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Abstract: Fluorescent penetrant inspection (FPI) is a well-assessed non-destructive test method used
in manufacturing for detecting cracks and other flaws of the product under test. This is a critical
phase in the mechanical and aerospace industrial sector. The purpose of this work was to present
the implementation of an automated inspection system, developing a vision-based expert system to
automate the inspection phase of the FPI process in an aerospace manufacturing line. The aim of this
process was to identify the defectiveness status of some mechanical parts by the means of images.
This paper will present, test and compare different machine learning architectures to perform the
automated defect detection on a given dataset. For each test sample, several images at different
angles were captured to properly populate the input dataset. In this way, the defectiveness status
should be found combining the information contained in all the pictures. In particular, the system
was designed for increasing the reliability of the evaluations performed on the airplane part, by
implementing proper artificial intelligence (AI) techniques to reduce current human operators’ effort.
The results show that, for applications in which the dataset available is quite small, a well-designed
feature extraction process before the machine learning classifier is a very important step for achieving
high classification accuracy.

Keywords: image processing; non-destructive testing; artificial neural networks; deep learning

1. Introduction

Non-destructive testing (NDT)—also known as non-destructive inspection (NDI) or
examination (NDE)—is among the most commonly used techniques for material structure
investigations, especially in critical fields like aerospace, where most of the components
should be analysed [1].

Several technologies exist for defect identification in NDT applications. Ultrasonic test-
ing is adopted for the detection of defects inside sound-conducting materials. The resulting
signal should be properly investigated for identifying the nature and size of the defect [2].
Another well-investigated technique for NDT is the use of infrared cameras: the material
was subjected to a mechanical wave that was converted in heat at the correspondence of
defects [3]. This concept has also been extended for applications in which the testing was
performed by an UAV [4]. Furthermore, eddy currents have been used in NDT for crack
identification [5].

Another NDT that is gaining scientific and technological relevance in multiple areas is
continuous wave terahertz imaging, that has been proved to provide very good results in
the identification of several defects, such as voids and water infiltrations [6].

Other approaches to NDT are the acoustic emissions, the digital image correlation,
and the infrared thermography. These techniques have been successfully applied to the
inspection of composite material [7].
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Fluorescent penetrant inspection (FPI) is a well-assessed NDT method used in man-
ufacturing for detecting porosity, cracks, fractures, laps, seams and other flaws of the
manufactured sample under test, caused by fatigue, impact, quenching, machining, grind-
ing, forging, bursts, shrinkage or overload [8].

Although several technologies exist for assisting the NDI/NDT personnel in detecting
the defects, simple visual inspection may still account for up to 80% of all quality inspections
in the automotive and the aerospace field. Quality visual control is always associated with a
certain degree of variability in both throughput and accuracy; an automated vision system
can significantly improve both of them. Indeed, visual inspectors have must rely solely
on their vision to assess the condition of the components produced (axes, turbine, fuel
injectors etc.); typically, when they perform NDI and NDT, they are often supported by
highly sophisticated imaging and scanning devices in order to detect the defects [1].

Image processing algorithms and computational intelligence (CI) can be implemented
for introducing an automated approach for defect classification [9].

Several studies have been conducted in the area of using image processing to detect
cracks and defects in materials: a comparison of image analysis techniques for detecting
cracks in concrete structures can be found in [10,11], but only very few studies in the
literature have focused on automatic crack detection in metals using image analysis.

Some of these investigated the possible FPI automation of drive and crank shafts
for the automotive industry [12] by using fixed CCD cameras and UV light illumination,
but did not reveal their results, while in [13], forged metal parts were analysed with
a camera, but the proposed approach shows relatively low robustness and some false
responses; an FPI system was proposed in [14], however, unfortunately lacks accuracy, still
showing errors in classifying image features.

Computational intelligence techniques have firmly established themselves as effective
numerical tools in the recent past. They have been extensively employed in many systems
and application fields, like signal processing, automatic control, industrial and consumer
electronics. Image processing is also an extremely attractive area for the development of
new computational intelligence-based techniques and their applications, such as image pre-
processing and compression algorithms, image analysis pattern recognition, classification
and clustering, image inferencing [15].

Among the most relevant industrial applications, NDT can benefit from recently
emerged computational intelligence (CI) techniques (i.e., independent component analysis
(ICA), wavelet representation, support vector machines, fuzzy systems, neural networks).
Several practical examples for the solution of relevant inspection problems are presented
in [16], where the advantages of using the CI approach have been assessed on applications
of NDT/NDI in both civil engineering and industrial problems.

Additionally, in order to manage the uncertainty intrinsically connected with NDT,
fuzzy logic can be used, as shown in [17], where reasonably simple computational models
are presented as good fault detection as the known more complicated models. Moreover, an
evolutionary neural network (ENN) can be used to quantify the defects in NDT, as shown
in [18]. In this case, information extracted from the pixels of visual camera imaging provides
characteristic parameters for network training and validation, resulting in an error of less
than 2%.

Very good performances were obtained using random forests for image classifica-
tion [19,20], and deep learning algorithms [21].

In terms of real-time capabilities, recent literature [22] has assessed the ability of neural
networks to manage input data with a time interval sampled approximately one-tenth of
the time constant of the considered system.

The proposed system, specifically tailored on the stringent requirements of a high-
volume aerospace test case, consists of a robot for part handling, a machine vision solution
for detecting the defects, and intelligent software allowing real-time image processing and
highly reliable decision making.
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The aim of this process was to identify the defectiveness status of some mechanical
parts by means of images. Different possible system architecture will be presented and
tested on a basic dataset of real images, in order to properly validate and compare the
proposed procedures. For each test sample, several images at different angles are captured
to populate the input dataset. In this way, the defectiveness status should be found to
combine the information contained in all the pictures.

The proposed technique combines deterministic feature extraction with machine
learning classifiers in order to exploit the advantages of the latter reducing the training
set size required. In fact, for this application, the number of damaged pieces is very small,
thus the number of occurrences of each defect is a very crucial aspect in the training of
ML classifiers.

With respect to statistical or purely deterministic approaches [23], the proposed ap-
proach is able to exploit the capability of neural networks to provide a non-linear classifier.
The main disadvantage of this approach is the reduction in the learning capability of
the ML, because the information in input is limited by the process of feature extraction.
However, the results obtained for the considered problem shows that this method achieves
better performance with respect to a pure ML [24].

Other works have exploited feature extraction in NDT; however, in many cases, this is
the outcome of a properly trained ML model. For example, in [25], deep learning is used
for extracting key features from eddy currents testing; this kind of approaches cannot be
used in the application proposed in this paper also due to the lack of a numerical model of
the defectiveness.

The paper is structured as follows: Section 2 describes the architecture of the proposed
automated system; Section 3 presents the considered ML classifiers and an additional data
analysis technique; while Section 4 describes the dataset considered in this case study;
finally, numerical results and conclusions are reported in Sections 5 and 6, respectively.

2. Automated FPI System Architecture

The context in which the proposed machine learning technique is introduced is the
automated fluorescent penetrant inspection (AutoFPI) project, a research program funded
by the MANUNET initiative, in the framework of European Union’s Horizon 2020 research
and innovation initiative: its aim is the development of an automated system with the
scope of analysing failures in industrial parts and components.

As previously described, FPIs are NDT techniques, with a sequence of operations
which can be generally described by the flow chart shown in Figure 1. Their main drawback
is the requirement, in the last stage (the evaluation part), that an expert operator works in
dark room to process the parts manually.

Fluid penetrant immersion

Part cleaning

Drying

Expert evaluation

Figure 1. FPI general flowchart.

The automated system aims to improve both the quality of operators’ working envi-
ronment and their evaluations: indeed, the expert can be replaced inside the dark room by
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a robot which takes each part and shoots pictures under multiple angles; these are then
analysed by suitable image processing techniques, as shown in Figure 2.

Fluid penetrant immersion

Part cleaning

Drying

Automated pictures

Automated evaluation

(Optional:) expert validation

Figure 2. FPI automation flowchart.

In particular, the system was designed for increasing the reliability of the evaluations
performed on the part, by implementing an ad hoc designed human–machine interface
and proper artificial intelligence (AI) techniques to learn from expert operators how to
evaluate part quality and identify features under the UV light.

The employment of a robotic part manipulation system and the high-speed decision-
making algorithm will likely increase the FPI efficiency, thus reducing the inspection time
and allowing to process more parts every day.

The inspection process will gain repeatability and the availability of data will allow
improved flaw localization and sizing and the issuing of detailed reports and statistics
on production.

Finally, the operators can optionally check and validate the overall process quality by
working with a PC, also in a remote working environment. All these improvements will
ultimately minimize the cost of the process, but will also have social impacts, improving
operators’ working conditions, avoiding manual part processing and monotonous tasks.

Within this framework, it is possible to consider some machine learning processes that
automatically evaluate the part status. Their design should take into account that the final
defectiveness rate is a function of all the pictures taken from different angles.

The main constraint in the ML design phase is the low number of available samples.
In particular, the defectiveness rate is very low, and it is almost impossible to train a
convolutional deep learning network that can directly assess the entire part. Thus, multi-
step architectures were investigated for reducing the number of samples required for the
training phase; some deterministic steps were introduced in the system and the final ML
impact was limited.

Two systems were designed: they differ from the amount of image preprocessing
required before the neural network.

The part analysis starts with a preliminary deterministic analysis of the images,
in which the spots are identified and extracted in small boxes. The accuracy of this step
highly depends on the noise level in the original images: generally, if the cleaning phase
has been properly performed, the noise is relatively low. It introduces a new user-defined
parameter, i.e., the box size, that can be used for tuning the trade-off between the number
of data contained in each box and the computational time required for training the system.
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Another important advantage of this approach is related to the fact that image multi-
plication techniques can be exploited for enlarging the available dataset.

The investigated procedure is based on this approach. The main architecture based
on the spot identification is the one depicted in Figure 3, where each spot identified in the
original picture is directly processed by means of a neural network. The input size of this
network is the number of pixels in the box and its output is the spot classification.

Figure 3. First (basic) system architecture: each spot box is analysed by a neural network.

In this architecture, it is possible to exploit both deep neural network and multi-layer
perceptron. The required dataset is smaller with respect to the previous cases, and it is
simpler to acquire: in fact, for each image it is possible to have more than one indication.

In this case, there are two deterministic steps that should be carefully designed: the
first one is the spot identification and the second one is the heuristic logic for finding the
final sample status.

In an alternative design architecture (Figure 4), a further deterministic step was
introduced: in fact, for each spot, some features are deterministically extracted and used as
input of the neural network.

Figure 4. Second system architecture: deterministically extracted features from each spot are analysed
with a neural network.

This final architecture requires the lowest number of input samples, but it can identify
a quite restricted classes of indications, according to the type of extracted features.

Within this framework the aim of this paper was to analyse the performance of the
two neural network-based classifiers.

3. Machine Learning Techniques for Spot Identification

Machine learning (ML), especially neural networks, can be effectively implemented
for the defectiveness status identification. The target of ML system is the classification of
each spot identified in the original image. The input layer is provided as a B/W image
with 60 × 60 pixel size.

The output of the system is the spot classification among three possible classes which
were identified in the considered application for aerospace manufacturing: “healthy” (when
no defect is found); “linear defect”; and “crack” (based on the defect shape, respectively).

In this Section, two different classifiers are described: the first one is the direct spot
classifier and the second one is the indirect spot classifier. This last approach requires an
additional deterministic feature extraction step.
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3.1. Direct Spot Classifier

The direct spot classifier, shown in Figure 5, directly receives as input the image in
which there is the spot. Thus, its input layer has 60 × 60 neurons.

Figure 5. Architecture of the direct spot classifier: the input image is provided as input for the
neural network.

The developed neural network has only one hidden layer to reduce the possibility of
incurring in over-training, while the output layer is composed of three neurons, one for
each target status of the part. The network is trained with the scaled conjugate gradient
algorithm using the cross-entropy error index [26].

3.2. Indirect Spot Classifier

The second proposed classifier is the indirect method: the image is preliminary
analysed, and some deterministic features are extracted.

The features were selected after interviewing the expert users: from these, it was
found that the most important aspects for the classification are the area of the spot and its
aspect ratio.

Thus, the new selected features are the following: area of the spot, major and minor
axis of the ellipse circumscribed to the spot, its eccentricity, and finally the orientation of
the spot. Figure 6 shows the architecture of this indirect system.

Figure 6. Architecture of the second spot analysis method tested: the image is preprocessed and
some features are extracted. These features are used as input for the neural network.

For better understanding which is the real contribution of the feature extraction
process on the classification, with respect to the neural network’s one, the t-distributed
stochastic neighbour embedding method was applied, as described in the next section.

3.3. t-Distributed Stochastic Neighbour Embedding

The t-distributed stochastic neighbour embedding (t-DSNE) is a machine learning
algorithm for high-dimensional data visualization [27].

It is a non-linear dimensionality reduction technique well suited for embedding high-
dimensional data for visualization in a low-dimensional space of two or three dimensions.
Specifically, it models each high-dimensional object by a two- or three-dimensional point
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in such a way that similar objects are represented by nearby points and dissimilar objects
are modelled by distant points with high probability.

This method was implemented in this paper for analysing and validating the sample
distribution at three different levels of the classification: at the first step, when spot images
were analysed; then, after the deterministic features were extracted; and finally, at the end
of the classification process, as reported in the following section.

4. Case Study and Dataset

The considered dataset is composed by some 60 × 60 pixel boxes each one containing
a single spot. These boxes are in black and white because the original colour images were
preprocessed with a thresholding algorithm for reducing the image noise.

The dataset is thus composed of single spots that were classified by the expert opera-
tors in three possible classes: cracks; linear indications; and healthy indication.

Figure 7 shows some spots of the available dataset: the colour of the box is representa-
tive of the type of defect: in green, the healthy indications; in orange, the linear ones; and
in red, the cracks.

Figure 7. Samples taken from the available dataset. The box colour is representative of the defect
type: in green, the healthy indications; in orange, the linear ones; and in red, the cracks.

Due to the fact that classification was manually performed, it may be possible to have
some misclassified samples.

The available spotted images were selected in order to have the same number of
indications for the three classes. From this dataset, the training, validation and testing sets
were extracted. In this case also, the size of each class is the same in all the subset. This
created a dataset division as shown in Figure 8.

For all the performed analysis, the training set was composed of 65% of the samples;
the validation set of 15%; and the test set of 20%—for a total of 1502 images, as reported in
detail in Table 1.
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Figure 8. The dataset is composed of an equal number of samples for each class, and it is divided
into training, validation and test sets.

Table 1. Number of samples in the considered dataset.

Set Training Validation Test Total

Healty 326 75 100 501
Crack 325 75 100 500
Linear 326 75 100 501

Total 977 225 300 1502

This dataset was used to train the two classification networks of the architectures
described in Figures 3 and 4. In particular, the first one was a direct spot classification
because the network was directly fed with the pixels’ values, while the second one was an
indirect spot classified since the image is deterministically preprocessed.

5. Numerical Results and Validation

Numerical analysis was performed on the described dataset, considering the two
previously presented approaches, i.e., the direct and indirect spot classifier, respectively.
Additionally, the results of the classification were compared by means of the t-DSNE
approach described in Section 3.3, in order to graphically compare and validate the effec-
tiveness of the proposed techniques.

All the machine learning techniques were implemented in Matlab R2019b starting
from the Neural Network Toolbox and properly modifying the network features to be
suited for the specific problem.

5.1. Direct Spot Classifier

The neural network was composed of an input layer with 360 neurons, one for each
pixel, one hidden layer with 150 neurons, designed after a preliminary sensitivity analysis,
and a final output layer with three neurons, that return the probability that a spot belongs
to each classification type.

As mentioned in Section 3.1, the error function used in training the neural network
was the cross entropy [26] and the training algorithm was the scaled conjugate gradient. The
termination criterion selected was the validation check. Twenty-five independent trials
were performed and Figure 9 shows the training and testing convergence curves.

The best network obtained according to the testing result was analysed. It reached the
best validation performance at epoch 77, as shown in Figure 10, where the training (blue
line), the validation (green line) and the testing (red line) are shown. Here, it is possible to
see that the training performances are much better than the validation and testing ones,
showing that the network has a relatively reduced generalization capability.

The performance of this network can be more deeply analysed by means of the confu-
sion matrices, in which the percentage of correct and wrong classifications are reported for
each case. In Figure 11, both the confusion matrix on the entire dataset and on the testing
set are reported.
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(a) Training curves. (b) Testing curves.

Figure 9. Training and testing convergence curves.
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Figure 10. Performance evolution of the best neural network obtained from the 25 independent trials.
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(a) Confusion matrix on the entire dataset.
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(b) Confusion matrix on the test set.

Figure 11. Confusion matrices for the entire dataset and the training set.

The first aspect that can be noticed is the different performance between the entire
dataset and the test set: in fact, in the first one, the percentage of correct classification is
73%, while on the test set, it is only 61.7%.
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Secondly, it is possible to see that the most of errors are concentrated in the misclassi-
fication of defects (linear classified as cracks, 134 cases over the entire dataset, and crack
classified as linear, 86 cases). There is a quite high number of defects that has been classified
as healthy indications: this is a quite relevant error because it can lead to safety issues in
the specific application domain.

5.2. Indirect Spot Classifier

The neural network is now composed of an input layer with five neurons, one for each
feature, one hidden layer with 10 neurons (sized with a sensitivity analysis) and a final
output layer with three neurons, with the same meaning seen before. As in the previous
case, the error function used is the cross entropy and the training algorithm is the scaled
conjugate gradient.

Figure 12 shows the training and testing convergence curves for 25 independent trials.

(a) Training performance curves. (b) Testing performance curves.

Figure 12. Training and testing convergence curves.

Comparing these results with the one of a previously proposed direct classifier, it
is possible to see that the cross-entropy error is significantly lower, especially in the test-
ing performances.

In this case, once more, the best network obtained according to the testing result
was analysed. Its detailed convergence curves are shown in Figure 13. Thus, the distance
between the training performance and the testing one is much smaller than before, meaning
that a higher generalization capability of the system was reached.

The performance of this network can be analysed more deeply by means of the
confusion matrices depicted in Figure 14.

The first observation is related to the very high performance rate of this network: it
achieves 97.3% correct classification on the test set.

In this case also, most of the misclassifications were related to cracks classified as
healthy (1% of the test set) and crack indications classified as linear or vice versa (altogether
another 1% of the test set).

For better understanding the misclassification impact, Figure 15 shows some examples
related to it. For each spot, the output class, its confidence level and the target class are
each indicated.

Analysing these cases, it is possible to see that the second case can be considered
border line between a real crack and a healthy indication. The performance of this classifier
is very good and its training computational time is reduced by the fact that inputs are five
numbers for each sample.
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Figure 13. Performance evolution of the best neural network obtained from 25 independent trials.
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(a) Confusion matrix on the entire dataset.
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Figure 14. Confusion matrices for the entire dataset and the training set.

5.3. Results Validation and Comparison

As mentioned in Section 3.2, in order to evaluate the real contribution of the feature ex-
traction process on the classification, with respect to the neural network’s one, the t-distributed
stochastic neighbour embedding method was applied, as described in Section 3.3.

Figure 16 shows the 2-D representation of the spot images samples: the classification
classes are represented by means of the colours: red for healthy indications; green for
cracks; and blue for linear ones. In this figure, it is possible to observe that there are almost
no clusters, meaning that the initial distribution of samples cannot be linearly classified.
The high concentration of healthy indications in the centre of the picture corresponds to
the samples in which the number of white pixels is very low.
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Target class: Healthy

Output class: Healthy

Confidence: 97.5%

(a)

Target class: Crack

Output class: Crack

Confidence: 100%

(b)

Target class: Linear

Output class: Linear

Confidence: 91.6%

(c)

Target class: Crack

Output class: Linear

Confidence: 77.6%

(d)

Target class: Linear

Output class: Crack

Confidence: 77.4%

(e)

Target class: Linear

Output class: Healthy

Confidence: 77.3%

(f)

Figure 15. Classificationexamples: the colour of the boundary of the image is relative to the target
class, while the colour of the circle is relative to the predicted class: (a), (b) and (c) shows examples of
correct classification, while (d), (e) and (f) shows misclassification.

Figure 17 shows the t-DSNE visualization after the extraction of the features. In this
case, there are some clusters, but they are often composed of samples belonging to different
classification classes. The only exception is a very isolated cluster of healthy indication on
the top of the Figure: it corresponds to those samples in which the number of white pixels,
i.e., the area of the spot, is very low.
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Figure 16. t-DSNE visualization of the samples composed by the spot images.

It is possible to see that the deterministic feature extraction helps the classification,
but it is still not accurate enough.
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Figure 17. t-DSNE visualization of the samples composed by the deterministically extracted features.

Finally, Figure 18 shows the t-DSNE of the final classification after the neural network
run: it is possible to see that the samples are well clustered, thus validating the effectiveness
of the proposed procedure with respect to the simple feature extraction process, and its
increased accuracy in defect detection.
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Figure 18. t-DSNE visualization of the final classification.

6. Conclusions

In this paper, different ML-based architectures were tested to perform NDT applied to
an industrial quality test. For each considered part, several images taken at different angles
were analysed. The proposed methods were able to detect and classify the defectiveness
status of the relevant parts, combining the information contained in the source pictures
with the expert operator experience employed to train the system, thus improving the
overall NDT procedure effectiveness.

The resulting automated FPI process may find wide application in several manu-
facturing sectors such as aerospace, automotive, energy, and nuclear, where production
requires the extensive use of FPI techniques, thus leading to significant improvements on
the current state of the art practices.

In addition to an increased quality of inspection and probability of detection, the
results of the automated process may be less dependent on subjective operator analysis,
also leading to a reduced number of “false calls” and a higher customer confidence.

The reduction in inspection time, obtained by the robotic part manipulation and the
high-speed decision-making algorithm, will highly increase the FPI efficiency, allowing
to process more parts every day and impacting the overall production lead time, also
improving human operators’ working conditions.

The combination between deterministic feature extraction and machine learning
classifier provides the optimal performance considering the non-linearity problems and
the limits of the available samples due to the high reliability of the production process.
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