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Abstract: Many problems of practical interest can be modeled and solved by using fuzzy graph (FG)
algorithms. In general, fuzzy graph theory has a wide range of application in various fields. Since
indeterminate information is an essential real-life problem and is often uncertain, modeling these
problems based on FG is highly demanding for an expert. A vague graph (VG) can manage the
uncertainty relevant to the inconsistent and indeterminate information of all real-world problems
in which fuzzy graphs may not succeed in bringing about satisfactory results. Domination in FGs
theory is one of the most widely used concepts in various sciences, including psychology, computer
sciences, nervous systems, artificial intelligence, decision-making theory, etc. Many research studies
today are trying to find other applications for domination in their field of interest. Hence, in this
paper, we introduce different kinds of domination sets, such as the edge dominating set (EDS), the
total edge dominating set (TEDS), the global dominating set (GDS), and the restrained dominating
set (RDS), in product vague graphs (PVGs) and try to represent the properties of each by giving
some examples. The relation between independent edge sets (IESs) and edge covering sets (ECSs)
are established. Moreover, we derive the necessary and sufficient conditions for an edge dominating
set to be minimal and show when a dominance set can be a global dominance set. Finally, we try to
explain the relationship between a restrained dominating set and a restrained independent set with
an example. Today, we see that there are still diseases that can only be treated in certain countries
because they require a long treatment period with special medical devices. One of these diseases is
leukemia, which severely affects the immune system and the body’s defenses, making it impossible
for the patient to continue living a normal life. Therefore, in this paper, using a dominating set, we
try to categorize countries that are in a more favorable position in terms of medical facilities, so that
we can transfer the patients to a suitable hospital in the countries better suited in terms of both cost
and distance.

Keywords: vague set; dominating set; product vague graph; global dominating set; medical sciences

1. Introduction

Fuzzy set theory and the related fuzzy logic were proposed by Zadeh [1] for dealing
with and solving various problems in which variables, parameters, and relations are only
imprecisely known, and hence, for which approximate reasoning schemes should be used.
Such a situation is common in the case of virtually all nontrivial and, in particular, human-
centered phenomena, processes, and systems that prevail in reality, and it is difficult to
use conventional mathematics, based on binary logic, for their adequate characterization.
Fuzzy set theory has been developed in many directions and has evoked great interest
among mathematicians and computer scientists working in different fields of mathematics.
Rosenfeld [2] used the concept of a fuzzy subset of a set to introduce the notion of a
fuzzy subgroup of a group. Rosenfeld’s paper spearheaded the development of fuzzy
abstract algebra. Zadeh [3] introduced the notion of interval-valued fuzzy sets as an
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extension of fuzzy sets, in which the values of the membership degrees are intervals of
numbers instead of the numbers themselves. Interval-valued fuzzy sets provide a more
adequate description of uncertainty than traditional fuzzy sets. It is therefore important
to use interval-valued fuzzy sets in applications such as fuzzy control. One of the most
computationally intensive parts of fuzzy control is defuzzification [4]. Since interval-valued
fuzzy sets are widely studied and used, we briefly describe the work of Gorzalczany on
approximate reasoning [5,6] and Roy and Biswas on medical diagnosis [7]. The notion of
vague set theory, a generalization of Zadeh’s fuzzy set theory, was introduced by Gau and
Buehrer [8] in 1993.

A graph is a very general and powerful formal and algorithmic tool for representation
modeling, analyses, and solutions of a multitude of complex real-world problems. An
immediate result of the popularity of fuzzy set theory was graph theory fuzzification, which
was instigated by Rosenfeld [9], who proposed the concept of FG and many related concepts
and properties, such as paths, cycles, and connectedness. Basically, an FG is a weighted
graph in which the weights are in the range of [0, 1] and are defined over a fuzzy set of
vertices. FG models are expedient mathematical tools for dealing with different domains
of combinatorial problems in algebra, topology, optimization, the computer sciences, and
the social sciences. FG models outperform graph models due to the natural existence
of vagueness and ambiguity. Gau and Buehrer [8] described VS theory by providing a
definition of the notion of VS by changing an element value in a set with a [0;1] subinterval.
A VS is highly effective for explaining the existence of the false membership degree.
Furthermore, Kauffmann [10] introduced FGs based on Zadeh’s fuzzy relation [3], and
Gupta et al. [11] used fuzzy set theory in medical sciences. Moreover, Akram et al. [12–21]
developed several concepts and results on vague graphs, and Mordeson et al. [22–24]
studied some results in FGs. Pal et al. [25–27] represented the fuzzy competition graph
and presented some remarks on bipolar fuzzy graphs, and Borzooei et al. [28–32] analyzed
several concepts of VGs. In addition, Shao et al. [33] defined new results in FGs and
intuitionistic fuzzy graphs, Szmidt and Kacprzyk [34] described intuitionistic fuzzy sets in
some medical applications, Davvaz and Hassani Sadrabadi [35] studied an application of
an intuitionistic fuzzy set in medicine, Dutta et al. [36] introduced fuzzy decision making
in medical diagnosis using an advanced distance measure on intuitionistic fuzzy sets,
and, finally, Ramakrishna [37] proposed the concepts of VG and examined the properties.
Kosari et al. [38] defined vague graph structure and studied its properties.

A PVG is referred to as a generalized structure of an FG that delivers more exactness,
adaptability, and compatibility to a system when matched with systems running on FGs.
Furthermore, a PVG is able to concentrate on determining the uncertainty coupled with
the inconsistent and indeterminate information of any real-world problems, whereas FGs
may not lead to adequate results.

Domination in PVGs theory is one of the most widely used concepts in various sci-
ences, including psychology, computer science, nervous systems, artificial intelligence,
decision-making theory, and various combinations. Many authors today are trying to find
other uses for domination in their fields of interest. The dominance of FGs has been stated
by various researchers, but, as a result of PVGs being broader and more widely used than
FGs, today, it is used in many branches of engineering and medical sciences. Similarly,
it has many applications for the formulation and solution of a multitude of problems
in various areas of science and technology, such as computer networks, artificial intelli-
gence, combinatorial analyses, etc. Therefore, considering its importance, we attempted
to study different types of domination of PVGs and examine their properties by giving
examples. Furthermore, we present an application of domination in PVGs in the field of
medicine. Ore [39] pioneered the application of the expression “domination” for undirected
graphs. Somasundaram [40] defined domination and independent domination in FGs.
Shubatah et al. [41] studied edge domination in intuitionistic fuzzy graphs. Mahioub
and Shubatah [42,43] investigated domination in product fuzzy graphs. Gani and Chan-
drasekaran [44,45] introduced notions of fuzzy DS and independent DS utilizing strong
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arcs. The domination concept in intuitionistic fuzzy graphs was examined by Parvathi
and Thamizhendhi [46]. Manjusha and Sunitha [47,48] studied coverings, matchings, and
paired domination in fuzzy graphs using strong arcs. Gang et al. [49] investigated total
efficient domination in fuzzy graphs. Karunambigai et al. [50] introduced domination in
bipolar fuzzy graphs. Cockayne [51] and Hedetniemi [52] described the independent and
irredundance domination number in graphs.

Domination in PVGs is so important that it can play a vital role in decision-making
theory, which concerns finding the best possible state in a test or experiment. Although
some DSs in FGs have been proposed by a number of authors, the breadth of the subject and
its various applications in engineering and medicine, and the limitations of past definitions,
prompted us to introduce new types of DSs on the PVG. In fact, the limitations of the old
definitions in FGs forced us to come up with new definitions in PVGs. Hence, in this study,
we represent different kinds of DSs, such as EDS, TEDS, GDS, and RDS, in PVGs and also
try to described the properties of each by giving some examples. The relationship between
IESs and ECSs are established. A comparative study between “EDS and Minimal-EDS”,
and “IES and Maximal-IES” was conducted. Some remarkable properties associated with
these new DSs were investigated, and the necessary and sufficient condition for a DS to
be a GDS was stated. Finally, we defined RIS and RDS and examined the relationships
between them in a theorem. Today, many cancer patients pass away due to the lack of the
necessary medical equipment in their country. Therefore, it is indispensable to identify the
countries that have the necessary conditions to treat such patients. Hence, in this paper,
with the help of DS, we attempt to identify countries that are in a more favorable position
in terms of medical facilities, so that we can transfer the patients to a suitable hospital in
these countries, which are better suited in terms of both cost and distance.

2. Preliminaries

In the following, some basic concepts on VGs are reviewed in order to facilitate the
next section.

A graph G∗ = (V, E) is a mathematical structure containing of a set of nodes V
and a set of edges E, so that every edge is an unordered pair of distinct nodes. An FG
has the form of ζ = (γ, ν), where γ : V → [0, 1] and ν : V × V → [0, 1] is defined as
ν(mn) ≤ γ(m) ∧ γ(n), ∀m, n ∈ V, and ν is a symmetric fuzzy relation on γ, and ∧ denotes
the minimum.

Definition 1. ([8]) A VS A is a pair (tA, fA) on set V, where tA and fA are used as real-valued
functions, which can be defined on V → [0, 1], so that tA(m) + fA(m) ≤ 1, ∀m ∈ V.

G∗ is a crisp graph (V, E) and ζ a VG (A, B) throughout this paper.

Definition 2. ([37]) A pair ζ = (A, B) is called a VG on a crisp graph G∗, so that A = (tA, fA)
is a VS on V and B = (tB, fB) is a VS on E ⊆ V ×V, so that tB(mn) ≤ min(tA(m), tA(n)) and
fB(mn) ≥ max( fA(m), fA(n)), ∀mn ∈ E.

Example 1. Consider a VG ζ as in Figure 1, such that V = {m, n, z}, E = {mn, nz, mz}.
By routine computations, it is easy to show that ζ is a VG.
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Figure 1. VG ζ.

Definition 3. ([17]) Let ζ = (A, B) be a VG.
(i) The cardinality of ζ is defined as:

|ζ| =
∣∣ ∑

mi∈V

1 + tA(mi)− fA(mi)

2
+ ∑

mini∈E

1 + tB(mini)− fB(mini)

2

∣∣;
(ii) The vertex cardinality of ζ is defined as |V| = ∑mi∈V

1 + tA(mi)− fA(mi)

2
, ∀mi ∈ V, is

called the order of a VG ζ, and is denoted by p(ζ);

(iii) The edge cardinality of ζ is defined as |E| = ∑mini∈E
1 + tB(mini)− fB(mini)

2
, ∀mini ∈ E,

is called the size of a VG ζ, and is denoted by q(ζ).

Example 2. In Example 1, it is easy to show that

|V| = 0.45 + 0.4 + 0.35 = 1.2,

|E| = 0.3 + 0.25 + 0.35 = 0.9.

Definition 4. ([46]) Let ζ = (A, B) be a VG. If mi, mj ∈ V, then the t-strength of connectedness
between mi and mj is defined as t∞

B (mi, mj) = sup{tk
B(mi, mj)|k = 1, 2, · · · , n} and the f -

strength of connectedness between mi and mj is defined as f ∞
B (mi, mj) = inf{ f k

B(mi, mj)|k =
1, 2, · · · , n}. Furthermore, we have

tk
B(mn) = sup{tB(m, n1) ∧ tB(n1, n2) ∧ tB(n2, n3) ∧ · · · ∧ tB(nk−1, n)|

(m, n1, n2, · · · , nk−1, n) ∈ V}

and

f k
B(mn) = inf{ fB(m, n1) ∨ fB(n1, n2) ∨ fB(n2, n3) ∨ · · · ∨ fB(nk−1, n)|

(m, n1, n2, · · · , nk−1, n) ∈ V}.

Example 3. In Example 1, the t-strength of connectedness and the f -strength of connectedness for
edge mz are as follows:

t∞
B (mz) = 0.1, f ∞

B (mz) = 0.4.

Definition 5. ([46]) An edge mn in a VG ζ = (A, B) is called the strong edge if tB(mn) ≥
(tB)

∞(mn) and fB(mn) ≤ ( fB)
∞(mn).

Example 4. Consider the VG ζ as in Figure 2.
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Figure 2. VG ζ with two strong edges.

Clearly, e1 and e2 are strong edges.

Definition 6. ([46]) The two vertices mi and mj are said to be neighbors in a VG ζ if either one of
the following conditions holds:
(i) tB(mimj) > 0, fB(mimj) > 0;
(ii) tB(mimj) = 0, fB(mimj) > 0;
(iii) tB(mimj) > 0, fB(mimj) = 0, mi, mj ∈ V.

The two vertices mi and mj are said to be strong neighbors if tB(mimj) = min{tA(mi), tA(mj)}
and fB(mimj) = max{ fA(mi), fA(mj)}.

Definition 7. ([18]) A VG ζ = (A, B) is called complete if tB(mimj) = min{tA(mi), tA(mj)}
and fB(mimj) = max{ fA(mi), fA(mj)}, ∀mi, mj ∈ V.

VG ζ is called strong if tB(mimj) = min{tA(mi), tA(mj)} and fB(mimj) = max{ fA(mi),
fA(mj)}, ∀mimj ∈ E.

Definition 8. ([29]) Let ζ = (A, B) be a VG. Suppose that m, n ∈ V, we say that m dominates n
in ζ if there exists a strong edge between them.

A subset S of V is called a DS in ζ if for each m ∈ V − S, ∃ n ∈ S, so that m dominated
n. A DS S of a VG ζ is referred to as a minimal DS if no proper subset of S is a DS.

Example 5. Consider the VG ζ as in Figure 3.

Figure 3. Dominating sets in vague graph ζ.

It is easy to show that {m, n, z} and {n, z, w} are DSs.
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Definition 9. ([18]) The complement of a VG ζ = (A, B) is a pair G = (A, B), where A = A
and B = (tB, fB) are defined as

tB(mn) = tA(m) ∧ tA(n)− tB(mn), and

fB(mn) = fB(mn)− fA(m) ∨ fA(n), ∀mn ∈ E.

Definition 10. ([32]) Let ζ = (A, B) be a VG. If tB(mn) ≤ tA(m) × tA(n) and fB(mn) ≥
fA(m)× fA(n), ∀m, n ∈ V, then the VG ζ is called PVG. Note that a PVG ζ is not necessarily
a VG. A PVG ζ is called a complete PVG if tB(mn) = tA(m)× tA(n) and fB(mn) = fA(m)×
fA(n), ∀m, n ∈ V.

The complement of PVG ζ = (A, B) is ζ = (A, B), where, A = A = (tA, fA) and
B = (tB, fB), so that tB(mn) = tA(m)× tA(n)− tB(mn) and fB(mn) = fB(mn)− fA(m)×
fA(n).

Example 6. Consider the PVG ζ as in Figure 4.

Figure 4. Product vague graph ζ.

Obviously, ζ is a PVG since it has the condition of Definition 10.

Definition 11. ([43]) An edge mn in a PVG ζ is called an effective edge if tB(mn) = tA(m)×
tA(n) and fB(mn) = fA(m)× fA(n).

Example 7. In Example 6, mn is an effective edge.

0.06 = tB(mn) = 0.2× 0.3,

0.12 = fB(mn) = 0.3× 0.4.

Definition 12. ([43]) If ζ be a PVG, then the vertex cardinality of S ⊆ V is defined as

|S| =
∣∣∣∣ ∑

m∈S

1 + tA(m)− fA(m)

2

∣∣∣∣.
Definition 13. ([43]) Let ζ = (A, B) be a PVG, then the edge cardinality of K ⊆ E is defined as

|K| =
∣∣∣∣ ∑

mn∈K

1 + tB(mn)− fB(mn)
2

∣∣∣∣.
Definition 14. ([43]) Two edges mn and zw in a PVG ζ are said to be adjacent if they are neighbors.
Furthermore, they are independent if they are not adjacent.
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Definition 15. ([29]) Let ζ = (A, B) be a PVG. A vertex subset S of V(ζ) is called a DS of ζ if
for every node m ∈ V − S, ∃ a node n ∈ S, so that

tB(mn) = tA(m)× tA(n) and fB(mn) = fA(m)× fA(n).

Example 8. Consider the PVG ζ as in Figure 5.

Figure 5. Product vague graph ζ with a dominating set S.

It is easy to show that S = {n, z} is a DS.

Definition 16. ([43]) Let ζ = (A, B) be a PVG. Then, the degree of a node m is defined
as deg(m) = (degt(m), deg f (m)) = (M1, M2), where M1 = ∑m 6=n tB(mn) and M2 =

∑m 6=n fB(mn), for mn ∈ E.
A PVG ζ is said to be a (M1, M2)-regular if deg(mi) = (M1, M2), ∀mi ∈ V.

Example 9. In Example 8, we have

deg(m) = (0.05, 0.18) and deg(z) = (0.09, 0.3).

Definition 17. ([43]) Two nodes in a PVG ζ are said to be independent if there is no strong
arc between them. A subset S of V is said to be an independent set if every two nodes of S
are independent.

All the basic notations are shown in Table 1.

Table 1. Some basic notations.

Notation Meaning

FG Fuzzy Graph
VS Vague Set
VG Vague Graph
DS Dominating Set

EDS Edge Dominating Set
TEDS Total Edge Dominating Set
GDS Global Dominating Set
EIS Edge Independent Set
RDS Restrained Dominating Set
IES Independent Edge Set

GDN Global Dominating Number
EIN Edge Independent Number
ECS Edge Covering Set
ECN Edge Covering Number
EDN Edge Dominating Number

TEDN Total Edge Dominating Number
PVG Product Vague Graph
RIS Restrained Independent Set
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3. Edge Domination in PVGs

Definition 18. An edge subset K of E in a PVG ζ is said to be independent (IES) if tB(mn) <
tA(m)× tA(n) and fB(mn) > fA(m)× fA(n), ∀m, n ∈ K. The maximum cardinality among all
maximal IES in ζ is called the EIN and it is denoted by β1(ζ) or simply β1.

Example 10. Consider the PVG ζ as in Figure 6.

Figure 6. Product vague graph ζ with independent edge sets.

Here, {e1, e2}, {e1, e4}, {e2, e4}, and {e1, e2, e4} are IESs of ζ and β1(ζ) = 0.84.

Definition 19. An edge mn and a vertex z in a PVG ζ are said to cover each other if they
are incident.

Definition 20. An edge subset K of E in a PVG ζ, which covers all nodes in ζ, is called an ECS of
ζ. The minimum cardinality among all ECS is called the ECN of ζ and it is denoted by α1(ζ) or
simply α1.

Example 11. Consider the PVG ζ in Figure 7.

Figure 7. Product vague graph ζ with edge covering sets.

Here, {e1, e3} and {e2, e4} are ECSs and α1(ζ) = 0.5.

Theorem 1. An edge subset K ⊆ E in a PVG ζ is an independent set in ζ if E− K is an ECS of ζ.

Proof. By definition, K is an independent set if and only if no two edges of K are adjacent,
if and only if every edge of K is incident with at least one vertex of E− K, and if and only
if E− K is an ECS of ζ.

Example 12. Consider the PVG ζ as in Figure 7. It is easy to show that K = {e1, e3} is an
independent set and E− K = {e2, e4} is an ECS.
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Definition 21. An edge e of a PVG ζ is said to be an isolated edge if no effective edges are incident
with the vertices of e. Hence, an isolated edge does not dominate any other edge in ζ.

Example 13. In Example 11, it is easy to show that the edges mn and nw are isolated edges.

Definition 22. Let e be any edge in a PVG ζ.
Then, N(e) = {m ∈ E : m is an e f f ective edge incident with the nodes o f e} and is called

the open edge neighborhood set of e. N[e] = N(e) ∪ {e} is called the closed neighborhood set of e.

Definition 23. Let e be any edge in a PVG ζ. Then, dN(e) = ∑m∈N(e) |m| is called the edge
neighborhood degree of e. The minimum edge neighborhood degree of a PVG ζ is δ′N(ζ) =
min{dN(e)|e ∈ E}. The maximum edge neighborhood degree of a PVG ζ is ∆′N(ζ) = max{dN(e)|
e ∈ E}.

Example 14. Consider the PVG ζ as in Figure 8.
It is clear that N(e1) = {e2, e5} and dN(e1) = 0.91.

Figure 8. Open edge neighborhood set in product vague graph ζ.

Theorem 2. For any PVG ζ = (A, B) without isolated edges, α1(ζ) + β1(ζ) = q.

Proof. Let K be an EIS in ζ and S be an ECS in ζ so that |K| = β1(ζ) and |S| = α1(ζ). Then,
by Theorem 1, E− K is an ECS of ζ. Therefore, |S| ≤ |E− K| and α1(ζ) ≤ q− β1(ζ) or

α1(ζ) + β1(ζ) ≤ q. (1)

Furthermore, by Theorem 1, E − S is an EIS in ζ, so |K| ≥ |E − S|. Therefore,
β1(ζ) ≥ q− α1(ζ) or

α1(ζ) + β1(ζ) ≥ q. (2)

From (1) and (2), we obtain α1(ζ) + β1(ζ) = q.

Example 15. In Example 11, we have

α1(ζ) = 0.5, β1(ζ) = 0.52, and q = 1.02.

Therefore, Theorem 2 holds.

Definition 24. Let ζ = (A, B) be a PVG and ei and ej be two adjacent edges of ζ. We say that ei
dominates ej if ei is an effective edge. An edge subset K of E in a PVG ζ is called an EDS if, for
each edge ei ∈ E− K, ∃ an effective edge ej ∈ K so that ej dominates ei. An EDS K of a PVG ζ is
said to be a minimal EDS if for each edge e ∈ K, K− {e} is not an EDS. The minimum cardinality
between all minimal EDSs is called an EDN of ζ and is described by γ′(ζ) or simply γ′. An EDS K
of a PVG ζ is said to be independent if tB(mn) < tA(m)× tA(n) and fB(mn) > fA(m)× fA(n),
∀(m, n) ∈ K.
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Example 16. Consider the VG ζ as in Figure 9.

Figure 9. Vague graph ζ with effective edges.

In this example, {e1, e2}, {e2, e4}, {e3, e4}, and {e1, e3} are EDSs and γ′(ζ) = 0.84.

Theorem 3. An EDS K in PVG ζ is a minimal EDS if and only if for each edge e ∈ K, one of the
following two conditions holds:
(i) N(e) ∩ K = ∅;
(ii) ∃ an edge e ∈ E− K so that N(e) ∩ K = {e} and e is an effective edge.

Proof. Let K be a minimal EDS and e ∈ K. Then, Ke = K− {e} is not an EDS and hence ∃
t ∈ E− Ke, so that t is not dominated by any element of Ke. If t = e, we obtain (i) and if
t 6= e, we obtain (ii). Conversely, assume that K is an EDS, and for each edge e ∈ K, one of
the two conditions holds.

Suppose K is not a minimal EDS, then ∃ an edge e ∈ K, and K − {e} is an EDS.
Therefore, e is a strong neighbor to at least one edge in K − {e}, and the first condition
does not hold. If K − {e} is an EDS, then each edge in E− K is a strong neighbor to at
least one edge in K− {e}, and the second condition does not hold, which contradicts our
assumption that at least one of these conditions holds. Hence, K is a minimal EDS.

Theorem 4. Let ζ = (A, B) be any PVG without isolated edges. Then, for each minimal EDS K,
E− K is also an EDS.

Proof. Let e be any edge in K. Since ζ has no isolated edges, there is an edge t ∈ N(e). It
follows from Theorem 3 that t ∈ E− K. Hence, each element of K is dominated by some
element of E− K. Thus, E− K is an EDS in ζ.

Example 17. In Example 16, K = {e2, e4} is a minimal EDS and E − K = {e1, e3} is also
an EDS.

Theorem 5. For any PVG without isolated nodes, γ′(ζ) ≤ q
2

.

Proof. Any PVG without isolated nodes has two disjoint EDSs and hence the result follows.

Example 18. Consider the PVG ζ as in Figure 9. Clearly, q = 1.8, and we have γ′(ζ) = 0.84 <
q
2
= 0.9.

Theorem 6. An IES K of a PVG ζ is a maximal IES if and only if it is an IES and EDS.
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Proof. Let K be a maximal IES in a PVG ζ and, hence, for each edge e ∈ E− K, the set
K ∪ {e} is not independent. For each edge e ∈ E− K, ∃ an effective edge t ∈ K so that t
dominates e. Hence, K is an EDS. Therefore, K is both an EDS and IES. Conversely, assume
K is both independent and an EDS. Suppose that K is not a maximal IES, then ∃ an edge
e ∈ E− K, and the set K ∪ {e} is independent. If K ∪ {e} is independent, then no effective
edge in K is strong neighbor to e. Therefore, K cannot be an EDS, which is a contradiction.
Thus, ζ is a maximal IES.

Example 19. Consider the PVG ζ as in Figure 10.
In Figure 10, {e1, e2, e4} is a minimal IES that is both an IES and EDS.

Figure 10. Minimal independent edge set in product vague graph ζ.

Theorem 7. Every maximal IES K in a PVG ζ is a minimal EDS.

Proof. Let K be a maximal IES in a PVG ζ. By Theorem 6, K is an EDS. Assume K is not a
minimal EDS, ∃ at least one edge e ∈ K for which K− {e} is an EDS. However, if K− {e}
dominates E− {K− {e}}, then at least one edge in K− {e}must be strong neighbor to e.
This contradicts the fact that K is an IES in ζ. Hence, K must be a minimal EDS.

Definition 25. Let ζ = (A, B) be a PVG without isolated edges. An edge subset K of E is said to
be TEDS if for each edge e ∈ E, ∃ an edge t ∈ K, t 6= e, so that t dominates e.

Definition 26. The minimum cardinality among all TEDSs is called the TEDN of ζ and is denoted
by γ′t(ζ).

Example 20. Consider the PVG ζ as in Figure 11.

Figure 11. Product vague graph ζ with total edge dominating sets.
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Here, K1 = {e3, e4}, K2 = {e6, e2}, K3 = {e4, e2}, K4 = {e5, e4, e2}, K5 = {e1, e4, e2},
K6 = {e6, e3}, K7 = {e6, e3, e1}, K8 = {e6, e3, e5}, and K9 = {e6, e2, e1} are TEDSs of ζ and
γ′t(ζ) = 0.85.

Definition 27. A DS K of a PVG ζ is called GDS if K is also a DS of ζ. The minimum cardinality
among all GDSs is named GDN and is denoted by γg(ζ).

Example 21. Consider the PVG ζ and ζ as in Figure 12.

Figure 12. Product vague graphs ζ and ζ.

From Figure 12, it is obvious that K1 = {n, z} and K2 = {m, w} are GDSs. The GDN of ζ is
γg(ζ) = 0.75.

Theorem 8. The GDS K in a PVG ζ is not a singleton.

Proof. The GDS K is a DS for both ζ and ζ and both of them are nonempty sets. Hence, K
is not a singleton.

Example 22. Consider the PVG ζ as in Figure 12. It is obvious that K1 = {n, z} and K2 =
{m, w} are GDSs, which are also DSs in ζ, and neither are singletons.

Theorem 9. A DS K is a GDS if and only if for every node n ∈ V − K, ∃ a node m ∈ K so that m
and n are not dominating each other.

Proof. Let ζ be a PVG with a GDS K. Assume that m in K is dominating n in V − K, then
K is not a DS, which contradicts the statement that K is a DS of ζ. Conversely, let for every
n ∈ V − K, ∃ m ∈ K, so that m and n are not dominating each other, then K is a DS in both
ζ and ζ, which gives that K is a GDS of ζ and so is the result.
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Definition 28. Let ζ = (A, B) be a PVG. A subset K ⊆ V is called RDS if
(i) each node in V − K is neighbor to some nodes in K;
(ii) all the nodes in K have the same degrees.

Example 23. Consider the PVG ζ as in Figure 13. Here, {m, z} and {n, w} are RDSs. Note that
deg(m) = deg(n) = deg(z) = deg(w) = (0.07, 0.57).

Figure 13. Restrained dominating sets in PVG ζ.

Definition 29. An independent set K of a PVG ζ is named an RIS if all the nodes of K have the
same degrees. K is a maximal RIS if ∀m ∈ V − K, and the set K ∪ {m} is not an RIS.

Example 24. In Figure 14, {m, z} is an RIS.

Figure 14. Product vague graph ζ with restrained independent set.

deg(m) = deg(z) = (0.03, 0.09).

Theorem 10. An RIS is a maximal RIS of a PVG ζ if and only if it is an RIS and RDS.

Proof. Let K be a maximal RIS in a PVG ζ, then for each m ∈ V − K, the set K ∪ {m} is not
an independent set, i.e., ∀m ∈ V − K, ∃ a node n ∈ K so that m is neighbor to n. Therefore,
K is a DS of ζ and also an RIS of ζ. Therefore, K is an RIS and RDS.

Conversely, assume that K is both an RIS and RDS of ζ. We have to prove that K is a
maximal RIS. Suppose that K is not a maximal independent set. Then, ∃ a node m /∈ K so
that K ∪ {m} is an independent set, there is no node in K neighbor to m, and hence, m is
not dominated by K. Thus, K cannot be a DS of ζ, which is a contradiction. Therefore, K is
a maximal RIS.
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Example 25. In Figure 14, {m, z} is a maximal RIS that is both RIS and RDS.

4. Application

Dominations are becoming increasingly significant as they can be applied in many ar-
eas, such as psychology, computer science, nervous systems, artificial intelligence, decision-
making theory, etc. Many authors today are trying to find other uses for domination in
their field of interest. Furthermore, domination sets provide system modelers with more
freedom and is less restrictive in permissible membership grades. To fully understand the
concept of dominating sets in vague graphs, we now present an important application of
domination in a vague environment.

4.1. Domination in Cancer Patients and Their Transferability among Countries

Today, with the advancement of medical science, the mortality rates have decreased
so much that, after a period of treatment in hospitals or private clinics, patients often
continue their normal daily lives. Unfortunately, there are still diseases that can only be
treated in certain countries because they require a long treatment period using special
medical devices. One of these diseases is Leukemia, which severely affects the body’s
immune and defense systems and often patients do fully recover. Many poor countries
are unable to cope with this disease, and many people die each year in these countries
as a result of a lack of medical equipment. Therefore, in this paper, using dominating
sets, we categorize countries that are in a more favorable position in terms of medical
facilities, so that we can transfer the patients to a suitable hospital in these countries, which
are better suited in terms of both cost and distance. For this purpose, we consider five
countries: China, India, Indonesia, Taiwan, and Korea. We utilized the following website:
https://www.wcrf.org/global-cancer-data-by-country/, which we accessed on 12 April
2021. This website modeled the number of cancer patients in different countries as a
vague graph. Table 2 shows the number of cancer patients in these five countries in 2018
(according to the aforementioned website). Unfortunately, it is clear that many people suffer
from this disease. Moreover, most countries do not have the adequate medical facilities to
diagnose and treat the disease. Table 3 indicates the amount of medical equipment in these
countries by percentage (according to the global atlas of medical devices—World Health
Organization, 2018). The amount of scientific literature on social inequality in health has
increased exponentially in recent years. However, the effect of politics and policies on
health and social inequality in health is rarely a focus. This is a schematic attempt to show
how politics is related to the expansion of the welfare state, in turn reflecting the degree
to which societies take care of their citizens. The welfare state and labour market policies
have an effect on the income and social inequality in the population. Obviously, countries
with better political relations are also better able to solve their medical problems. This is
clearly shown in [53].

Suppose that there is a cancer patient in Indonesia who wants to travel to one of the
four countries for treatment. For our patient, the conditions and reasons for transferring
from the country of origin to another country for treatment include the following:

Firstly, the patient’s financial situation and social level are of importance in order
to meet the costs of treatment in another country. Secondly, the scientific level of the
destination country and the existence of specialized clinics and hospitals must be adequate
to ensure that comprehensive and centralized treatment options are available in one
center, including radiotherapy, immunotherapy, bone marrow transplant, etc. Note that, in
Figure 15, we consider the conditions for transporting a patient to the destination country
as “facilities” and the medical facilities of the destination country as “equipment”. In this
vague graph, the nodes represent the countries and the edges represent the extent of the
political relations between the countries. The weights of the vertices and edges are given in
Tables 4 and 5.

https://www.wcrf.org/global-cancer-data-by-country/
https://www.wcrf.org/global-cancer-data-by-country/
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Figure 15. Vague graph ζ of transferability cancer patients.

Table 2. The number of cancer patients.

Number
of Patients

Country
India China Indonesia Taiwan Korea

200,000 4,300,000 293,400 78,000 230,317

Table 3. The amount of medical equipment.

Medical
Facilities
Rates

Country

India China Indonesia Taiwan Korea

47% 60% 27% 36% 53%

Table 4. Weight of vertices in VG ζ.

ζ India Indonesia China Korea Taiwan

(tA, fA) (0.5, 0.2) (0.4, 0.3) (0.5, 0.3) (0.4, 0.1) (0.4, 0.2)

Table 5. Weight of edges in VG ζ.

ζ (India–Indonesia) (India–China)

(tB, fB) (0.3, 0.4) (0.3, 0.5)

ζ ( Indonesia–China) (Indonesia–Taiwan)

(tB, fB) (0.4, 0.3) (0.2, 0.7)

ζ (China–Taiwan) (Korea–Taiwan) (India–Korea)

(tB, fB) (0.3, 0.5) (0.3, 0.5) (0.3, 0.5)
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The vertex Taiwan(0.4, 0.2) shows that it has 40% of the necessary facilities for treating
the patient and unfortunately lacks 20% of the necessary equipment. The edge Indonesia–
Taiwan shows that there is only 20% as regards friendly relations between the two countries
and, unfortunately, 70% represents tensions and political differences between them. The
DSs for Figure 15 are as follows:

K1 = {a, c},
K2 = {a, d},
K3 = {a, e},
K4 = {b, e},
K5 = {a, b, c},
K6 = {a, b, d},
K7 = {a, b, e},
K8 = {b, c, d},
K9 = {b, c, e},
K10 = {a, b, c, d},
K11 = {a, b, c, e},
K12 = {a, b, d, e},
K13 = {b, c, d, e},
K14 = {a, c, d, e}.

After calculating the cardinality of K1, K2, · · · , K14, we obtain

|K1| = 1.15,

|K2| = 1.2,

|K3| = 1.15,

|K4| = 1.25,

|K5| = 1.8,

|K6| = 1.85,

|K7| = 1.8,

|K8| = 1.9,

|K9| = 1.85,

|K10| = 2.45,

|K11| = 2.4,

|K12| = 2.45,

|K13| = 2.5,

|K14| = 2.4.

It is obvious that K1 has the smallest size as compared with the other DSs; hence, we
concluded that it is the best choice. This is because, firstly, China has more powerful medical
equipment than other countries; and secondly, there is a stronger friendly relationship
between China and Indonesia. As we can see, despite the fact that China has the highest
number of patients among these five countries, its hospitals and clinics are equipped with
powerful diagnostic and therapeutic tools for the treatment of this disease. Furthermore,
the high number of patients is related to the population size of this country and its superior
diagnostic facilities. Therefore, governments should try to reduce their political differences
so that patients can easily seek treatment in other powerful countries.
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4.2. Comparison with Distance between Countries

In this subsection, we intend to examine another influential factor, i.e., the distance or
distance between countries. This can play a significant role in deciding which country to
choose for treatment when using the dominating set. The distances between Indonesia and
other countries are presented in Table 6.

Information about the distances between countries was obtained from the following
website (https://www.geodatos.net/en/distances/countries, accessed on 12 April 2021).

Table 6. Distance between countries.

Distance
Country Indonesia–India Indonesia–China Indonesia–Taiwan

4483 Km 4181 Km 2814 Km

Country Indonesia–Korea Korea–Taiwan China–Taiwan

Distance 4309 Km 1504 Km 2103 Km

Country India–China

Distance 2984 Km

According to Figure 15, the minimum edge dominating sets are as follows:

K1 = {Indonesia, Taiwan}, K2 = {Indonesia, India}
K3 = {Indonesia, Korea}, K4 = {Indonesia, China}.

After calculating the cardinality of K1, K2, K3, and K4, we have

|K1| = 1.15, |K2| = 1.2, |K3| = 1.2, |K4| = 1.15.

It is clear that K1 has the smallest size as compared with the other edge dominating
sets. Therefore, we concluded that it is the most appropriate choice as compared to the
other edge dominating sets. Moreover, according to Table 6, it is clear that Indonesia–
Taiwan has the shortest distance between them. Therefore, a comparison between these
two subsections shows that the dominating sets always provide the best possible condition
for the treatment of the patient.

5. Conclusions

A vague model is suitable for modeling problems with uncertainty, indeterminacy, and
inconsistent information in which human knowledge is necessary and human evaluation is
required. Vague models give more precision, flexibility, and compatibility to the system as
compared to classical, fuzzy, and intuitionistic fuzzy models. A vague graph can describe
the uncertainty of all kinds of networks well. The VG concept has a wide variety of
applications in different areas, such as computer sciences, operation research, topology,
and natural networks. Moreover, the term domination has a wide range of applications in
graph theory for the analysis of vague information. Domination in FGs theory is one of
the most widely used topics in various sciences, including psychology, computer science,
nervous systems, artificial intelligence, etc. Hence, in this research, we describe different
kinds of DSs, such as EDS, TEDS, GDS, and RDS, in PVGs. Furthermore, we present the
properties of each by giving various examples, and the relationship between IESs and ECSs
are established. Moreover, we derived the necessary and sufficient condition in which
an edge dominating set to be minimal. We also show when a dominance set can be a
global dominance set. Finally, we introduce an application of domination in the field of
medical science. In future work, we will introduce a vague competition graph and study
new types of domination, such as regular perfect DS, inverse perfect DS, equitable DS, and
independent DS on vague competition graphs.

https://www.geodatos.net/en/distances/countries
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