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Abstract: This paper presents a practical numerical method, an implicit finite-difference scheme for
solving a two-dimensional time-space fractional Fokker–Planck equation with space–time depending
on variable coefficients and source term, which represents a model of a Brownian particle in a
periodic potential. The Caputo derivative and the Riemann–Liouville derivative are considered in
the temporal and spatial directions, respectively. The Riemann–Liouville derivative is approximated
by the standard Grünwald approximation and the shifted Grünwald approximation. The stability
and convergence of the numerical scheme are discussed. Finally, we provide a numerical example to
test the theoretical analysis.

Keywords: two-dimensional time–space fractional Fokker–Planck equation; standard and shifted
Grünwald approximation; Riemann–Liouville fractional derivative; Caputo fractional derivative;
implicit finite difference scheme; stability and convergence

1. Introduction

In recent years, there has been a growing interest in the field of fractional calculus
(that is, the theory of integrals and derivatives of arbitrary real or complex orders) [1].
Additionally, fractional differential equations are considered for study because they pro-
vide a better approach to describing the complex phenomena in science and engineering
and they find different concepts of fractional derivatives and integration involving these
models such as Grünwald–Letnikov’s definition, Riemann–Liouville’s definition, Caputo’s
definition, and Riesz’s definition. Since the exact solution of fractional differential equa-
tions is difficult to find, many approximate and numerical solution methods have been
developed. In [2] Aleroev T. tried to find the Analytical and Approximate Solution for
Vibration String Equation with a Fractional Derivative; in [3], Elsayed A. and Orlov V. give
the Numerical Scheme for Solving Time–Space Vibration String Equation of Fractional
Derivative with Caputo fractional derivative in temporal direction and Riemann–Liouville
fractional derivative in spatial derivative. Additionally, [4,5] give the numerical solution
of a system fractional partial differential equation by extending the fractional differential
transform method.

The Fokker–Planck equation (FPDE) is known for modeling various issues in electron
relaxation in gases, nucleation, and quantum optics. The time evolution of the density
function of the position and speed of the particle was defined by the Fokker–Planck model.
Scientific appearances such as wave diffusion, constant random motion, DNA, and RNA
molecules’ biological code and arrangement materialization are shown by Fokker–Planck
PDEs with fractional differential functions of time and space, as provided in [6,7]. Brow-
nian motion and the approaches to reaction-kinetics of reactive fluids based on material
diffusivity are currently being explored in a variety of technologies; in physicochemical
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systems and biological synthesis [8]. In [9], the authors present an analytical solution
to some model of the Fokker–Planck equation (FPDE) with variables coefficients by the
separation of variables (the Fourier method). A finite difference scheme for a solution
to Fokker–Planck equation (FPDE) and their computational accuracy were discussed in
several papers. In [10], the authors use Finite difference to solve Time–Space Fractional
Advection–Diffusion Equations with Riesz Derivative and constant coefficients, and they
convert the fractional differential equation into the equivalent integral equation. Then,
fractional trapezoidal formula is used to approximate the second-order accuracy fractional
integral. In [11], Shuqing Y. and Mingrong C. prove the stability and convergence of a
finite difference scheme of the time–space Fokker–Planck equation (FPDE) with external
force and source time, using the energy method with spatial second-order accuracy and
temporal first-order accuracy.

Our reason for researching the problem of variable coefficients is its relevance in
applications of light propagation in obstacle-containing tissues [12]. In this paper, we
consider the following general model of the two-dimensional time–space fractional Fokker–
Planck equation

∂αw(x1, x2, t)
∂tα

= −Dβ
x1 [E(x1, x2, t)w(x1, x2, t)]− Dβ

x2

[
E(x1, x2, t)w(x1, x2, t)

]
(1)

+D2β
x1 [F(x1, x2, t)w(x1, x2, t)] + D2β

x2

[
F(x1, x2, t)w(x1, x2, t)

]
+g(x1, x2, t),

with initial and boundary condition

w(x1, x2, 0) = ς0(x1, x2), (x1, x2) ∈ ω, (2)

w(x1, x2, t) = 0, (x1, x2) ∈ ∂ω, 0 ≤ t ≤ T,

where 0 < α < 1 and 0.5 < β < 1, are parameters describing the order of the fractional
temporal and spatial derivatives, respectively, ω = (0, L1)× (0, L2), ∂ω is the boundary
of ω, E(x1, x2, t), E(x1, x2, t) ≥ 0 are x1, x2-diffusion smooth function coefficients, respec-
tively, F(x1, x2, t), F(x1, x2, t) ≥ 0 are x1, x2-drift smooth function coefficients, respectively,

g(x1, x2, t) represents sources and sinks,
∂αw(x1, x2, t)

∂tα
is the Caputo fractional derivative,

given by

∂αw(x1, x2, t)
∂tα

=


1

Γ(1−α)

∫ t
0 (t− ν)−α ∂w(x1,x2,ν)

∂ν dν, 0 < α < 1, 0 < ν < t

∂w(x1,x2,t)
∂t α = 1,

(3)

while the spatial fractional derivatives Dµ
x1 w(x1, x2, t), (µ = β or 2β), is the Riemman–

Liouville derivatives, defined as

Dµ
x1 w(x1, x2, t) =

1
Γ(n− µ)

dn

dxn
1

∫ x1

0
(x1 − ν)n−µ−1w(ν, x2, t) dν, n− 1 < µ ≤ n. (4)

Similarly, we can define the spatial fractional derivatives Dµ
x2 w(x1, x2, t).

In the case of α = β = 1, Equation (1) reduces to the, two-dimensional classical
advection–dispersion equation, which is considered a useful model for explaining trans-
port dynamics in complex systems governed by irregular diffusion and non-exponential
relaxation patterns [13,14].

The structure of the paper is organized as follows. In Section 2, the implicit finite
difference method is considered to solve two-dimensional time–space fractional Fokker–
Planck equation Equations (1) and (2). In Section 3, the unconditional stability of the
implicit finite difference method is proved. In Section 4, we study the convergence of
proposed numerical scheme, to the exact solution of equation Equations (1) and (2). In



Mathematics 2021, 9, 1260 3 of 12

Section 5, some numerical examples are taken to confirm the theoretical results. Finally, we
give our conclusions in Section 6.

2. Numerically Implicit Finite Difference Scheme

In this section we introduce numerical method to solve Equations (1) and (2).
For spatial discretization of intervals [0, L1] and [0, L2], let h1 = L1

M1
and h2 = L2

M2
for

two positive integers M1 and M2 with x1i = ih1, i = 0, 1, .., M1 and x2j = jh2, j = 0, 1, .., M2.

For temporal discretization of interval [0, T], let τ =
T
N

for two positive integer N with
tk = kτ, 0 ≤ k ≤ N.

Let wk
ij be the numerical approximation to w(x1i, x2j, tk). We can find Caputo time

fractional derivative
∂αw(x1, x2, t)

∂tα
for t = tk+1 = (k + 1)τ, as follows

∂αw(x1i, x2j, tk+1)

∂tα
=

1
Γ(1− α)

k

∑
l=0

∫ tk−l+1

tk−l

(tk+1 − ν)−α
∂w(x1i, x2j, ν)

∂ν
dν (5)

=
1

Γ(1− α)

k

∑
l=0

w(x1i, x2j, tk−l+1)− w(x1i, x2j, tk−l)

τ

∫ tk−l+1

tk−l

(tk+1 − ν)−α dν

+ O(τ2−α)

=
τ−α

Γ(2− α)

k

∑
l=0

ξα,l
(
w(x1i, x2j, tk−l+1)− w(x1i, x2j, tk−l)

)
+ O(τ2−α),

where ξα,l = (l + 1)1−α − (l)1−α, follows from Equation (5), for 0 < α < 1, it is easy to
deduce that

∂αw(x1i, x2j, tk+1)

∂tα
=


τ−α

Γ(2−α)

(
w(x1i, x2j, tk+1)− ξα,kw(x1i, x2j, 0)+

∑k−1
l=0 (ξα,l+1 − ξα,l)w(x1i, x2j, tk−l)

)
+ O(τ2−α), k ≥ 1,

τ−α

Γ(2−α)
(w(x1i, x2j, t1)− w(x1i, x2j, 0)) + O(τ2−α), k = 0.

(6)

For the x1−spatial fractional derivatives Dβ
x1(E(x1, x2, t)w(x1, x2, t)) and

D2β
x1 (F(x1, x2, t)w(x1, x2, t)), we used the standard Grünwald approximation and shifted

Grünwald approximation, respectively, as

Dβ
x1(E(x1i, x2j, tk+1)w(x1i, x2j, tk+1)) = (7)

h−β
1

i

∑
l=0

ηβ,lE(x1(i−l), x2j, tk+1)w(x1(i−l), x2j, tk+1) + O(h2
1),

D2β
x1 (F(x1i, x2j, tk+1)w(x1i, x2j, tk+1)) = (8)

h−2β
1

i+1

∑
l=0

η2β,l F(x1(i−l+1), x2j, tk+1)w(x1(i−l+1), x2j, tk+1) + O(h2
1),

where
ηβ,0 = 1, ηβ,l = (β

l ), l = 1, 2, . . .

η2β,0 = 1, η2β,l = (2β
l ), l = 1, 2, . . .

. (9)

Similarly, we can define the x2-spatial fractional derivatives Dβ
x2(E(x1, x2, t)w(x1, x2, t))

and D2β
x2 (F(x1, x2, t)w(x1, x2, t)).
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So, from Equations (1), (2), (6)–(8), we have

τ−α

Γ(2− α)

(
w(x1i, x2j, tk+1)− ξα,kw(x1i, x2j, 0) +

k−1

∑
l=0

(ξα,l+1 − ξα,l)(x1i, x2j, tk−l)

)
(10)

=− h−β
1

i

∑
l=0

ηβ,lE(x1(i−l), x2j, tk+1)w(x1(i−l), x2j, tk+1)

− h−β
2

j

∑
l=0

ηβ,lE(x1i, x2(j−l), tk+1)w(x1i, x2(j−l), tk+1)

+ h−2β
1

i+1

∑
l=0

η2β,l F(x1(i−l+1), x2j, tk+1w(x1(i−l+1), x2j, tk+1

+ h−2β
2

j+1

∑
l=0

η2β,l F(x1i, x2(j−l+1), tk+1)w(x1i, x2(j−l+1), tk+1)

+ g(x1i, x2j, tk+1) + Rk+1
ij ,

where |Rk
ij| ≤ Cτα(τ2−α + h2

1 + h2
2), C > 0.

Let Ek
ij = E(x1i, x2j, tk), Ek

ij = E(x1i, x2j, tk), Fk
ij = F(x1i, x2j, tk), Fk

ij = F(x1i, x2j, tk), c1 =

Γ(2− α)τα/hβ
1 , c1 = Γ(2− α)τα/hβ

2 , c2 = Γ(2− α)τα/h2β
1 , c2 = Γ(2− α)τα/h2β

2 , Gk+1
ij =

Γ(2− α)ταg(x1i, x2j, tk+1), then we can obtain the following implicit finite difference scheme

wk+1
ij +

k−1

∑
l=0

(ξα,l+1 − ξα,l)wk−l
ij + c1

i

∑
l=0

ηβ,lEk+1
(i−l)jw

k+1
(i−l)j + c1

j

∑
l=0

ηβ,lE
k+1
i(j−l)w

k+1
i(j−l) (11)

− c2

i+1

∑
l=0

η2β,l Fk+1
(i−l+1)jw

k+1
(i−l+1)j − c2

j+1

∑
l=0

η2β,l F
k+1
i(j−l+1)w

k+1
i(j−l+1)

= ξα,kw0
ij + Gk+1

i ,

where i = 1, 2, . . . , M1 − 1, j = 1, 2, . . . , M2 − 1, k = 0, 1, . . . , N − 1, with the initial and
boundary condition w0

ij = ς0(x1i, x2j), wk+1
0j = wk+1

M1 j = wk+1
i0 = wk+1

iM2
= 0, 0 ≤ i ≤ M1, 0 ≤

j ≤ M2, 0 ≤ k ≤ N − 1, respectively.
To study the stability and convergence of Equation (11), we use the following lemmas,

which have been proven previously [15–17].

Lemma 1. The coefficients ξα,l , ηβ,l and η2β,l satisfy

1. ξα,0 = 1, ξα,l > 0, ξα,l+1 > ξα,l , l = 0, 1, 2, . . . , N.
2. ∑k−1

l=1 (ξα,l − ξα,l+1) = ξα,1 − ξα,k
3. ηβ,0 = 1, ηβ,l < 0 (∀l ≥ 1),

∑∞
l=0 ηβ,l = 0, ∑i

l=0 ηβ,l > 0, ∑i+1
l=0 ηβ,l < ∑i

l=0 ηβ,l , l = 0, 1, 2, . . . , M.
4. η2β,0 = 1, η2β,1 = −2β η2β,l > 0 (∀l ≥ 2),

∑∞
l=0 η2β,l = 0, ∑i

l=0 η2β,l < 0, ∑i+1
l=0 η2β,l > ∑i

l=0 η2β,l , l = 0, 1, 2, . . . , M.

Lemma 2. Let the following conditions hold

a. 1
2 ≤ β ≤ 1,

b. The functions E(x1, x2, t) and E(x1, x2, t) are positive definite monotone increasing functions
in ω,

c. The functions F(x1, x2, t) and F(x1, x2, t) are positive definite convex monotone decreasing
functions in ω,

then we have,
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1. Dβ
x1 E(x1i, x2j, tk) ≥ 0 and Dβ

x2 E(x1i, x2j, tk) ≥ 0 . i.e.,

h−β
1

i

∑
l=0

ηβ,lE(x1(i−l), x2j, tk) ≥ 0,

h−β
2

j

∑
l=0

ηβ,lE(x1i, x2(j−l), tk) ≥ 0.

2. D2β
x1 F(x1i, x2j, tk) ≤ 0 and D2β

x2 F(x1i, x2j, tk) ≤ 0. i.e.,

h−2β
1

i+1

∑
l=0

η2β,l F(x1(i−l+1), x2j, tk) ≤ 0,

h−2β
2

j+1

∑
l=0

η2β,l F(x1i, x2(j−l+1), tk) ≤ 0.

Lemma 3. For 0 < α < 1, there exists a constant C > 0, where

ξ−1
α,k ≤ Ckα

3. Stability of Implicit Finite Difference Scheme

In this section, we will discuss the stability of numerical scheme Equation (11), let
w̃k

ij, (0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ k ≤ N) be the approximate solution of scheme

Equation (11), the error εk
ij = w̃k

ij − wk
ij satisfies,

εk+1
ij + c1

i

∑
l=0

ηβ,lEk+1
(i−l)jε

k+1
(i−l)j + c1

j

∑
l=0

ηβ,lE
k+1
i(j−l)ε

k+1
i(j−l) (12)

− c2

i+1

∑
l=0

η2β,l Fk+1
(i−l+1)jε

k+1
(i−l+1)j − c2

j+1

∑
l=0

η2β,l F
k+1
i(j−l+1)ε

k+1
i(j−l+1)

= ξα,kε0
ij +

k−1

∑
l=0

(ξα,l − ξα,l+1)ε
k−l
ij , k ≥ 1,

and

ε1
ij + c1

i

∑
l=0

ηβ,lE1
(i−l)jε

1
(i−l)j + c1

j

∑
l=0

ηβ,lE
1
i(j−l)ε

1
i(j−l) (13)

− c2

i+1

∑
l=0

η2β,l F1
(i−l+1)jε

1
(i−l+1)j − c2

j+1

∑
l=0

η2β,l F
1
i(j−l+1)ε

1
i(j−l+1)

= ε0
ij, k = 0.

Let Ξk = (Ξk
1, Ξk

2, . . . , Ξk
M1−1)

T , where Ξk
i = (εk

i1, εk
i2, . . . , εk

i(M2−1))
T are the k−error

vectors, ‖Ξk‖∞ = max
1≤i≤M1−1,1≤j≤M2−1

|εk
ij|.

Theorem 1. For every space-positive definite monotone increasing functions E(x1, x2, t), E(x1, x2, t)
and space-positive definite monotone decreasing convex functions F(x1, x2, t), F(x1, x2, t) the frac-
tional implicit finite difference schemes Equation (11), for 0 < α < 1 satisfies

‖Ξk+1‖∞ ≤ ‖Ξ0‖∞. (14)

Proof. Using the mathematical induction method, we can prove Equation (14).
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Firstly, when k = 0. Assume that |ε1
i′ j′ | = max

1≤i≤M1−1,1≤j≤M2−1
|ε1

ij|. Then, by using

Lemmas 1 and 2 and Equation (14), we have

|ε1
i′ j′ | ≤

1 + c1

i′

∑
l=0

ηβ,lE1
(i′−l)j′ + c1

j′

∑
l=0

ηβ,lE
1
i′(j′−l) − c2

i′+1

∑
l=0

η2β,l F1
(i′−l+1)j′

−c2

j′+1

∑
l=0

η2β,l F
1
i′(j′−l+1)

|ε1
i′ j′ |

≤

|ε1
i′ j′ |+ c1

i′

∑
l=0

ηβ,lE1
(i′−l)j′ |ε

1
i′ j′ |+ c1

j′

∑
l=0

ηβ,lE
1
i′(j′−l)|ε1

i′ j′ | − c2

i′+1

∑
l=0

η2β,l F1
(i′−l+1)j′ |ε

1
i′ j′ |

−c2

j′+1

∑
l=0

η2β,l F
1
i′(j′−l+1)|ε1

i′ j′ |


≤
[
(1 + c1E1

i′ j′ + c1E1
i′ j′ + 2βc2F1

i′ j′ + 2βc2F1
i′ j′)|ε1

i′ j′ |+ c1

i′

∑
l=1

ηβ,lE1
(i′−l)j′ |ε

1
(i′−l)j′ |

+c1

j′

∑
l=1

ηβ,lE
1
i′(j′−l)|ε1

i′(j′−l)| − c2

i′+1

∑
l=0,l 6=1

η2β,l F1
(i′−l+1)j′ |ε

1
(i′−l+1)j′ |

−c2

j′+1

∑
l=0,l 6=1

η2β,l F
1
i′(j′−l+1)|ε1

i′(j′−l+1)|


≤

∣∣∣∣∣∣ε1
i′ j′ + c1

i′

∑
l=0

ηβ,lE1
(i′−l)j′ ε

1
(i′−l)j′ + c1

j′

∑
l=0

ηβ,lE
1
i′(j′−l)ε

1
i′(j′−l)

−c2

i′+1

∑
l=0

η2β,l F1
(i′−l+1)j′ ε

1
(i′−l+1)j′ − c2

j′+1

∑
l=0

η2β,l F
1
i′(j′−l+1)ε

1
i′(j′−l+1)

∣∣∣∣∣∣
≤ |ε0

i′ j′ | ≤ ‖Ξ
0‖∞.

Thus, ‖Ξ1‖∞ ≤ ‖Ξ0‖∞.
Secondly, let’s that ‖Ξn‖∞ ≤ ‖Ξ0‖∞, n = 1, 2 . . . , k, and letting

|εk+1
i′ j′ | = max

1≤i≤M1−1,1≤j≤M2−1
|εk+1

ij |.

Therefore, by using Lemmas 1 and 2 and Equation (12), we can deduce
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|εk+1
i′ j′ | ≤

[
1 + c1

i′

∑
l=0

ηβ,l E
k+1
(i′−l)j′ + c1

j′

∑
l=0

ηβ,l E
k+1
i′(j′−l) − c2

i′+1

∑
l=0

η2β,l F
k+1
(i′−l+1)j′

−c2

j′+1

∑
l=0

η2β,l F
k+1
i′(j′−l+1)

]
|εk+1

i′ j′ |

≤
[
|εk+1

i′ j′ |+ c1

i′

∑
l=0

ηβ,l E
k+1
(i′−l)j′ |ε

k+1
i′ j′ |+ c1

j′

∑
l=0

ηβ,l E
k+1
i′(j′−l)|εk+1

i′ j′ | − c2

i′+1

∑
l=0

η2β,l F
k+1
(i′−l+1)j′ |ε

k+1
i′ j′ |

−c2

j′+1

∑
l=0

η2β,l F
k+1
i′(j′−l+1)|εk+1

i′ j′ |
]

≤
[
(1 + c1Ek+1

i′ j′ + c1Ek+1
i′ j′ + 2βc2Fk+1

i′ j′ + 2βc2Fk+1
i′ j′ )|εk+1

i′ j′ |+ c1

i′

∑
l=1

ηβ,l E
k+1
(i′−l)j′ |ε

k+1
(i′−l)j′ |

+c1

j′

∑
l=1

ηβ,l E
k+1
i′(j′−l)|εk+1

i′(j′−l)| − c2

i′+1

∑
l=0,l 6=1

η2β,l F
k+1
(i′−l+1)j′ |ε

k+1
(i′−l+1)j′ |

−c2

j′+1

∑
l=0,l 6=1

η2β,l F
k+1
i′(j′−l+1)|εk+1

i′(j′−l+1)|
]

≤
∣∣∣∣∣εk+1

i′ j′ + c1

i′

∑
l=0

ηβ,l E
k+1
(i′−l)j′ ε

k+1
(i′−l)j′ + c1

j′

∑
l=0

ηβ,l E
k+1
i′(j′−l)ε

k+1
i′(j′−l)

−c2

i′+1

∑
l=0

η2β,l F
k+1
(i′−l+1)j′ ε

k+1
(i′−l+1)j′ − c2

j′+1

∑
l=0

η2β,l F
k+1
i′(j′−l+1)ε

k+1
i′(j′−l+1)

∣∣∣∣∣
=

∣∣∣∣∣ξα,kε0
i′ j′ +

k−1

∑
l=0

(ξα,l − ξα,l+1)ε
k−l
i′ j′

∣∣∣∣∣
≤
[

ξα,k|ε0
i′ j′ |+

k−1

∑
l=0

(ξα,l − ξα,l+1)|εk−l
i′ j′ |

]

≤ [ξα,k +
k−1

∑
l=0

(ξα,l − ξα,l+1)]‖Ξ0‖∞ ≤ ‖Ξ0‖∞.

Thus, ‖Ξk+1‖∞ ≤ ‖Ξ0‖∞.

4. Convergence of Implicit Finite Difference Scheme

In this section, we will study the convergence of numerical scheme Equation (11), to
the exact solution of equation Equations (1) and (2).

Let, w(x1i, x2j, tk) be the exact solution of Equations (1) and (2) at a point (x1i, x2j, tk),
ek

ij = w(x1i, x2j, tk) − wk
ij be the error between the exact and the numerical solution,

which satisfies

ek+1
ij + c1

i

∑
l=0

ηβ,lEk+1
(i−l)je

k+1
(i−l)j + c1

j

∑
l=0

ηβ,lE
k+1
i(j−l)e

k+1
i(j−l) (15)

− c2

i+1

∑
l=0

η2β,l Fk+1
(i−l+1)je

k+1
(i−l+1)j − c2

j+1

∑
l=0

η2β,l F
k+1
i(j−l+1)e

k+1
i(j−l+1)

=
k−1

∑
l=0

(ξα,l − ξα,l+1)ek−l
ij + Rk+1

ij , k ≥ 1
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and

e1
ij + c1

i

∑
l=0

ηβ,lE1
(i−l)je

1
(i−l)j + c1

j

∑
l=0

ηβ,lE
1
i(j−l)e

1
i(j−l) (16)

− c2

i+1

∑
l=0

η2β,l F1
(i−l+1)je

1
(i−l+1)j − c2

j+1

∑
l=0

η2β,l F
1
i(j−l+1)e

1
i(j−l+1)

= R1
ij, k = 0,

hence, e0
i = w(si, 0)− w0

i = 0.
Letting, Vk = (Vk

1 , Vk
2 , . . . , Vk

M1−1)
T , where, Vk

i = (ek
i1, ek

i2, . . . , Vk
i(M2−1))

T and ‖Vk‖∞ =

max
1≤i≤M1−1,1≤j≤M2−1

|ek
ij|, follow that, we obtain the convergence of numerical scheme by

applying the following theorem.

Theorem 2. For every space positive definite monotone increasing functions E(x1, x2, t), E(x1, x2, t)
and space positive definite monotone decreasing convex functions F(x1, x2, t), F(x1, x2, t), then the
fractional implicit finite difference schemes Equation (11), for 0 < α < 1, satisfy

‖Vk+1‖∞ ≤ Cξ−1
α,k τα(τ2−α + h2

1 + h2
2), (17)

and the errors between the exact solutions and numerical solutions are valid

|w(x1i, x2j, tk)− wk
ij| ≤ C∗(τ2−α + h2

1 + h2
2), (18)

where, i = 1, 2, . . . , M1 − 1, j = 1, 2, . . . , M2 − 1, k = 0, 2, . . . , N, and C∗ ≥ 0 is constant.

Proof. Similar to the proof of Theorem 1, by using the mathematical induction to prove
Equation (17).

When k = 0, it follows from Lemmas 1 and 2 and Equation (16) under consideration
of ‖V1‖∞ = |e1

i′ j′ | = max
1≤i≤M1−1,1≤j≤M2−1

|e1
ij|, it is easy to prove

|e1
ij| ≤ Cξ−1

α,0τα(τ2−α + h2
1 + h2

2), (19)

then, suppose that, ‖Vs‖∞ ≤ Cξ−1
α,s−1τα(τ2−α + h2

1 + h2
2) ≤ Cξ−1

α,k τα(τ2−α + h2
1 + h2

2) for

s = 1, 2, . . . , k, and letting |ek+1
i′ j′ | = max

1≤i≤M1−1,1≤j≤M2−1
|ek+1

ij |.

Therefore, from Lemmas 1 and 2 and Equation (15), we have
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|ek+1
i′ j′ | ≤

1 + c1

i′

∑
l=0

ηβ,lEk+1
(i′−l)j′ + c1

j′

∑
l=0

ηβ,lE
k+1
i′(j′−l)

−c2

i′+1

∑
l=0

η2β,l Fk+1
(i′−l+1)j′ − c2

j′+1

∑
l=0

η2β,l F
k+1
i′(j′−l+1)

|ek+1
i′ j′ |

≤

|ek+1
i′ j′ |+ c1

i′

∑
l=0

ηβ,lEk+1
(i′−l)j′ |e

k+1
i′ j′ |+ c1

j′

∑
l=0

ηβ,lE
k+1
i′(j′−l)|ek+1

i′ j′ |

−c2

i′+1

∑
l=0

η2β,l Fk+1
(i′−l+1)j′ |e

k+1
i′ j′ | − c2

j′+1

∑
l=0

η2β,l F
k+1
i′(j′−l+1)|ek+1

i′ j′ |


≤
[
(1 + c1Ek+1

i′ j′ + c1Ek+1
i′ j′ + 2βc2Fk+1

i′ j′ + 2βc2Fk+1
i′ j′ )|ek+1

i′ j′ |

+c1

i′

∑
l=1

ηβ,lEk+1
(i′−l)j′ |e

k+1
(i′−l)j′ |+ c1

j′

∑
l=1

ηβ,lE
k+1
i′(j′−l)|ek+1

i′(j′−l)|

−c2

i′+1

∑
l=0,l 6=1

η2β,l Fk+1
(i′−l+1)j′ |e

k+1
(i′−l+1)j′ | − c2

j′+1

∑
l=0,l 6=1

η2β,l F
k+1
i′(j′−l+1)|ek+1

i′(j′−l+1)|


≤

∣∣∣∣∣∣ek+1
i′ j′ + c1

i′

∑
l=0

ηβ,lEk+1
(i′−l)j′ e

k+1
(i′−l)j′ + c1

j′

∑
l=0

ηβ,lE
k+1
i′(j′−l)e

k+1
i′(j′−l)

−c2

i′+1

∑
l=0

η2β,l Fk+1
(i′−l+1)j′ e

k+1
(i′−l+1)j′ − c2

j′+1

∑
l=0

η2β,l F
k+1
i′(j′−l+1)e

k+1
i′(j′−l+1)

∣∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
l=0

(ξα,l − ξα,l+1)ek−l
i′ j′ + Rk+1

i′ j′

∣∣∣∣∣
≤
[

k−1

∑
l=0

(ξα,l − ξα,l+1)|ek−l
i′ j′ |+ Cτα(τ2−α + h2

1 + h2
2)

]

≤
[

k−1

∑
l=0

(ξα,l − ξα,l+1)Cξ−1
α,k τα(τ2−α + h2

1 + h2
2) + Cτα(τ2−α + h2

1 + h2
2)

]

=

[
k−1

∑
l=0

(ξα,l − ξα,l+1) + ξα,k

]
Cξ−1

α,k τα(τ2−α + h2
1 + h2

2)

≤ Cξ−1
α,k τα(τ2−α + h2

1 + h2
2).

Thus, Equation (17) is proved.
Hence, from Lemma 3, where, ξ−1

α,k ≤ C1kα, C1 ≥ 0 is constant and kτ ≤ T is finite,
then from Equation (17),

|w(x1i, x2j, tk)− wk
ij| ≤ |ek

i′ j′ | (20)

≤ Cξ−1
α,k τα(τ2−α + h2

1 + h2
2)

≤ CC1kατα(τ2−α + h2
1 + h2

2)

≤ C∗(τ2−α + h2
1 + h2

2).

This proves the convergent of numerical scheme Equation (11).
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5. Numerical Experiments

In this section, some numerical experiments are presented to observe the accuracy and
efficiency of the proposed implicit finite difference scheme Equation (11) by considering
the following example of two-dimensional Time–Space Fractional Fokker–Planck Equation
with variable coefficients and (0 < α < 1, 1

2 < β < 1).

Example 1. Let’s consider

∂αw(x1, x2, t)
∂tα

= −Dβ
x1

[
txβ

1 xβ
2 w(x1, x2, t)

]
− Dβ

x2

[
txβ

1 xβ
2 w(x1, x2, t)

]
(21)

+D2β
x1

[
(1− x2β

1 )(1− x2β
2 )w(x1, x2, t)

]
+D2β

x2

[
(1− x2β

1 )(1− x2β
2 )w(x1, x2, t)

]
+g(x1, x2, t),

with initial and boundary condition

w(x1, x2, 0) = 0, (x1, x2) ∈ (0, 1)× (0, 1), (22)

w(x1, x2, t) = 0, (x1, x2) ∈ ∂((0, 1)× (0, 1)), 0 ≤ t ≤ T,

where

g(s, t) =Γ(α + 2)tx2
1x2

2(1− x1)
2(1− x2)

2

+ tα+2xβ+2
2 (1− x2)

2

(
Γ(3 + β)x2

1
Γ(3)

−
2Γ(4 + β)x3

1
Γ(4)

+
Γ(5 + β)x4

1
Γ(5)

)

+ tα+2xβ+2
1 (1− x1)

2

(
Γ(3 + β)x2

2
Γ(3)

−
2Γ(4 + β)x3

2
Γ(4)

+
Γ(5 + β)x4

2
Γ(5)

)

− tα+1x2
2(1− x2)

2(1− x2β
2 )

(
Γ(3)x2−2β

1
Γ(3− 2β)

−
2Γ(4)x3−2β

1
Γ(4− 2β)

+
Γ(5)x4−2β

1
Γ(5− 2β)

−
Γ(3 + 2β)x2

1
Γ(3)

+
2Γ(4 + 2β)x3

1
Γ(4)

−
Γ(5 + 2β)x4

1
Γ(5)

)

− tα+1x2
1(1− x1)

2(1− x2β
1 )

(
Γ(3)x2−2β

2
Γ(3− 2β)

−
2Γ(4)x3−2β

2
Γ(4− 2β)

+
Γ(5)x4−2β

2
Γ(5− 2β)

−
Γ(3 + 2β)x2

2
Γ(3)

+
2Γ(4 + 2β)x3

2
Γ(4)

−
Γ(5 + 2β)x4

2
Γ(5)

)
,

the exact solution is w(x1, x2, t) = tα+1x2
1x2

2(1− x1)
2(1− x2)

2.
As an analyzing the error in numerical solution we use the same step of step size in each spatial

direction i.e., h = h1 = h2, consider the k−max of kL2-norms

ε(τ, h) = max
1≤k≤N

h

(
M1−1

∑
i=1

M2−1

∑
j=1
|w(x1i, x2j, tk)− wk

ij|2
) 1

2

, (23)

where we can roughly calculate the convergence rate as

Rate ' log2[ε(2τ, 2h)/ε(τ, h)].

We can see that the numerical solution of our numerical scheme at h = 0.1, τ = 0.05 and
T = 1, L1 = L2 = 1 can match the exact solution, as shown in Figures 1 and 2, when α = 0.7 and
β = 0.6.
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In Table 1, we use the format described in Section 2 with a spatial and temporal mesh with
τ = h

2
2−α to analyze how the error ε(τ, h) and convergence rate changes at different spatial and

temporal steps, for four different choices of α and β, with an observation for the (2− α)-th temporal
order convergence rate, the presented results reflecting the relationship of the mesh size with the rate
of convergence depending on the parameter α and β

Remark 1. The numerical implicit finite difference scheme Equation (11) still work well for the
two-dimensional time–space fractional Foker–Planck PDE with the order of its spatial and temporal
derivatives β and α satisfies 0 < α ≤ 1, 0.5 < β ≤ 1; as a result, all the theoretical analyses are
still valid.

Table 1. The error and convergence rate for Numerical scheme solution of (21) when T = 1, τ = h
2

2−α .

α = 0.2, β = 0.9 α = 0.4, β = 0.8 α = 0.7, β = 0.7 α = 0.9, β = 0.6

τ, h ε(τ, h) Rate ε(τ, h) Rate ε(τ, h) Rate ε(τ, h) Rate

1/4 1.8251× 10−4 1.2760× 10−4 5.5186× 10−5 3.0542× 10−5

1/8 5.1971× 10−5 1.8121 4.1884× 10−5 1.6071 2.2395× 10−5 1.3011 1.4228× 10−5 1.1020
1/16 1.4893× 10−5 1.8030 1.3645× 10−5 1.6180 9.0354× 10−6 1.3095 6.6308× 10−6 1.1014
1/32 4.2617× 10−6 1.80516 4.2503× 10−6 1.6827 3.6635× 10−6 1.3023 3.0860× 10−6 1.1034

Figure 1. Exact and Numerical scheme solution of (21) at α = 0.7, β = 0.8, τ = 0.05, h = 0.1 and
t = T = 1.

Figure 2. Comparison the exact and numerical solution of (21) at t = T = 1, x2 = 0.7, τ = 0.05,
h = 0.1, β = 0.6, α = 0.7 for different α.

6. Conclusions

In this article, we present the implicit finite difference scheme for two dimensional
time–space fractional Fokker–Planck equation with time–space-dependent function coef-
ficients and source term. We use two fractional derivative operators (the Caputo deriva-
tive with order 0 < α ≤ 1 and the Riemann–Liouville derivative for two orders β, 2β,
(0.5 < β ≤ 1). The unconditional stable and convergence for proposed numerical scheme
is proven, and some numerical examples for the implicit finite difference method are given,
which agree with our theoretical analysis.
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