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Abstract: As reservoirs subject to sedimentation, the dam gradually loses its ability to store water.
The identification of the sources of deposited sediments is an effective and efficient means of tackling
sedimentation problems. A state-of-the-art Lagrangian stochastic particle tracking model with
backward–forward tracking methods is applied to identify the probable source regions of deposited
sediments. An influence function is introduced into the models to represent the influence of a
particular upstream area on the sediment deposition area. One can then verify if a specific area
might be a probable source by cross-checking the values of influence functions calculated backward
and forward, respectively. In these models, the probable sources of the deposited sediments are
considered to be in a grid instead of at a point for derivation of the values of influence functions.
The sediment concentrations in upstream regions must be known a priori to determine the influence
functions. In addition, the accuracy of the different types of diffusivity at the water surface is
discussed in the study. According to the results of the case study of source identification, the regions
with higher sediment concentrations computed by only backward simulations do not necessarily
imply a higher likelihood of sources. It is also shown that from the ensemble results when the
ensemble mean of the concentration is higher, the ensemble standard deviation of the concentration
is also increased.

Keywords: sediment particle movement; stochastic model; particle tracking model; probable source;
diffusivity; concentration distribution

1. Introduction

Sediment that is trapped behind dams reduces reservoir capacity. In some high-
profile cases reservoirs have been found to be filled with sediment, not only worsening
their functions and/or rendering a weakened dam infrastructure, but also posing a safety
hazard [1–4]. Despite more than six decades of research, sedimentation remains probably
the most serious technical problem faced by the dam industry, and sedimentation in
reservoirs is now of primary global importance [5]. To study reservoir sedimentation,
adequate knowledge of the sediment transport process in rivers is needed [6].

According to the Taiwan Water Resources Agency [7], most riverbeds and banks in
Taiwan are prone to erosion, resulting in high sediment concentrations in most rivers. When
sediment particles in a river are transported to a reservoir, the flow velocity is reduced
and thus a larger volume of sediment particles is deposited at the bottom of the reservoir,
which is a process referred to as reservoir sedimentation. The Shihmen reservoir, located in
Taoyuan, is one of the main reservoirs in northern Taiwan. It provides domestic as well
as agricultural water supply and hydroelectricity for more than three million people in
northern Taiwan. In addition, the Shihmen reservoir also plays the role as a detention
basin for the Taipei Basin. It has an effective storage capacity of nearly 309 million cubic
meters, of which the sediment has occupied 31.6% since 2009 [7]. Sedimentation is one
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of the most important engineering problems that threaten reservoirs around the world.
Traditionally, dredging and sluicing are passive methods, which cannot completely resolve
the sedimentation problem since the sediment particles are deposited continuously during
the removal process [8]. To manage reservoirs in a more sustainable way, identifying the
source of the sediment particles is one step toward dealing with the problem [4].

Sediment-related issues can be prevented in advance when the probable sources of
these deposited sediments are identified and prevented from flowing into the reservoirs.
The turbulent characteristics of open channel flows are important in understanding particle
transport phenomena, which consist of highly disordered and chaotic fluid motions over a
wide range of length scales and frequencies [9–17]. This study examines the probable source
regions of deposited sediments using a Backward–Forward Stochastic Diffusion Particle
Tracking Model (Backward–Forward SD-PTM), a method of Lagrangian dynamics [18].
Not only the particle concentrations but also the particle trajectories can be simulated.

The stochastic diffusion particle tracking model (SD-PTM) is intrinsically irreversible
owing to its stochastic nature. Some investigations have implied that the results of back-
ward tracking can provide valuable clues about the probable sources of deposited sedi-
ments [19]. The probable sources are determined not only by the backward tracking process
but also by the forward tracking process. Therefore, although most partial differential
equations cannot be solved reversibly such as by finding the initial conditions from the
results, the places of probable sources (herein considered as initial conditions) can still be
identified, thus providing valuable information for solving sedimentation problems [19].

In the SD-PTM, a Brownian motion term describes the randomness of particle motion.
The probability distribution of particle positions or particle concentrations can thus be
computed by performing sufficient simulation runs of a single particle, or by a single simu-
lation run with many independent particles. Notably, the distribution of the concentrations
may vary among simulations. Consequently, an attempt is made herein to simulate such
distribution multiple times to acquire a more accurate concentration distribution.

The objectives of this study are threefold. First, we aim to identify the probable source
of deposited particles using the backward SD-PTM, and the forward SD-PTM, respectively.
Next, we intend to develop a complete backward–forward particle tracking model. We
then aim at enhancing the accuracy issue of estimating diffusivity coefficients when a
particle has reached the water surface. Lastly, we improve the accuracy of the concentration
distribution of sediment particles by computing the ensemble statistics of concentration
distributions.

In Section 2, literature about the SD-PTM, backward–forward SD-PTM will be re-
viewed. In Section 3, some case studies applying backward SD-PTM or forward SD-PTM
will be discussed. The influence function, a quantitative link between each source-receptor
pair, is introduced in Section 4. Then, the model established in Section 4 will be applied in
Section 5 to illustrate how to identify probable sources with the explicit and the implicit
methods, respectively. In Section 6, more scenarios of the spatial sediment concentration
distributions are concerned in a case study applying the backward–forward SD-PTM to
identify probable sources. In Section 7, some conclusions and recommendations will be
provided.

2. Methodologies
2.1. Stochastic Particle Tracking Model

Recently, in the field of sediment transport, particle-based approaches for estimating
mass concentrations or concentrations of soil particles in a tidal estuary have been devel-
oped [20–24]. Man and Tsai [25] later presented an SD-PTM to simulate the trajectories of
sediment particles in open channel flows. An SDE is a differential equation that includes at
least one stochastic process term. For example, the stochastic process term can be presented
as a derivative of Brownian motion or a Wiener process as follows:

dXt = f(Xt, t)dt + g(Xt, t)dW (1)
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In Equation (1), dXt, f(Xt, t), g(Xt, t), dW represent a stochastic process, deterministic
drift term, the size of the fluctuation of the stochastic term and a standard Wiener process,
respectively. Note that boldface type symbols denote vector or matrix quantities in this
paper. According to Man et al. [25], f(Xt, t) = u(Xt, t) = U +∇D. Moreover, the size of the
uncertain movement of sediment particles caused by turbulence is assumed to be propor-
tional to the diffusion coefficient σ. g(Xt, t) = σ(Xt, t) can then be obtained. Numerically,
dW can be simulated as a normally distributed random variable N

(
0,
√

dt
)

with mean
zero and variance dt, where dt is the time step for numerical simulation. Therefore, the
governing equation in the numerical form of the SD-PTM can be written as follows:

Xn+1 = Xn + u(Xn, t)dt + σ(Xn, t)N
(

0,
√

dt
)

(2)

The SD-PTM, composed of both a mean drift term and a random term, is capable of cap-
turing any randomly selected scenarios of particle movement. Equation (2) can be coupled
with a re-suspension process to simulate the movement of suspended sediment particles.

Oh and Tsai [26] added a jump term to the SD-PTM to simulate perturbation by
randomly occurring extreme events including sediment deposition and re-suspension.
Subsequently, Tsai et al. [27] introduced several particle tracking models to describe particle
movement under various flow conditions, i.e., the stochastic diffusion process, stochastic
jump process, and stochastic jump-diffusion process. Tsai et al. [24] concentrated on the
jump term in the stochastic particle tracking model by studying the influence on sediment
movement of the frequency and change in the magnitude of extreme events.

Oh et al. [28] suggested using the spatial distribution of particles to estimate sediment
concentration and found that a high concentration is associated with a high ensemble
standard deviation. Tsai et al. [29] coupled the random arrival process of particles with
the SD-PTM to simulate the trajectories of sediment particles. Oh et al. [30] examined the
longitudinal distance between pairs of sediment particles using the SD-PTM model. They
found that a smaller particle and a higher release point leads to a longer average travel
distance to the particle deposition point.

2.2. Backward–Forward Stochastic Particle Tracking Model

The usage of backward simulations is to reduce the CPU time required to run a Monte
Carlo simulation for estimating particle concentrations. Spivakovskaya et al. [31] applied a
forward–reverse particle tracking system that the Monte Carlo estimator for the particle
concentration can also be based on. The results show that the CPU time is reduced by at
least an order of magnitude compared with the classical Monte Carlo method.

Lin et al. [32]. introduced the Stochastic Time-Inverted Lagrangian Transport (STILT)
model of atmospheric transport, which can be used to map the upstream influence (the
probable source region) of the particle deposition point (the receptor). Lin et al. [32] were
concerned with preventing inconsistencies in the backward and forward simulations of the
time evolution of a particle ensemble using the STILT model. That is to say, they removed
apparently irreversible particle trajectories, as can be done with the help of the “influence
function,” which was first proposed by Uliasz and Pielke [33]. The influence function
is a quantitative indicator of a source’s influence on a receptor at which a tracer particle
is observed:

I(xr, tr|x, t) =
1

Ntot

Ntot

∑
i=1

δ(xi(p)− x) (3)

The influence function I(xr, tr|x, t) denotes the influence of an upstream source at x at
time t on a downstream receptor at xr at time tr. The delta function δ(xi(p)− x) represents
whether the particle appears in the source. Ntot is the total number of particles that are
released at a source.

Seibert and Frank [34] also applied the linear source-receptor relationship in the
backward Lagrangian particle dispersion model (LPDM) for atmospheric particles. They
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found that the LPDM, combined with backward simulations, is an effective tool for mak-
ing point measurements, which can be handled without artificial numerical diffusion.
Subsequently, Batchelder [18] employed Forward-in-Time-Trajectory/Backward-in-Time-
Trajectory (FITT/BITT) modeling to identify sources of ocean organisms, such as plankton.
Their research showed that the BITT approach combined with the FITT approach is more
efficient in locating sources of particles than the simulations using only the FITT approach.
Isobe et al. [19] later developed a method that involved backward- and forward-random
walk processes for identifying the sources of particles that drift on an ocean surface. They
argued that although the random walk process is irreversible, it provides valuable informa-
tion when the duration of the simulation is relatively short. They found some potential
probable source regions by backward-in-time simulations. The authors presented a case
study of East China Sea, and statistically significant sources are well specified close to the
true source since 58% to 90% of source candidates are rejected experimentally.

Most current research on backward particle tracking models is in the field of atmo-
spheric science or ocean science. However, few investigations of backward sediment
transport in an open channel can be found. Hence, the behaviors of sediments in stochastic
backward particle tracking processes are of interest. In this study, some backward tracking
approaches that involve the SD-PTM are used to provide some hints to the identities of
probable sources of sedimentation.

3. Case Studies of Backward or Forward SD-PTM

In this section, the flow conditions and particle parameters are adopted from the
experimental data by Kaftori et al. [35], which studied the behavior of particles in the
wall region of a turbulent boundary layer. The SD-PTM is applied to simulate sediment
transport in open channel flow. A vast number of random scenarios of particle trajectories
are modeled using SD-PTM. Then, by performing Monte Carlo simulations, the ensemble
means and ensemble variances of particle positions can be analyzed.

3.1. Model Setup

The simulation is conducted on two dimensions, which are the stream-wise direction
(x) and the gravitational direction (z). In the stream-wise direction, the drift term dominates
the particle velocity. Therefore, the diffusivity and turbulence terms can be ignored. In the
stream-wise direction, the drift flow velocity is assumed to follow the logarithm profile,
consistent with Equation (4).

u
u∗

=
1
κ

ln
(

30z
ks

)
(4)

The mean drift flow velocity in the x-direction is a function of z. u∗ is the shear velocity
and ks is the roughness height. When the above assumptions are taken into consideration,
the numerical governing Equation (2) for forward tracking in the x-direction can be written
as follows.

Xn+1 = Xn +
u∗
κ

ln
(

30Zn

ks

)
dt (5)

The numerical governing Equation (2) for forward tracking in the z-direction can be
written as follows. The turbulence diffusivity in the z-direction Dz is a function of position
zn, and ws is the settling velocity.

Zn+1 = Zn +

(
Wn − ws +

∂Dz(Zn)

∂z

)
dt +

√
2Dz(Zn)N

(
0,
√

dt
)

(6)

When a particle is transported to the bed, re-suspension may occur by the mechanisms
that were proposed by Wu and Lin [36], who suggested that a log-normal distribution
of instantaneous velocities ub outperforms a normal distribution of ub in approaching
particles on the bed when considering the pickup probability threshold. According to Wu
et al. [36], the threshold B is shown below.
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lnB = ln
(√

4Di(ρs − ρ)g/(3ρCL)

)
(7)

In Equation (7), Di, ρs, ρ, g, CL represent particle diameter, particle density, water
density, gravity acceleration, and lift coefficient respectively.

3.2. Model Parameters

In this study, the formula proposed by Rouse [37] or by Absi et al. [38] is adopted in
calculating turbulence diffusivity. Rouse [37] proposed the following vertical kinematic
viscosity of a fluid:

Dz = κu∗Z
(

1− Z
H

)
(8)

Dz, u∗, Z, H represent turbulence diffusivity in the z-direction, the shear velocity, the
z-coordinate of particle position, and the flow depth respectively.

If Rouse’s diffusivity is adopted, then the numerical governing equation in the z-
direction for forward tracking can be written as follows:

Zn+1 = Zn +

(
Wn − ws + κu∗ − 2κu∗

Zn

H

)
dt +

√
2κu∗Zn

(
1− Zn

H

)
N
(

0,
√

dt
)

(9)

Absi et al. [38] proposed the following formula for the diffusivity of suspended particles.

Dz =

(
1

1 + St(Z)
+ St(Z)

vy ′2

uy ′2

)
νt(Z) (10)

where St(Z) is particle Stokes number, νt is eddy viscosity, and k(Z) is turbulent kinetic
energy. Turbulence intensities in the fluid phase and the solid phase are denoted as uy ′2

and vy ′2, respectively. The ratio of uy ′2 to vy ′2 is assumed to be 1− ρ f /ρp. The formulas
for St(Z), νt(Z) and k(Z) are listed below.

St =
ws(

1− ρ f
ρs

)
g

k
α0νt

(11)

k = u∗2 1
Cµ

2 exp

[
−

Zu∗
ν − ak

+

Ak
+

]
(12)

νt = Zu∗exp

[
−

Zu∗
ν + aν

+

Aν
+

]
(13)

where Cµ = 0.09, α0 = 1/Cµ, and ak
+, Ak

+, aν
+ and Aν

+ are friction-Reynolds-number-
dependent parameters.

3.3. Case Studies of Backward Tracking with Rouse’s Diffusivity Coefficients

In this section, the diffusivity formula adopted is Rouse’s diffusivity formula. Thus,
the governing equations in the x- and z-directions are derived from Equations (5) and (9)
respectively. The particle parameters, initial conditions, channel settings, and simulation
parameters are presented in Table 1.
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Table 1. Particles, initial conditions, flow conditions, and simulation parameters for backward and forward tracking tests.

Parameter Unit
Value

Backward Tracking Test Forward Tracking Test

Diameter (Di) m 275× 10−6 275× 10−6

Density (ρs) kg/m3 1050 1050
Lift coefficient (CL) 0.21 0.21
Shear velocity (u∗) m/s 0.0086 0.0086
Settling velocity (ws) m/s 0.0025 0.0025
Reference height (zb) m 275× 10−6 275× 10−6

Roughness height (ks) m 275× 10−6 275× 10−6

Initial position (x0) m 0 −1.5
Initial position (z0) m 275× 10−6 0.0284
Flow depth (H) m 0.0284 0.0284
Mean drift flow velocity (w ) m/s 0 0
Time step (dt) s 0.01 0.01
Simulation Time (T) s 10 10
Number of simulations (n) 10,000 10,000

3.3.1. Explicit Method

Based on SD-PTM and the assumption that the timescale is small enough to enable
the limit of the difference quotient of the governing equation to be properly estimated, the
backward SD-PTM is developed by converting the operators of the numerical Lagrangian
equations. This approach can be thought of as applying a negative velocity to a particle
to obtain its previous location. In the explicit method, replacing the Zn on the right-hand
sides of SDEs, Equations (5) and (9), with Zn+1 and vice versa on the left-hand side, yields
the following equations:

Xn = Xn+1 −
u∗
κ

κ ln
(

30Zn+1

ks

)
dt (14)

Zn = Zn+1 −
(

Wn −ws + κu∗ − 2κu∗
Zn+1

H

)
∆t−

√
2
(

κu∗Zn+1

(
1− Zn+1

H

))
N
(

0,
√

dt
)

(15)

3.3.2. Implicit Method

The numerical Equations (5) and (9) can be rewritten as follows:

Xn = Xn+1 −
u∗
κ

κ ln
(

30Zn

ks

)
dt (16)

Zn = Zn+1 −
(

Wn −ws + κu∗ − 2κu∗
Zn

H

)
dt−

√
2κu∗Zn

(
1− Zn

H

)
N
(

0,
√

dt
)

(17)

During the backward tracking process, each Zn is derived from a known Zn+1. Ac-
cordingly, Zn can be regarded as an unknown variable while Zn+1 is known. Thus, the
numerical expression is implicit because the unknown Zn cannot be directly calculated.

If A =
[
Zn+1 −

(
Wn − ws + κu∗

)
dt
]
/N
(

0,
√

dt
)

, B =
(

2κu∗
H dt− 1

)
/N
(

0,
√

dt
)

,
C = 2κu∗ and D = 2κu∗/H, by squaring both sizes of Equation (17), yields a quadratic
equation in Zn: (

B2 + D
)

Zn
2 + (2AB− C)Zn + A2 = 0 (18)

Then Zn can be represented as follows.

Zn = (C− 2AB)±
√

C2 − 4ABC− 4A2D/2
(

B2 + D
)

(19)
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Notably, the backward tracking process remains a stochastic process because the
N
(

0,
√

dt
)

term is included in parameters A and B. By the Taylor expansion of Equation (19),
Zn is given by the following formula:

Zn =
Zn+1 −

[
f(Zn+1, tn+1) + Zn+1f′(Zn+1, tn+1)

]
∆t

1− f′(Zn+1, tn+1)∆t
(20)

f(Zn, tn) in Equation (20) is defined in Equation (21) as follow:

f(Zn, tn) =

(
Wn −ws +

∂Dz(Zn)

∂z

)
dt +

√
2Dz(Zn)dBt (21)

Therefore, implicit numerical governing equations are derived as Equations (16) and (20).

3.4. Case Studies of Backward Tracking with Absi et al.’s Diffusivity Coefficients

The previous version of the model with diffusivity coefficients that were estimated
using Rouse’s formula had a fundamental problem: it provided limited information about
the particle position in the z-direction when a particle had reached the water surface. When
z = h, the diffusion coefficient and the turbulence term would be zero (Equation (9)).
Hence, particles remained at the surface once they had reached it in a natural system.
Therefore, the accuracy of diffusivity coefficients is improved in this section by adopting
the diffusivity proposed by Absi et al. [38]. In both explicit and implicit methods, the
numerical governing equations are very similar to those in Section 3.3. The non-zero value
of the diffusivity of Absi et al. [38] provides a means of tracking particles in the z-direction
after they have reached the surface. Furthermore, since the formula of Absi et al. [38]
considers the lag between fluid particles and sediment particles, diffusivity coefficients in
this version may be more appropriate than the previous version using Rouse’s formula.

3.5. Comparison among Backward and Forward Tracking Cases

Additional to backward tracking, forward tracking is also exerted in Section 3.
Figures 1–7 present the results of simulations that involved scenarios, ensemble means of
trajectories, probable source locations, and the distributions of probable source locations in
both stream-wise and vertical directions. In those figures, a and b show backward tracking
tests with the Rouse diffusivity, performed using the explicit and implicit method respec-
tively; c and d represent backward tracking tests with the diffusivity of Absi et al. [38],
conducted using the explicit and implicit method respectively; e and f show forward
tracking tests carried out using the explicit method with the diffusivity of Rouse [37] and
Absi et al. [38] respectively. In Figures 1 and 2, the red line represents the water surface at
z = 0.0284 (m).

According to Visser [39], though, the diffusivity should be evaluated at a slightly
different location from Xn for self-consistency of the process. In this section, we focus
on the comparisons between diffusivities calculated by the functions of Rouse [37] and
Absi et al. [38]. Therefore, we adopt the suggestion of Ross and Sharples [40], which is
to output the particle positions of each time step to observe the difference between the
aforementioned two numerical methods. It is shown in Figure 1a,b that particles would
remain at the water surface once they reach the water surface due to the zero-vertical
diffusivity of Rouse [37] at the water surface. However, this limitation can be eliminated
with the diffusivity of Absi et al. [38]. From Figure 1b,c, the scenarios with the diffusivity
of Absi et al. [38] showed that particles would not have to remain at the water surface,
which is closer to reality. The line-like pattern at the tops of Figure 3a,b also demonstrates
the above observation, as the line-like pattern consists of a great number of particles at
the water surface. Furthermore, the lag between fluid particles and sediment particles
is considered in the diffusivity of Absi et al. [38]. Therefore, the simulation results with
the diffusivity of Absi et al. [38] would be made more meaningful than the diffusivity of
Rouse [37].
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Figure 1. Sample paths randomly selected from 10,000 simulations: (a) sample paths of backward tracking tests with the
diffusivity of Rouse [37], using the explicit method; (b) sample paths of backward tracking tests with the diffusivity of
Rouse [37], using the implicit method; (c) sample paths of backward tracking tests with the diffusivity of Absi et al. [38],
using the explicit method; (d) sample paths of backward tracking tests with the diffusivity of Absi et al. [38], using the
implicit method; (e) sample paths of forward tracking tests with the diffusivity of Rouse [37], using the explicit method;
(f) sample paths of forward tracking tests with the diffusivity of Absi et al. [38], using the explicit method.
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Figure 2. Mean Trajectory: (a) mean trajectory of backward tracking tests with the diffusivity of Rouse [37], using the
explicit method; (b) mean trajectory of backward tracking tests with the diffusivity of Rouse [37], using the implicit method;
(c) mean trajectory of backward tracking tests with the diffusivity of Absi et al. [38], using the explicit method; (d) mean
trajectory of backward tracking tests with the diffusivity of Absi et al. [38], using the implicit method; (e) mean trajectory of
forward tracking tests with the diffusivity of Rouse [37], using the explicit method; (f) mean trajectory of forward tracking
tests with the diffusivity of Absi et al. [38], using the explicit method.
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Figure 3. Final particle positions of 10,000 simulations: (a) positions of probable sources in backward tracking tests with the
diffusivity of Rouse [37], using the explicit method; (b) positions of probable sources in backward tracking tests with the
diffusivity of Rouse [37], using the implicit method; (c) positions of probable sources in backward tracking tests with the
diffusivity of Absi et al. [38], using the explicit method; (d) positions of probable sources in backward tracking tests with
the diffusivity of Absi et al. [38], using the implicit method; (e) final particle positions in forward tracking tests with the
diffusivity of Rouse [37], using the explicit method; (f) final particle positions in forward tracking tests with the diffusivity
of Absi et al. [38], using the explicit method.
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Figure 4. Final probable particle location distribution in the x-direction: (a) final probable source location distribution in
backward tracking tests with the diffusivity of Rouse [37], using the explicit method; (b) final probable source location
distribution in backward tracking tests with the diffusivity of Rouse [37], using the implicit method; (c) final probable
source location distribution in backward tracking tests with the diffusivity of Absi et al. [38], using the explicit method;
(d) final probable source location distribution in backward tracking tests with the diffusivity of Absi et al. [38], using the
implicit method; (e) final particle location distribution in forward tracking tests with the diffusivity of Rouse [37], using the
explicit method; (f) final particle location distribution in forward tracking tests with the diffusivity of Absi et al. [38], using
the explicit method.
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Figure 5. Final probable particle location distribution in the z-direction: (a) final probable source location distribution in
backward tracking tests with the diffusivity of Rouse [37], using the explicit method; (b) final probable source location
distribution in backward tracking tests with the diffusivity of Rouse [37], using the implicit method; (c) final probable
source location distribution in backward tracking tests with the diffusivity of Absi et al. [38], using the explicit method;
(d) final probable source location distribution in backward tracking tests with the diffusivity of Absi et al. [38], using the
implicit method; (e) final particle location distribution in forward tracking tests with the diffusivity of Rouse [37], using the
explicit method; (f) final particle location distribution in forward tracking tests with the diffusivity of Absi et al. [38], using
the explicit method.
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Figure 6. Final particle location variance in the x-direction: (a) final probable source location variance in backward tracking
tests with the diffusivity of Rouse [37], using the explicit method; (b) final probable source location variance in backward
tracking tests with the diffusivity of Rouse [37], using the implicit method; (c) final probable source location variance in
backward tracking tests with the diffusivity of Absi et al. [38], using the explicit method; (d) final probable source location
variance in backward tracking tests with the diffusivity of Absi et al. [38], using the implicit method; (e) final particle
location variance in forward tracking tests with the diffusivity of Rouse [37], using the explicit method; (f) final particle
location variance in forward tracking tests with the diffusivity of Absi et al. [38], using the explicit method.
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Figure 7. Final particle location variance in the z-direction: (a) final probable source location variance in backward tracking
tests with the diffusivity of Rouse [37], using the explicit method; (b) final probable source location variance in backward
tracking tests with the diffusivity of Rouse [37], using the implicit method; (c) final probable source location variance in
backward tracking tests with the diffusivity of Absi et al. [38], using the explicit method; (d) final probable source location
variance in backward tracking tests with the diffusivity of Absi et al. [38], using the implicit method; (e) final particle
location variance in forward tracking tests with the diffusivity of Rouse [37], using the explicit method; (f) final particle
location variance in forward tracking tests with the diffusivity of Absi et al. [38], using the explicit method.
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In the aspect of ensemble mean of trajectories (Figure 2), no significant difference
between these two diffusivities except for the case of backward tracking with diffusivity
of Absi et al. [38]. Figure 2c,d shows that the final position of the mean trajectory by the
explicit method is higher than that by the implicit method. It may result from the limitation
of implicit methods in which the unknown Zn cannot be calculated directly. Coupling
with the lag between fluid particles and sediment particles considered in the diffusivity,
the discrepancies between explicit and implicit methods of diffusivity of Absi et al. [38]
consequently might be obvious.

By comparing Figures 1 and 2, one can realize the importance of utilizing a stochastic
particle tracking model to assess the variability of particle movement and, subsequently,
the likelihood of particle sources.

With reference to Figure 3a–d, in all cases of backward tracking with the same initial
conditions and parameters, the results reveal that the source is probably at x = −1.5 and
z = h. To verify whether particles are deposited on the riverbed at x = 0, two forward
tracking tests are carried out to determine the trajectories of particles that are released
from the aforementioned point (x = −1.5, z = h). In forward simulations, the assumptions
and parameters are the same, but the initial particle positions and tracking directions are
different from backward simulations. For forward simulations, the particles are released
from the water surface at x = −1.5 m. Two forward tracking cases are modeled by the
explicit numerical method (Equations (5) and (6)) with the diffusivity of Rouse [37] or
Absi et al. [38].

With reference to figures that show particle positions 10 s earlier than the time that
sediment particles deposit on the riverbed at x = 0 in the backward tests (Figure 3a,b,d),
most of the particles accumulated near the riverbed. Furthermore, with regard to the
x-direction, the particles in the near-bed region are closer to the deposition location while
those that remain at the surface are farther from that location. This fact may be attributed
to the use of the logarithmic velocity distribution, which is larger near the surface, and
has the potential to drift particles on the water surface farther. Since the simulation is not
run for a long enough time to allow all of the particles to reach the water surface, in more
than half of the 10,000 simulations, particles did not arrive at the surface. Therefore, most
particles are still close to the riverbed and remain close to the deposited location. Hence,
the distribution of final particle locations in the x-direction is skewed toward the origin
(Figure 4a,b,d).

In the z-direction, the probabilities associated with final particle locations decrease
sharply as z increases. Notably, the probability associated with the water surface is the
second highest owing to the intrinsic characteristic of the governing equation in the z-
direction when Rouse’s diffusivity is adopted (Figure 5a,b). However, in tests in which the
diffusivity of Absi et al. [38]. is used, the probability that a particle is at the water surface
is high and the probability that a particle is in its neighborhood is non-zero (Figure 5c,d).
On account of the logarithmically distributed mean drift flow velocity in the horizontal
direction, a higher z may be correlated with a greater distance traveled by a particle. As
a result, the distribution in the x-direction has two humps because the probability that
a particle is near the riverbed or the surface is higher than the probability that it is in
any other region. Furthermore, particles are distributed more uniformly in the explicit
backward case in which the diffusivity of Absi et al. [38] is used.

The variances of particle positions in both directions increase with time. However, the
variance in the x-direction increases continuously with time while that in the z-direction
tends to an asymptote. In x-direction, uncertainty is caused by the re-suspension mecha-
nism and sediment concentration gradients in the streamwise direction. Such concentration
gradients may cause the shear in the flow to mix particles out which cause the variance to
grow in time. If a particle is not re-suspended, then it would stagnate at its location for
some time. Therefore, the variability in the stream-wise direction continues to increase. In
the vertical direction, the variance initially increases because of the turbulence term. Addi-
tionally, it tends to reach an asymptotic constant (or may even decrease if the simulation
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time is very long) as more particles reach the water surface and their vertical positions
cease to change.

Two forward tests yield insignificantly different results. The overall trajectory is down-
ward in the downstream direction of the channel. According to Figure 5e,f, approximately
one-fifth to one-fourth of particles are near the bed. The total number of particles decreases
as z increases. Since the overall trend is downward, few particles stay close to the water
surface. Two peak values are observed in the distributions in the x-direction at the final
time. The left peak is attributable to a large number of particles near the bed, which are
transported over short distances. The right peak is attributable to particles that might have
arrived from a higher region where flow is fast enough to move particles farther.

4. Development of Backward–Forward Stochastic Particle Tracking Model

The comparison between backward cases and forward cases demonstrates that some
probable source regions may be correctly identified. A large proportion of particles are
deposited at the deposition point (0, 275× 10−6), indicating that the location (−1.5, 0.0284)
might be a probable source. However, no quantitative link or relationship between each
source-receptor pair exists. The possibility associated with each probable source that is
estimated by backward tracking cannot be quantified even when the forward tracking
process is carried out for each of them. Therefore, inspired by Lin et al. [32], the influence
function is now introduced to establish or reject each candidate “probable” source that is
estimated by backward simulation in this section.

4.1. Influence Function

Uliasz et al. [33] introduced the influence function. In our study, I(xr, tr|x, t) is defined
as the influence function of an upstream probable source that is located at x at time t, with
respect to a downstream receptor that is located at xr at time tr.

I(xr, tr|x, t) =
1

Ntot

Ntot

∑
i

δ(xi(p)− x) (22)

If(xr, tr|x, t) =
nsf

Ntot
(23)

Ib(xr, tr|x, t) =
nsb
Ntot

(24)

In Equation (22), Ntot is the number of total particles which exist at the source x at
time t. Thus, the spatial distribution of concentration at time t should be known, so Ntot
at each source could be calculated. The delta function δ(xi(p)− x) represents whether a
particle from the upstream source (x, t) is transported to the downstream receptor (xr, tr).
If the ith particle satisfies the above conditions, then the delta function δ(xi(p)− x) equals
one; if it does not, the value of the delta function is zero. Equation (23) can be used to
calculate the influence functions of the forward particle tracking process I f (xr, tr|x, t). The
denominator is Ntot while the numerator is the number of particles that are transported
from a certain source to the receptor during the forward particle tracking process ns f .

In the backward particle tracking process, the concept of the influence function
Ib(xr, tr|x, t) is physically the same as that in the forward particle tracking process. The
total particle number at the source at time t significantly affects the value of the influence
function. If the process is reversible, then I f (xr, tr|x, t) should resemble Ib(xr, tr|x, t).
However, in numerical simulations, I f (xr, tr|x, t) is rarely equivalent to Ib(xr, tr|x, t). A
threshold ε is introduced here.{ ∣∣If(xr, tr|x, t)− Ib(xr, tr|x, t)

∣∣ < ε, If(xr, tr|x, t) ∼= Ib(xr, tr|x, t)∣∣If(xr, tr|x, t)− Ib(xr, tr|x, t)
∣∣ ≥ ε, If(xr, tr|x, t) 6= Ib(xr, tr|x, t)

(25)
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For a large number of particles, if the difference between I f (xr, tr|x, t) and Ib(xr, tr|x, t)
is smaller than ε, then they are regarded as equal, and the process is regarded as reversible
(Equation (25)).

Notably, only the numbers of particles at (xr, tr) and (x, t) instead of the transport
trajectories are considered in the influence function. Namely, although I f (xr, tr|x, t) is
close to Ib(xr, tr|x, t), it is ignored by the influence function whether all the backward
trajectories have their corresponding forward trajectories.

The definition of influence function that is used during the simulation process in this
study differs slightly from that used in the study of Lin et al. [32]. In the study of Lin
et al. [32], the same number of particles (10,000) was released from both the source and the
receptor, and the air density gradient was taken into account in modifying the influence
function. Ntot corresponds to the number of scenarios in the Monte Carlo simulation in
their study. However, in this study Ntot represents not only the number of scenarios in
the Monte Carlo simulations but also the total number of local particles at the sources.
The numbers of local particles all exceed 50 and are statistically significant in our Monte
Carlo simulations.

4.2. Simulation Process

Figures 8 and 9 present the simulation process.
The details are explained step by step below.

1. Establish the domain and divide it into several grid cells. The channel which has the
same flow depth as that in Section 3 is divided into 20 layers. Each grid cell is 0.18 m
long. In the x-direction, the domain is bounded by (−1.8, 1.8) and so is long enough
to observe particle motion within a 10 s simulation if the receptor is at the origin.

2. Calculate the number of particles nr at the deposition point (receptor) as the number
of particles in the red rectangle in Figure 9a.

3. Use the backward stochastic particle tracking model to trace the receptor grid cell
of nr particles and find the total number of particles that are traced back to each
upstream source grid cell (nsb), as the total number of hollow blue particles in the
blue rectangle in Figure 9a.

4. Combine the results in step 3 (nsb) with the total number of particles at probable
sources (Ntot) to calculate backward influence functions (Ib). In Figure 9b, Ntot is the
total number of solid and hollow blue particles in the blue rectangle. Ntot represents
the total number of particles at the source at time t. The hollow particles are traced
from the receptor in the backward simulation process.

5. Use the results in step 3 with the forward stochastic particle tracking model. Release
Ntot particles from the middle point of the upstream grid cell to find the number of
particles that travel to the receptor ns f , as the total number of hollow red particles in
the red rectangle in Figure 9c.

6. Combine the results in step 5 (ns f ) with the total number of particles at probable
sources (Ntot) to calculate forward influence functions (I f ). (Figure 9d)

7. Calculate the nsb as well as repeat step 4 to step 6 for each probable source grid
identified by the pure backward simulation.

8. Map the values of the forward and backward influence functions in the domain at
their corresponding source locations.

9. Compare and discuss the forward and backward influence functions to evaluate the
reversibility and the possibility of probable sources in each grid cell. Determine the
threshold value ε and find whether the difference between Ib and I f is smaller than ε.

10. Map the most probable source regions.
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Figure 8. Simulation process of backward–forward stochastic particle tracking model.

Figure 9. The procedure of the backward–forward stochastic particle tracking model: (a) tracing back particles in the
receptor grid cell; (b) calculating the backward influence function; (c) releasing and tracing the particles from the upstream
source cell; (d) calculating the forward influence function.

4.3. A Test of Backward and Forward Influence Functions

In this section, a test of backward and forward influence functions is demonstrated
with the same domain as that in Section 4.2. The parameters of the particles, flow conditions
and governing equation are same as those in the previous section shown in Table 1. The
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number of deposited particles at the receptor (nr) is assumed to be 1000. The receptor is at
the origin as the initial condition of backward tracking. For each forward tracking process,
the initial condition of particle position is at the middle point of the grid of probable sources.
The simulation time for both backward and forward tracking is 10 s, which is long enough
to observe the trend of the motion of sediments. Ntot is relevant to sediment concentration.
Thus, the concentration of sediment particles can be introduced below.

The numerical methods applied in this test are implicit backward tracking and ex-
plicit forward tracking, all with the diffusivity proposed by Absi et al. [38]. The particle
concentrations at time tr (when particles are transported to and deposited at the receptor)
are assumed to follow Rouse’s sediment concentration profile [37]:

C(z)
C(a)

=

[(
h− z

z

)(
a

h− a

)]ws/κu∗
(26)

where C(z) is the concentration at height z; C(a) is the reference concentration at height
z = a; h is the flow depth; ws is the settling velocity; κ is the Karman constant, and u∗ is the
shear velocity.

In this test, the reference concentration C(a) = 1000 is assumed at the bottom layer
to represent the number of particles there. The sediment concentration is assumed to be
uniform in the stream-wise direction. Therefore, sediment concentration is not a function of
x but a function of z. The sediment concentrations within the domain at time t is estimated
by backward stochastic particle tracking. Then, the sediment concentrations (total numbers
of sediment particles in grid cells, Ntot, within the domain) at the source are known. In
Figure 10, the black dashed line denotes the numbers of particles that are calculated using
Rouse’s sediment concentration profile (at time tr), while the blue line denotes the number
of particles that are estimated by backward stochastic particle tracking (at time t). Both
concentrations are independent of x but dependent on z.

Figure 10. Sediment concentrations before and after backward PTM based on Rouse’s formula,
represented as particle numbers.

To confirm the accuracy of backward tracking, Ib and I f are compared. Every I f is
regarded as a true value. Then, the relative error of every Ib is calculated and mapped. The
relative error is given by the following equation.
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Ierror =

∣∣∣Ib − I f

∣∣∣
Ib

(27)

The difference between I f and Ib in each grid cell is mapped out. Figure 11 presents
the influence functions that are calculated by backward tracking (Ib) and forward tracking(

I f

)
. The blue regions are those in which no particle appears ten seconds before time = t.

The influence function of an upstream grid cell on the receptor (0, 275× 10−6) is shown in a
lighter color. The yellow dots in Figure 11c denote the locations of 1000 particles 10 s earlier
before they deposited at the receptor. The results are calculated by backward tracking. At
x = −0.9, the grid cells closer to the riverbed tend to have large Ib and small I f values. The
highest sediment concentrations can be obtained only when locations that are determined
by backward simulations are taken into account. However, these grid cells may not be the
regions of the most probable sources because of their irreversibility, which is implied by
the great difference between the backward and forward influence functions.

Figure 11. Cont.
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Figure 11. (a) Backward influence functions; (b) forward influence functions; (c) the relative error
between backward and forward influence functions.

To identify the probable source regions, a threshold ε is determined to decide whether
the difference between a pair of backward and forward influence functions for a grid cell
could be ignored. Figure 12 shows the identified probable source regions with threshold
values of 1, 0.8, 0.6, 0.4, 0.2, and 0.1. It can be found that with a lower threshold value,
fewer grid cells are probable source regions. Again, the results that are estimated only by
backward simulations may not be precise. Nevertheless, the process of backward tracking
can assist in scaling down the probable source regions.

Figure 12. Cont.



Mathematics 2021, 9, 1263 22 of 35

Figure 12. Probable source regions with different threshold values; (a) threshold value is 1; (b) threshold value is 0.8;
(c) threshold value is 0.6; (d) threshold value is 0.4; (e) threshold value is 0.2; (f) threshold value is 0.1.

5. A Case Study with Explicit and Implicit Backward Tracking Methods

The objective of this case study is to identify the probable source regions of these
particles 10 s before the time tr (time t = tr − 10) using the backward–forward stochastic
particle tracking model. At time tr, sediment particles deposit on the riverbed at x = 0.

5.1. Parameters and Initial Conditions

The diffusivity applied in this case study is that of Absi et al. [38]. Two numerical
methods—explicit and implicit—are used during backward simulation while the numerical
methods used for forward simulations are always explicit.

In this case study, the domain is the same as the one in Section 4.2. The particle
parameters, channel settings, and flow conditions are mostly the same as those in Table 1.
The only difference is that the number of deposited particles is 10,000. The concentration
is assumed to follow Rouse’s sediment concentration profile as a function of depth with
10,000 particles in the bottom layer at time tr. The sediment concentration is assumed to be
uniform in the x-direction. The sediment concentration 10 s before (at time t) is estimated
using implicit backward simulations. Figure 13 plots the sediment concentrations as
functions of z at times t and tr as blue and black curves, respectively. With the help of
this concentration data, Ntot as well as the influence function for each probable source
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candidate can be calculated. Ntot in each probable grid is also the number of realizations in
Monte Carlo simulations.

Figure 13. Sediment concentrations in the explicit backward simulation method.

5.2. Simulation Results and Discussions

Figures 14–16 present the simulation results obtained using explicit and implicit
methods. The results obtained using the explicit method are plotted on the left-hand side
while those obtained using the implicit method are plotted on the right-hand side.

Figure 14. Particle locations calculated by backward simulations; (a) using explicit method; (b) using implicit method.
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Figure 15. Backward and forward influence functions, and relative error. (a) Backward influence function with explicit
method; (b) backward influence function with implicit method; (c) forward influence function with explicit method;
(d) forward influence function with implicit method; (e) relative error with explicit method; (f) relative error with
implicit method.
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Figure 16. Probable source regions with different threshold values in explicit and implicit methods:
(a) threshold value is 1 in explicit method; (b) threshold value is 1 in implicit method; (c) threshold
value is 0.6 in explicit method; (d) threshold value is 0.6 in implicit method; (e) threshold value is 0.2
in explicit method; (f) threshold value is 0.2 in implicit method; (g) threshold value is 0.1 in explicit
method; (h) threshold value is 0.1 in implicit method.
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Figure 14 plots as white dots the 10,000 particle source locations that are estimated
from 10,000 backward simulations from the receptor. As discussed in Section 3, the particles
tend to cluster near the riverbed and near the water surface.

Figure 15 displays backward influence functions, forward influence functions and the
relative error of influence functions. In general, regions with higher backward influence
functions seem to appear along with a band from the upper-left to the lower-right. The
grid cells with higher backward influence function regions determined using the explicit
method significantly differ from those determined using the implicit method.

Two simulations that involve the same processes yield slightly different results because
of the stochastic term in the stochastic particle tracking model. This slight difference
also suggests that the influence functions and concentrations may not be sufficiently
accurate. This is because the concentration distribution obtained based on 10,000 backward
simulations only represent a single scenario of the concentration distribution. In regions
adjacent to the upstream/downstream area, the forward influence functions may be low,
indicating that the influence of this area on the receptor is weak. Accordingly, the backward
simulation process roughly identifies the most influential regions, but influence functions
are needed to determine probable source regions.

Overall, the relative error in the implicit method is much higher than that in the
explicit method, especially in the lower left regions. Therefore, an implicit method may
be less accurate in most areas in this case. Notably, the spatial distributions of regions
with lower relative errors, corresponding to greater accuracy, differ significantly between
the explicit and implicit methods. The left-most section has the least relative error in
the backward influence functions. Both the implicit and the explicit methods have a
larger error near the riverbed than at the water surface. Furthermore, the regions with
higher sediment concentrations computed by only backward simulations do not necessarily
imply a higher likelihood of sources. While the explicit method may not identify correctly
the probable source regions, the implicit method could assist in identifying such missed
probable sources.

After the relative error of the influence functions is calculated, the threshold is set
to different values, as depicted in Figure 16. If the threshold is 0.1, the relative error
of influence functions is smaller than 10%. The most probable source regions are then
identified with a threshold value of 0.1, and their corresponding influence functions are
listed in Table 2.

Table 2. The most probable sources selected out when the threshold is 0.1 and their corresponding influence functions.

No. x (m) z (m) Backward Influence Function Ib Backward Influence Function If

Explicit

47 −1.44 0.0094 0.0427 0.0452
51 −1.44 0.015 0.0932 0.0957
60 −1.44 0.0277 0.1324 0.1229
65 −1.26 0.0066 0.1469 0.1367
66 −1.26 0.008 0.1575 0.1425
76 −1.26 0.0221 0.1153 0.1123
78 −1.26 0.0249 0.0823 0.0782
80 −1.26 0.0277 0.0663 0.0727

Implicit

26 −1.62 0.008 0.0025 0.0025
36 −1.62 0.0221 0.0286 0.0286
37 −1.62 0.0235 0.0296 0.0268
38 −1.62 0.0249 0.0386 0.035
84 −1.08 0.0052 0.1182 0.1197

In general, the sources that are identified by the explicit method tend to have a higher
influence function, so the explicit method identifies locations that have a stronger higher
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influence on the receptor. However, the implicit method performs poorly in identifying
locations with higher influence functions.

6. Discussion about Probable Sources Based on Ensemble Mean and Ensemble
Standard Deviation of Spatial Sediment Concentration Distribution

Oh et al. [28] suggested that sediment concentration can be estimated by the spatial dis-
tribution of particles using the stochastic particle tracking model. As displayed in Section 3,
one numerical experiment that involved 10,000 simulations can provide the ensemble mean
and the ensemble variance of particle locations. However, as depicted in Figure 14, the
same initial conditions can lead to different spatial concentration distributions.

Hence, the numerical experiment that involved 10,000-round Monte Carlo simulations
to determine one unique spatial concentration distribution is repeated 100 times. Then,
100 scenarios of spatial concentration distributions can be obtained. In this section, the
ensemble mean and the ensemble standard deviation of spatial concentration distributions
in backward tracking are computed. The position of the receptor is also located at the origin.
Since the probable regions that are identified in Section 5 are of great interest, 100 spatial
concentration distributions are also computed by forward tracking from these probable
source regions. The ensemble statistics of the spatial concentration distributions and the
influence of these sources to the receptor can thus be discussed.

6.1. Parameters and Initial Conditions

Table 3 presents the parameters of particles, flow conditions, simulation time and
the time step. In the backward simulation, 10,000 particles are traced backward for 10 s
from the receptor

(
0, 275× 10−6) for each realization of spatial sediment concentration

distributions. With respect to forward simulations, 10,000 particles are traced forward
for 10 s from each probable source location identified in Section 5 for each realization
of the spatial sediment concentration distributions. A total of 100 realizations of spatial
concentration distributions are computed to estimate the ensemble means and ensemble
standard deviations. As Figure 16 indicates, when the threshold value is 0.1, eight grid cells
and five grid cells are suggested to be the probable source regions in explicit and implicit
backward methods, respectively.

Table 3. Particle, flow conditions and simulation parameters.

Parameter Unit Value

Diameter (D) m 275× 10−6

Density (ρs) kg/m3 1050
Lift coefficient (CL) 0.21
Shear velocity (u∗) m/s 0.0086
Settling velocity (ws) m/s 0.0025
Reference height (zb) m 275× 10−6

Roughness height (ks) m 275× 10−6

Flow depth (h) m 0.0284
Mean drift flow velocity (u ) m/s 0.143
Mean drift flow velocity (w ) m/s 0
Time step (dt) s 0.01
Simulation Time (T) s 10

6.2. Simulation Results and Discussion
6.2.1. Backward Simulation

Figure 17 presents the ensemble mean and ensemble standard deviation of spatial
sediment concentration distributions that are estimated using explicit and implicit methods.
Most of the particles are traced back to the riverbed at about x = −1. With respect to
the ensemble means, the highest concentration obtained by the explicit method is farther
from the receptor than that obtained by the implicit method. Another region of high
concentration appears on the water surface at about x = −1.5. The particles tend to
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be distributed more uniformly in the explicit method. The highest ensemble means of
concentration that are obtained by the explicit method and implicit method are 975.93 and
4017.1 particles per grid cell, respectively. The difference is considerable, implying that at
least one of these two values are far from the true value.

Figure 17. Ensemble mean and standard deviation of spatial sediment concentration distribution: (a) ensemble mean of
concentration in explicit method; (b) ensemble standard deviation of concentration in explicit method; (c) ensemble mean of
concentration in implicit method; (d) ensemble standard deviation of concentration in implicit method.

The maximum of the ensemble standard deviations obtained by the explicit and
implicit methods, are 30.36 and 26.60, respectively. The difference of the ensemble standard
deviations in the grid cell with the highest concentration between the two numerical
methods is quite low. However, compared to the ensemble mean value, the ensemble
standard deviation in the grid cell with the highest concentration is relatively high in the
explicit method.

As depicted in Figure 17, ensemble standard deviations tend to be higher where
ensemble means are higher, according to both the explicit method and the implicit method.
This result is consistent with those obtained by Oh et al. [28]. This highest standard
deviation may be a significant cause of why only the grid cell with the highest concentration,
estimated only by the backward simulation, may not necessarily be the most probable
source. However, another reason why the area of highest concentration is not the region of
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the most probable source may be attributed to the large difference between the estimated
ensemble mean of the sediment concentration and the true value.

6.2.2. Forward Simulation with Explicit Method

Table 4 displays the ensemble mean and ensemble standard deviation of the spatial
sediment concentration distribution from eight probable sources as determined using the
explicit method in Section 5. The blue color indicates an absence of particles. A lighter
color represents a higher ensemble mean or ensemble standard deviation. The red grid cell
represents the location of a probable source from which particles are released. For these
aforementioned simulations the spatial sediment distributions cover the receptor grid cell
in all simulations, demonstrating the superior performance of the explicit method.

Table 4. The ensemble mean and ensemble standard deviation of spatial sediment concentration distribution from 8 different
probable sources.

Probable Sources Ensemble Mean Ensemble Standard Deviation

Particles are released from (−1.44, 0.0094)

Particles are released from (−1.44, 0.015)

Particles are released from (−1.44, 0.0277)
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Table 4. Cont.

Probable Sources Ensemble Mean Ensemble Standard Deviation

Particles are released from (−1.26, 0.0066)

Particles are released from (−1.26, 0.008)

Particles are released from (−1.26, 0.0221)

Particles are released from (−1.26, 0.0249)

Particles are released from (−1.26, 0.0277)
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Table 5 presents the ensemble mean and ensemble standard deviation of concentra-
tions (represented as the number of particles) in the receptor grid cell. In all simulations,
the concentration of the particles at the receptor exceeds 500 particles per grid. Namely,
the probability that a particle is transported to the receptor from these sources exceeds 5%.
This probability is relatively high, as the sediment is present over a large area. Moreover,
the grid cells with the first or second highest concentration are receptor grid cells in most of
the simulations. However, a grid cell with a higher ensemble mean concentration normally
also has a higher ensemble standard deviation (variability) in forward simulations.

Table 5. The ensemble mean and ensemble and ensemble standard deviation of concentration at the
receptor grid (explicit method).

Simulation No. Ensemble Mean of Concentration
at the Receptor (Bead)

Ensemble Standard Deviation of
Concentration at the Receptor (Bead)

Ex-1 510.59 21.6334
Ex-2 797.4 26.9035
Ex-3 1239.7 34.1854
Ex-4 1370.6 29.7602
Ex-5 1404.4 32.6969
Ex-6 968 30.9169
Ex-7 799.2 24.5801
Ex-8 691 27.7581

6.2.3. Forward Simulation with Implicit Method

Table 6 presents the ensemble mean and ensemble standard deviation of the spatial
sediment concentrations when particles are traced forward from the probable sources that
are identified by the implicit method. The notation and representation of the results are
similar to those in the explicit method. As the table shows, the receptor was covered by
the sediment in all five simulations. However, in most of these simulations, the ensem-
ble mean of the concentrations at the receptor was lower than that obtained using the
explicit method.

Table 6. Ensemble mean and ensemble standard deviation of the spatial sediment concentration distribution.

Probable Sources Ensemble Mean Ensemble Standard Deviation

Particles are released from (−1.62, 0.008)

Particles are released from (−1.62, 0.0221)
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Table 6. Cont.

Probable Sources Ensemble Mean Ensemble Standard Deviation

Particles are released from (−1.62, 0.0235)

Particles are released from (−1.62, 0.0249)

Particles are released from (−1.08, 0.0052)

For simulations Im-2, Im-3 and Im-4, the concentration is around 200 to 300 particles
per grid cell (about 2–3%); for simulation Im-1, the ensemble mean concentration is only
29.3 particles per grid cell (0.293%) (Table 7). Only the ensemble mean of the concentration
in simulation Im-5 is as high as that obtained using the explicit method. Therefore, the
implicit method underperforms the explicit method in determining sources with a strong
influence on the receptor. Again, a higher ensemble mean of concentration corresponds to
a higher ensemble standard deviation in these simulations. None of the simulation cases is
an exception to this rule.

Table 7. The ensemble mean and standard deviation of concentration at the receptor grid (explicit
method).

Simulation No. Ensemble Mean Ensemble Standard Deviation

Im-1 29.3 5.0887
Im-2 243.33 16.8169
Im-3 272.79 19.1466
Im-4 303.42 17.8372
Im-5 1033.8 29.4296

6.2.4. Forward Simulation from Non-Probable Source

A grid cell at (−0.9, 0) is a high concentration, as estimated by either the backward
explicit method or implicit method. In Section 5, neither the explicit nor the implicit method
suggests this region as a probable source. Now, the ensemble mean and the ensemble
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standard deviation of the concentrations are computed after the particles have traveled for
10 s (Figure 18).

Figure 18. (a) Ensemble mean and (b) standard deviation where particles from (−0.9, 0), a non-probable source.

Although the receptor grid is covered by the particles, the concentration of sediment
is low in the receptor grid cell. Only 31.77 of 10,000 particles are transported to the receptor
from this region. The results again demonstrate that the highest concentration, estimated
by the backward simulation alone, suffices to identify the probable source. Furthermore,
the probability of particle transporting to the receptor from a non-probable source is much
lower than that from probable sources, no matter which numerical methods is adopted.

7. Conclusions and Recommendations

Source identification is useful for containment prevention or ecological conservation. It
also supports our understanding of particle behaviors, which can aid in efficiently tackling
sedimentation problems. However, there is limited research applying the backward–
forward particle tracking model to identify sedimentation sources. In this work, a state-of-
the-art Lagrangian stochastic particle tracking model is applied to identify sedimentation
sources. The diffusivities proposed by Rouse [37] and Absi et al. [38] are both considered. It
is found that not only the non-zero value of the diffusivity is performed at the water surface,
but the lag between fluid and sediment particles can be considered by the diffusivity of
Absi et al. [38].

Inspired by Lin et al. [32], a backward–forward stochastic particle tracking model is
formed with the help of influence functions. The sediment concentrations in upstream
regions must be known a priori to determine the influence functions. A case study of
source identification using the stochastic particle tracking model is presented. In this
backward–forward SD-PTM, the outcome from the backward simulation can be used as
a reference in limiting the regions of probable sources. With respect to the numerical
method, the explicit method performs better in identifying sources with higher influence
functions than the implicit method does. In the forward simulations, the implicit method
may underperform the explicit method when determining probable sources. Moreover, the
probabilities are much higher comparing to simulations from non-probable sources (only
about 0.3%) no matter which numerical method is applied.

The area of high concentrations also has a high standard deviation in concentrations.
The results of probable source regions only identified by backward simulations may not
be indicative, but they scale down the probable source regions. Both the forward and the
backward influence function can be improved when calculated using the ensemble mean
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of particle concentrations. However, the computation time would be very large if all of
the concentrations are ensemble means. In addition, the trajectories are not presented as
outcomes of the backward–forward SD-PTM and inputs of influence functions. Whether
there exist corresponding trajectories in pure backward and forward simulations is consid-
ered in deciding influence functions, then the backward–forward SD-PTM could be made
more convincing. For example, particle trajectories could be simplified, and the similarity
between patterns in the forward and backward simulations could be considered.

Finally, the computational time for backward-forward particle tracking in this pre-
liminary study remains considerable. To solve a large spatial-temporal scale real-world
engineering problem such as reservoir sedimentation, the computational demand may be
met by more efficient numerical approaches and advanced computing technology.
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