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Abstract: This paper presents a new framework based on geometric algebra (GA) to solve and
analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The
proposed approach is an exploratory application of the geometric algebra power theory (GAPoT)
to multiple-phase systems. A definition of geometric apparent power for three-phase systems,
that complies with the energy conservation principle, is also introduced. Power calculations are
performed in a multi-dimensional Euclidean space where cross effects between voltage and current
harmonics are taken into consideration. By using the proposed framework, the current can be
easily geometrically decomposed into active- and non-active components for current compensation
purposes. The paper includes detailed examples in which electrical circuits are solved and the results
are analysed. This work is a first step towards a more advanced polyphase proposal that can be
applied to systems under real operation conditions, where unbalance and asymmetry is considered.

Keywords: geometric algebra; non-sinusoidal power; clifford algebra; power theory

1. Introduction

For more than a century, the steady-state operation of AC electrical circuits has been
analysed in the frequency domain using complex numbers. The foundations of this
well-established technique were initially developed by Steinmetz [1] and later refined
by other authors such as Kennelly [2] or Heaviside [3]. In its basic form, an AC signal is
transformed from the time to the frequency domain, where algebraic equations can be easily
manipulated. This transformation is commonly referred to as phasor transformation. For
example, the phasor representation of a voltage waveform such as v(t) = v/2V cos(wt + ¢) is

Y

[o(h)] =V = vel? M
while the inverse transformation is given by
FV] = R[V2Ve | = o(t) @)

This methodology is widely applied to solve single- and three-phase electrical circuits
that operate in steady state under sinusoidal conditions.

It can also be applied to circuits operating under non-sinusoidal conditions by using
the superposition theorem. In this case, the voltage and current components of each
harmonic frequency are calculated separately, one by one, and then added in the time
domain so that the voltage and current waveforms are obtained. Nevertheless, this property
can be seen as both an advantage and a disadvantage. The main reason is that bilinear
operations, such as products between voltages and currents of different frequencies, are not
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meaningful in the algebra of complex numbers when applied to power systems. However,
this procedure is strictly required to calculate power flows under distorted conditions.
For example, consider a voltage v(t) = 100v/2 cos wt and a current i(t) = 100/2 cos 2wt.
Their phasor representations are V = 10020 and T = 10020, respectively. Even though
these signals are completely different, their representation in the complex domain is the
same. From a mathematical perspective, the product VI* cannot be performed since only
rotating vectors of the same frequency (and, thus, phasor quantities) can be axiomatically
multiplied in the complex domain. Due to the aforementioned limitations, the principle of
energy (power) conservation cannot be applied to apparent power in the complex domain
in a general sense [4]. These drawbacks have given rise to a great number of proposals for
the resolution of electrical circuits and the analysis of power flows [5-7]. This topic is of a
paramount relevance because of the increasing energy losses in transmission systems as
well as the negative effects on electrical-drives, power transformers and electronic devices.

Recently, geometric algebra (GA) has been proposed and applied to solve physical and
engineering problems [8,9]. It has also been proposed for analysing electrical circuits [10,11].
The use of GA has shed some light on a number of important shortcomings of complex
numbers, mainly due to the following properties:

1. It is possible to perform calculations between voltages and currents of different
frequencies that generate cross-coupling power terms. Therefore, power under non-
sinusoidal conditions can be adequately calculated;

2. Foundations of GA circuit analysis is defined in a multi-dimensional geometric do-
main (&), where a definition of geometric apparent power that fulfils the principle of
energy conservation can be obtained [12]. This power (M) has been named geometric
apparent power in the literature. Compared to the traditional definition of apparent
power (S), it considers the contribution of cross effects between voltages and currents
of different frequencies and is a signed quantity.

The aforementioned statements are strongly supported by the very basic foundations
of electromagnetic power theory: the Poynting Theorem. It is well-known that the density
power S delivered to a load can be calculated through the Poynting vector

S=ExH 3)

where E and H are the electric and magnetic field vector, respectively. Note the cross
product in (3). If both the electric field and the magnetic field are transferred to the
frequency domain [13], it is evident that the product of the harmonics content of different
frequencies leads to a density power with a clear physical existence.

The concept of geometric apparent power was first introduced by Menti in 2007 [14]. It
was demonstrated that the traditional apparent power is a particular case of the geometric
apparent power for systems that operate under sinusoidal conditions. Later, in 2010,
Castro-Nufiez presented a new mathematical framework based on the use of k-blades
in GA for solving and analysing electrical circuits under sinusoidal conditions [15]. The
concept of geometric impedance was introduced and applied to single-phase RLC circuits.
The theory was extended by the same author for non-linear circuits in the presence of
harmonics [16,17]. The improvements compared to traditional theories were demonstrated
through examples. However, some drawbacks and inconveniences were found in this
particular formulation [18]. Castilla and Bravo [19,20] made improvements to former
theories and presented an alternative formulation, called generalized complex geometric
algebra. This theory can be used to perform power calculations, but cannot solve electrical
circuits in the GA domain. Recently, Montoya et al. [10,11] have studied power flows
under non-sinusoidal conditions using GA. These developments were applied in different
applications such as power factor correction and non-active current compensation, but only
for single-phase systems. Moreover, new GA developments have redefined the geometric
apparent power so that it can be fully applied to single-phase electrical circuits operating
under any type of voltage and current distortion [12]. In addition, recent publications have
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presented a formulation of a GA power theory in the time domain that establishes the basis
for both instantaneous and averaged current decomposition [21].

GA has already been applied in a number of cases to single-phase systems, but the
application to three-phase systems has been seldom addressed in the literature to date. To
the best of the author’s knowledge, the only attempt was undertaken by Lev-Ari [22] in
2009. However, this work only presented preliminary concepts and the effectiveness of the
theory was not validated. No further results have been published to date.

In this paper, GA is applied to analyse and solve three-phase electrical circuits under
sinusoidal and non-sinusoidal conditions. This can be seen as a relevant improvement
compared to previous theories based on GA that only addressed single-phase electrical
systems. Note that this is an initial effort towards a more complete polyphase framework
based on GA, where asymmetries and unbalanced effects should be taken into account. In
order to substantiate the validity of the proposed theory, several examples are presented
and solved in detail. Finally, the conclusions and suggestions for further research are
drawn. The main benefits of the application of geometric algebra to power systems are:

e Itis possible to define a new power concept based on geometrical principles that take
the interaction of voltage and current harmonics of different frequency into account.
This is not possible using phasors based on complex algebra;

e  Unified criteria and methods are established for the study of electrical circuits based
on a single tool that makes it possible to tackle multidimensional problems, such as
those existing in polyphase circuits;

e Itestablishes basic principles for the compensation of non-active current that allow
for the optimisation of energy losses in power transmission lines.

2. GA for Electrical Applications: Overview

The proposed theory requires some basic knowledge of GA. References [23-26] pro-
vide introductory material. However, a basic overview of GA has been included in order
to make the paper self-contained. For detailed information about GA and its applications
to electrical systems, see [11,12].

A relevant concept in GA is the geometric product. It can be applied to voltage and
current vectors to calculate the so-called geometric apparent power, M. For example, for a
single-phase sinusoidal supply and a linear load, an Euclidean vector basis o = {cy, 03 }
can be chosen so that the voltage and the current can be represented as a vector, i.e.,
u = w101 + ap0p and i = B107 + Br0r. The geometric product is defined as the inner plus
the exterior product:

M=vwi=u-i+ufi= (11 +a2B2)+ (2182 — a2B1) 012 4)
p Q

where 01, is commonly known as a bivector. Note that it is an element that is not present
in traditional linear algebra.

In order to apply the GA power theory to poly-phase systems, voltages and currents
are arranged as multi-dimensional vector arrays. These will be referred to as arrays, while
the term vector will be used to refer to voltages and currents of a given phase. For example,
the current waveforms [ig(t) is(t) iT(t)] and voltage waveforms [ugn(t) usn (f) urn(t)] for
the three-phase system depicted in Figure 1 can be represented in the geometric domain as:

u:[uRN USN uTN], iz[iR is iT]T (5)
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The transformation is based on the principle of isomorphism between vector spaces. In
this case, the time domain periodic Fourier functions and Euclidean vector space. Thus, the
basis used for the geometric transformation can be chosen as in single-phase systems [12]:

Ppc = 1 — oo
¢@c1(t) =+V2coswt +— Lo
¢s1(t) =V2sinwt  +— o
(6)
Pen(t) = V2cosnwt <— 09,1
Psn(t) = V2sinnwt <— Oon

Any current or voltage variable x(t) in the time domain (including the DC component)
can be expressed as a vector x in the geometric domain by using 27 + 1 dimensions, where
n is the number of harmonics in x(t)

x = X000 + Y {_q (X¥1k02%—1 + Xk O0) )

while x1; and x, are the Fourier coefficients of the harmonic k and xy is the DC component.
From now on, inter-harmonics and the DC component will not be considered for the sake
of simplicity, but they can be seamlessly taken into account [11,18]. This representation
cannot be obtained in the complex domain since it involves rotating vectors at different
frequencies. Once the voltage and current vectors are defined, it is possible to introduce
the geometric apparent power for three-phase systems as:

iR
M = ui = [ugy usN urN]| is | = urNir + usnis + urnit =
iT
= URN - IR + UgN - Ig + UTN - iT + URN N iR + sy ANig +ury AN it (8)
M,=P My

In (8), the sum of scalar products uyy - iy, with k = {R, S, T}, leads to the geometric
active power M,, which is similar to the traditional definition of P. Meanwhile, the sum
of the exterior products uyy A iy leads to the geometric non-active power My, which is
similar to the traditional reactive power (Q) for a symmetric and sinusoidal voltage supply
feeding a balanced load.

Other apparent power definitions based on euclidean or geometric principles can be
found in the literature. For example, the RMS values of voltage and current vectors are
used in [27], i.e., S = ||U]|||I]|. Unfortunately, they exclusively rely on the concept of a
norm. Therefore, they cannot fulfil the principle of energy conservation [12].

The norm (RMS value) of any geometric array can be calculated by using the norm
definition [25]:

el = Vo = /(atn), = /a2 )

For a voltage waveform, the result is

URN

> =u-u" = [ury usny urn]| sy | = URNURN + UsNUSN + UTNUTN (10)
urN

= |lurn|* + llusn||* + |lurn || (11)

A similar result can be obtained for the current i. It can be proved that |[M| =
||| ||7]] [18], i.e., the product of vector norms equals the norm of the geometric power

M| = \J(MM?)o =/ (wi(ui)t)o = \/ (widTuT)o = \/{|ul]2il2)o = lullllill ~ (12)
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where the reverse of a general geometric array a is defined as a’ = a”.

Power Supply Load
R iR
s | 4
T UsN iT:
UTN >
N vvl

Figure 1. Three-phase three-wire electrical circuit.

3. Case I: Balanced, Symmetric and Sinusoidal

In this section, the proposed theory is applied to a three-phase circuit that operates
under balanced, symmetric and sinusoidal conditions. Although it is a well-known case,
already solved in the literature, we believe it is a good example to understand the GA-based
methodology. For clarification, the traditional complex algebra solution is also presented.
The computations were carried out using a Matlab library kown as GAPoTNumlLib devel-
oped by the some of the authors for GA in electrical engineering [28].

3.1. Current, Voltage and Impedance Calculations

A three-phase three-wire electrical circuit that consists of an ideal voltage source that
feeds a balanced star-connected load is shown in Figure 2. The phase voltages are urn(t),
ugn () and ury(t) while the line currents are ig(t), is(¢) and it (f). These waveforms are
defined in the time domain. They can be transformed to the geometric domain €, by using
the transformation shown in (6). Since the system is balanced and sinusoidal, there is only
a fundamental harmonic component, i.e.,, n = 1. Thus, the dimension of the geometric
domain is two (&, ). Under these assumptions, the chosen basis ¢ includes one scalar, two
vectors and one bivector, i.e., o = {1, 0,05, 012 }.

iR

Figure 2. Symmetrical three-phase, three-wire circuit.

The following voltage waveforms are considered:

ugrn(t) = V22U cos(wt + @)
ugn(t) = V22U cos(wt + ¢ — 27/3) (13)
urn (t) = V2U cos(wt + ¢ +27/3)

Without loss of generality and for simplicity reasons, it is assumed that U = 1V,
¢ = 0°and w = 1rad/s. In this case, by virtue of (6), the geometric voltages become

1 V3 1 V3
URN = 01, USN = —5011T =02, UIN = —501 = =02 (14)
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which resembles the standard phasor representation in the complex domain, being o the
real part, and o, the imaginary part, as in

. . 1, V3. .
pn =1, dign = =5+ o), TN =

5 _ QJ (15)

1
2 2
The Euler formula widely used in complex algebra e?/ = cos ¢ + sin ¢j, can also be
used in GA [23]:
e?712 = cos @ + sin poyp (16)

This exponential entity is commonly known in GA as spinor, i.e., a multivector made
up of a scalar plus a bivector [29]. Any vector multiplied by a spinor undergoes a rotation
of ¢ degrees in the plane defined by the bivector (in this case ¢15) and a scaling. Therefore,
spinors are commonly used to rotate elements in GA (unitary spinors are also known as
rotors [24]). Note that the impedance and admittance of a passive element can also be
represented as a spinor, as explained later. Hence, the voltage in (14) can be expressed in
polar form as:

URN= 600120'1: 1£0
usy=e 120712¢1= 1/-120 (17)
urn= e20g = 1,120

The reader should keep in mind that right- and left-multiplication between vectors
and rotors produce rotations in opposite directions. In the rest of the paper, rotors will
left-multiply vectors. In (17), it is easy to identify 120, 1/—-120 and 1120 as geometric
vectors in the plane ¢1-03. They resemble the complex phasors eY, 67120/ and €129 in the
complex plane, respectively. Line voltages can be calculated as follows:

URS — URN — USN — \/§€300120'1 = \/5430
UgT = UgN — UTN = V3e 120, = \/3/-90 (18)
urg = ury — ugy = V31201 = /3150

Assuming an RL load with R =1/ V2Qand L =1/v2H, the geometric impedance
becomes:

1 1
Z=R+Xy =72 =R+ Lwopp = —=+ —=01p = e

V2 V2
Note that the traditional form in complex notation is % + % j = . A relevant

property of vectors and multivectors in GA is that the existence of an inverse is always
guaranteed, provided that they are not null. For example, for a multivector in &, given by
X = Xy + X019 + Xp0o + X302 and a vector x = x101 + xp07, their inverses are:

x1=xt/(xxt), x'=1/x=x/|x|? (19)

where . noo n K1) /2
X' =Y (XN = Y () 2(x),

k=0 k=0
is the reverse of X and (X); is an operator that extracts the k-th grade element of X. The
admittance can be calculated as follows:

VAl 1 1 1
Y=Z'=__"=G+B,=—-e %2 = o1y = e B (20)

Al z V2 V2

The currents can be found by applying Kirchhoff and Ohm’s laws to the former
expressions, yielding:
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. 1 —450'12
lR:YuRN:ﬁ(U'l‘f'U'Z):e o1
. —-1—-+3 -1+4++3 _
15 = YuSN = \[0'1 \fo’z =e 1650120’1 (21)

2v2 22
iT:YuTN: 71+ﬁ0’1+ 717\/5
2V/2 2V/2
Compare the results of (22) with that of complex notation 4%/, ¢~16% and 7. Tt
may look like the complex notation is lighter than that of GA, but it comes at a cost:
only two dimensions can be handled at a time, i.e., only one harmonic component can be
solved. Figure 3 shows a graphical representation of geometric vectors that resembles the
traditional Argand diagram for complex numbers. However, the concept of phase shift
now leads to a negative angle, represented as a rotation in counter-clockwise direction.
Meanwhile, phase lead is represented by a positive angle and a rotation in clockwise
direction. This interesting fact can be explained by using the trigonometric identity sin 6 =

cos(6 — 7r/2). Therefore, we conclude that sin wt lags cos wt (o lags o).

= 675(7'12 0.1

o2

18

sy = \[50'2

1 3
lisy = **01+£0'2

URN = 01

12

P . 1 V3
2 2 72 Ury = =501 502 2 -

Figure 3. Representation of voltage and current geometric vectors in the plane o 07.

Compared to traditional complex algebra, the graphical representation of powers
and impedances/admittances in GA is slightly different. These elements are spinors, i.e.,
entities that consist of a scalar and a bivector part. Therefore, they should not be depicted
in the plane o4-0, but in the scalar-bivector one. It is a subtle difference, but it is worth to
highlight this aspect. Although both GA objetcs and complex numbers can be depicted in
Argand diagrams, completely different representations are used for GA objects, according
to their nature (impedances/powers or voltages/currents). Figure 4 shows an example of a
graphical representation, where the x axis now represents scalars and the y axis represents
bivectors. This interpretation is a novel contribution of this paper.
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52 Power Triangle

28
26
24

22

Impedance Triangle

VA X

04

0.2

-06 -04 02 © 0.2 0.4 0.6 0.8 1 12 14 16 18 2 2.2 24 26 28 3 3.2 34 36 38

o R P scalar

Figure 4. Power and impedance triangle in GA plane scalar-o7;.

3.2. Power Calculations

The norm of the voltage and current arrays can be calculated by using (5) and (11):

URN
1 3 1 3
lul|> = u-u=uu’ = [ugy usny urn] {usy | = o101 + (—0’1 + fO'Q) <—(71 + \[02> +

2 2 2 2
UTN
1 V3 1 V3
iR
li|>=i-i=iTi=[igisir]|is| =3 (23)
ir

Therefore, the concept of three-phase geometric apparent power can be used, yielding:
M=ui=u-i+ulNi=M;+ My (24)

where

M:i+1+\@ V3(-1++v3) 1-v3  V3(1+3)

N IV B, SRV, R,
1, 1-v3 V31+v3)  1+v3 3(-1+3)

My = |—+ + + +
NTIV2 T a2 12 12 12

After some algebraic manipulations, the geometric apparent power can be written as:

012

M=M,+My=P+Qoqp = (25)

3 n 3 -
=t =0
V2 V2

It can be seen that the geometric power consists of two terms of different nature. On
the one hand, the active geometric power M,, which is a scalar number that is equal to the
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active power P for the sinusoidal case. Therefore, for this example, P = R||i||> = 3//2.
On the other hand, we get the non-active power My, which is a bivector. For the ideal
case, the non-active power is equal to Q. Therefore, in this example, Q = X||i||> = 3/V/2.
Furthermore, it can be verified that || M|| yields to the same result as the traditional apparent
power S by using (12):

M| = \/(3/\@)2+ (3/V22 = [[ul|]li =3 (26)

A relevant difference between M and S is that the result is a multivector and not a
scalar nor a complex number, as in the traditional apparent power, S. For this example
(balanced and sinusoidal), the result is a spinor, where the scalar part is the active power P,
while the bivector part is the well-known reactive power Q.

3.3. Current Decomposition

GA can be used to decompose currents in components that are relevant for engineering
purposes (e.g., filter design), as in other power theories [6,30]. For sinusoidal single-phase
circuits, the current can be decomposed into two terms: active and reactive, i.e., current in
phase and in quadrature with respect to the voltage, respectively. However, if the source
voltage is not sinusoidal, an additional term appears. This term is commonly known as
scattered current in the CPC theory [27].

In GA, it is possible to decompose currents by applying Kirchhoff laws [31]. In the
case under study, the current decomposition yields:

ir = Yrugrn = (Gr + Bro12)urn
ic = Ysugy = (GS + BSU'12)uSN (27)
it = Yrurn = (Gr + BTU'lZ)uTN

which can be expressed in array form as:

Yrurn GRURN Bropugn
Ysusy | = | Gsusy | + | Bsopusy (28)
Yrury Grurn Bropurn

iy i

Therefore, the current can be decomposed into a parrallel current array i, (proportional
to the voltage) and a quadrature current array i, (in quadrature with the voltage). This
finding is inline with Shepherd and Zakikhany theory [4]. The squared norm of i, can be
calculated using (9):

lip = ip - ip = GRllurn 1 + G§llusn 1> + GHllurn |1? (29)

Note that for a balanced load, Gk = Gs = Gt = G. Therefore, the active power can be
written as:
P =R|ip|? (30)

Since the voltages of the system under study are balanced, then ||u||? = 3||ugy||?.
Therefore:

P

G=-
3[|urn |2

(31)

Figure 5 shows a three-phase balanced circuit equivalent to that depicted in Figure 2.
When these circuits are supplied with the same voltage u#, both demand the same active
power P. In this case, the active power can be easily calculated:

P = Gellugn||* + Gellusn||* + Gellurn | (32)
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Therefore, the equivalent conductance G, is:

P

= =G (33)
7 urnl2+ [Jusn |2 + lurn |

The same analysis can be carried out for the susceptance B. by using an equivalent
load written in terms of reactances. Therefore, it is possible to derive a general expression
for the equivalent admittance:

Yo = (Yr+ Y5+ Yr)/3 = Ge + Beoa (34)

This expression simplifies the decomposition of currents into components that are
significant for the engineering practice. As shown in (29), G, (the scalar part of ¥;) is related
to the parallel current, which, for sinusoidal systems, matches the active current, i.e., the
minimum current that produces the same active power P. B, (the bivector part of ¥;) is
the equivalent susceptance, and leads to the quadrature current. This current does not
produce net power transfer and increases the total current, thereby increasing losses. For
this example, the geometric power associated to the current components can be obtained
asin (8):

P =M, =M, = uip

. 35
Q =My = M; = ui, (35)

Compared to the traditional apparent power, the three-phase geometric apparent
power defined in this work fulfills the Tellegen’s Theorem and is conservative (see
references [10,11,20]) since:

M =M, +My =M, +M, (36)
R IR " Ge \\\
O > !
. nul
o —e—\/\ +N:
T i | Ge :
o —eo—\\ )

R

Figure 5. Equivalent three-phase balanced resistor.

3.4. Voltage Transformation Using Geometric Rotors

One of the most interesting features of GA is its ability to spatially manipulate geo-
metric objects. For example, it is widely used in computer graphics to perform translations,
reflections, or, more interestingly, rotations. In electrical engineering, a transformer can be
considered as an element that causes a phase shift and a scaling of voltage or current signals
between its primary and secondary terminals. This translates into a scaling and rotation in
the geometrical domain, so that a voltage or current vector applied to the primary will be
seen as a rotated and scaled vector in the secondary.

On the basis of the circuit in Figure 2, a three-phase transformer can be placed between
the source and the load according to Figure 6. Let us assume that the transformer has a

connection group Dy11. Therefore, the voltages of the secondary will be shifted by HT”
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and scaled by % % with respect to the primary. For the symmetric case, represented by
Equations (13) and (14), the time domain voltage in the secondary is

urn(t) ﬁfl; cos(wt— 117r>

= 7 :
, 2N 3
ugyn(t) = \\gN; cos (wt - 67T) (37)

ury(t) = gz; cos (Wt - 6)

which translates to the geometric domain as

1 Ny [V3 1 1 N 1 N[ V3 1
!/ e v - / _ - -t / _ - -1 _v- -
HRN \/§N2< 2 nr 202>I HsN V3 Ny 72 ¥IN V3 N2 2 ot 20-2 (38)

It is easy to prove that this operation corresponds to a rotation plus a scaling in the
geometric domain. For this purpose, it is enough to establish the geometric object associated
with the rotation, as well as the scale factor. In this way, the result can be expressed
compactly in geometrical terms as

1N

u = —_LRuR" 39
N (39)
where
_ Mre, 117 . 117
R=c¢12 cos ET + sin ETR [l (40)

Note that the rotor angle is just half of the full rotation angle, because the rotation
is a sandwich operation that operates half on each side of the vector. The detail of the
development of (39) is as follows

[ 61]1727[0120'1671]17271012 i
.1.
, 1N + 1N R”RNR+ 1 Ny | ei5on _lgﬁﬁﬁ e~ HFon
W =—"RuR" = —32| RusyR" | = —=— 2 >
V3 N2 V3 Np RuryR! V3 N2
Ur,, 1 V3 _lx,
e 12<_2”1_2‘72)€ e (1)
3 1
%‘”5"2
1 N
AN 7
2“1 o2

Figure 6. Three phase circuit with a Dy11 transformer with N; and N, windings for the primary and
secondary, respectively.
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4. Case II: Balanced, Symmetric and Non-Sinusoidal

In this section, the proposed theory is applied to a three-phase circuit that operates in
balanced, symmetric and non-sinusoidal conditions.

4.1. Current, Voltage and Impedance Calculations

Consider again the example in Figure 2, but supplied with a non-sinusoidal, symmetric
and positive sequence voltage:

urn(t) = Yoy \/EUk cos(kwt + ¢x)
27

usn(t) = Xp_4 \quk cos(kwt — k? + @) ()
2

urn(t) = Tiq \/Ellk cos(kwt + k?7T + @)

Table 1 shows the well-known mapping for frequency and symmetrical sequence
component depending on the harmonic order. Only three-wire systems will be considered
in this work. Therefore, zero-sequence voltage and current will not be considered since it is
guaranteed that they will not affect power calculations. The addition of the fourth wire is a
relevant topic for further research.

Based on (6), the voltage in the geometric domain is:

URN = Yg—q (Ug102k—1 + U Ok

1 V3
USN = Y jq <—2Mk10"2k1 + 2“k202k> 3)

0 1 V3
N = Yi—1 o MK1O2%k-1 — 5 U202k

where 1y = Uy cos ¢ and uy, = Uy sin ¢. The current array can be calculated as in (27),

yielding:
ir iR, iR, Yi—1 Gr, (Ug102k—1 + tgp02)
. . . . . 1
is | =ip+ig=|is, | + | is, | = | Ly Gs(—gUrion-1+ f”kZ‘TZk) + (44)
s ) . 2 X
T T, I, Yio1 Gr (= U o1 — %ukzﬁzk)

ip
Yk—1 Br T (2k—1) (2k) (k1 02k -1 + k2 02)
1
Yk=1Bs, 0 (ok—1)(2) (— 3Uk102% 1 + B oy)
1
Yk=1 BT o (2k—1)(26) (— 3 Uk1 02— 1_£uk20'2k)

ig

As in the sinusoidal case, it is possible to find an equivalent admittance for each of the
harmonics present in the system:

1
Yek = Gek + Bek0(2x—1)(26) = g(YRk + Y5, +Yg) (45)

Using the same rationale of (31), and similar to the approach of CPC theory by Prof.
Czarnecki, the equivalent conductance and susceptance for each harmonic is:

Py Qk

Gek = — = = Gy, By = —% = By (46)
Tl Tl
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Equation (33) is still valid even if # is non-sinusoidal, and it can be simplified as follows

P

e — W (47)

Table 1. Sequences for the different harmonic orders in a balanced three-phase system for
h=1,2,...,00.

Harmonic Order Radian Frequency Sequence
3h—2 (3h —2) wy positive (+)
3h—1 Bh—1) wy negative (—)

3h 3h wq zero (0)

4.2. Current Decomposition

The current consumed by loads is commonly decomposed for engineering purposes.
The main idea is to split the current into virtual components that can be used, for example,
to design and control active compensators. Current decomposition is based on Fryze’s
ideas, where active and non-active currents are defined [6]. In this work, the equivalent
conductance is used to calculate the active current [12]:

u

= M (48)
a2

i, = Gou

The current i, is part of iy, as already shown in the literature [32,33]. Therefore, the
scattered current becomes:
is =iy — i, (49)

The total current can be decomposed as follows:
i=ip,+i;=1is+is+1ig (50)
The three components in the left-hand side part of (50) are in quadrature. Therefore:
igis =0, i5-i3=0, i5-i;=0

4.3. Numerical Example

The circuit in Figure 2 will be analysed for the case of a non-sinusoidal symmetric
voltage source such as:
urn (1) = v/2[230 cos wt + 110 cos 2wt]
ugn (t) = V/2[230 cos(wt — 271/3) + 110 cos(2wt + 271/3)] (51)
urn (t) = V2230 cos(wt + 271/3) + 110 cos(2wt — 271/3)]

where the harmonic sequences presented in Table 1 have been taken into account. The
transformation to the geometric domain follows the rules presented in (6), thus

URN = 2300'1 + 110(73
ugy = 2306 27/3%12 ¢y 4 110027/3%34 oy (52)

ury = 23062372 4 1100 2"/30% gy
The voltage array u can be expressed as:
u=u +up (53)

where u; and uy are the voltages of the fundamental and the second harmonic, respectively.
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The impedance for each frequency should be obtained in order to calculate the current.
Since the load is balanced, then Zr, = Zs, = Z7, = Z;. The impedances are:

Z1 = 0.7071 + 0.7071 12, Y1 = 0.7071 — 0.7071 o1z
Z» = 0.7071 + 1.4142 034, Yo = 0.2828 — 0.5657 0734

Now, the current array can be calculated as in (22):

2
i= Z i, =11 +i = Yiu + Youp (54)
k=1

By substituting numerical values in (54):

+162.6307 + 162.630% + 31.1103 + 62.2204 162.630 +31.1103
i= | —222.1601 + 59.5305 + 38.3303 — 58.060 | = | —81.3207 + 140.8405 — 155505 — 26.940
59.5301 — 2221605 — 69.4405 — 4.1604 —81.320 — 140.840 — 15.5503 + 26.940;
ip
+ 162.630 + 62.2204
+ | —140.8507 — 81.3205 + 53.8805 — 31.110y (55)
140.85¢, — 81.320 — 53.8805 — 31.110y

1q

It can be verified that i, and i; are orthogonal since i), - i; = 0.
As the voltage and current of the load are known, the apparent geometric power can
be calculated:
M =ui =M, + My (56)

where
M, =P =122,485
My = 112,217 015 + 20, 534034 —16,100073 — 5,3660714 — 5,366073 + 16, 100074
Qs

The units of active power are Watts [W] and every bivector in My has units of VoltAmperes
[VA]. The terms ¢"(5;_1)(2x) refer to the reactive power of the harmonic k, in the Budeanu'’s
sense [34] (voltage and current components of the same frequency that are in quadrature).
The non-active power My includes all the components that do not produce active power P.
The active current can be obtained by using (48):

+2300’1 + 1100’3
i, =Gou = P U= 1;; gig —11507 + 199.1905 — 5503 — 95.26074 (57)
o] ’ —1150q — 199.1905 — 5503 + 95.260;
+144.250 + 68.9903

=| —72.120¢ + 1249205 — 344905 — 59.740,
—72.1207 — 124.920 — 34.49¢5 + 59.740,

The norm of the active current is ||i,]|| = 159.9 A and the norm of the total current is
||i]| = 240.29 A. The scattered current can be calculalated by using (49):

is = iy — ig (58)
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[+162.630 + 311103 +144.2501 + 68.99073
is = —81.3207 — 140.8405 — 26.9403 — 15.5604 | — —7212071 + 1249209 — 34.4903 — 59.7404 | =
| —81.3201 + 140.8407 + 26.9403 — 15.5604 —721207 — 124.920, — 34.4905 + 59.7404
ip ig
[4-18.390 — 37.8803
= | —9.1901 + 15920, + 18.9403 + 32.8004 (59)

| —9.1901 — 15.9203 + 18.9403 — 32.8004

The norm of the scattered current is ||is|| = 42.10 A. The above results are in line with those
obtained by using complex numbers (which are omitted for the sake of brevity).

Figure 7 shows the waveforms of the source voltage and several current components.
The active current is proportional to the sum of the fundamental and second harmonic
components of the voltage waveform. This current is part of the parallel current, along
with the scattered current. It can observed that all the currents are balanced, as expected.

Load current
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Figure 7. Voltage and current waveforms for Example 2. (a) Load current, (b) parallel current,
(c) quadrature current, (d) active current and voltage, and (e) scattered current.
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5. Conclusions

In this paper, GA was applied in order to analyse and solve symmetric and balanced
three-phase electrical circuits that operate under sinusoidal and non-sinusoidal conditions.
The concept of geometric vector was presented in polar coordinates so that operations
such as voltage and current vector rotations can easily be performed. The Argand diagram
o1-02 was used to depict vectors, while the scalar-bivector one was introduced in order
to depict impedances/admittances and power components. This is a clear difference
compared to traditional representations based on complex numbers. It has been shown
that the proposed theory can be applied directly over three-phase electrical circuits using
Kirchhoff and Ohm'’s law. The use of the geometric apparent power M and the current
decomposition with relevant engineering meaning provide additional features compared
to traditional power theories. The examples presented in the paper verify the validity of
the proposed theory. Further developments will include the addition of a fourth wire and
unbalanced loads under asymmetrical and distorted voltage conditions. This fact requires
the use of orthogonal transformations, such as the one derived from the application of
the symmetrical components. It can be addressed through the addition a higher number
of dimensions.
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