λ)

1− ε−p−(s)− ε+p+(s + λ)
(91)

10
�4

10
�3

�1 �0.5 0 0.5 1

P
D
F

x/vt

Figure 8. Distribution of particle coordinate x/vt for Lévy walks (α = 0.6) with traps (β = 0.7).

10. Conclusions

One-dimensional non-Markovian random walk models with a finite velocity between
scattering events have been considered. The exact solution is expressed in terms of multiple
convolutions of path-distributions assumed to be different for positive and negative direc-
tions of the walk axis. Several particular cases have been considered when the convolutions
can be expressed in explicit form. A solution of the fractional telegraph equation has been
investigated, and asymptotic behavior of its solution has been provided.
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The results obtained belong to the new direction of the kinetics called the non-local
transport theory [19–22]. This theory reveals the high efficiency in problems related to
transport in porous materials [23,24], turbulent systems [22], blinking fluorescence of single
colloidal nanocrystals [17,25,26], cold atoms in optical lattices [27], protein random walk
along DNA [28], solar cosmic ray transport [29–31].
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